Se ha sugerido que este artículo se divida en un nuevo artículo titulado Bipirámide cuadrada . ( discutir ) ( agosto de 2024 ) |
En geometría , un octaedro ( pl.: octaedros u octaedros ) es un poliedro con ocho caras. Un caso especial es el octaedro regular , un sólido platónico compuesto por ocho triángulos equiláteros , cuatro de los cuales se unen en cada vértice. Los octaedros regulares se presentan en la naturaleza como estructuras cristalinas . También existen muchos tipos de octaedros irregulares, que incluyen formas convexas y no convexas.
Un octaedro regular es el caso tridimensional del concepto más general de politopo cruzado .
Un octaedro regular es un octaedro que es un poliedro regular . Todas las caras de un octaedro regular son triángulos equiláteros del mismo tamaño y exactamente cuatro triángulos se unen en cada vértice. Un octaedro regular es convexo, lo que significa que para dos puntos cualesquiera dentro de él, el segmento de línea que los conecta se encuentra completamente dentro de él.
Es uno de los ocho deltaedros convexos porque todas las caras son triángulos equiláteros . [1] Es un poliedro compuesto formado mediante la unión de dos pirámides cuadradas equiláteras . [2] [3] Su poliedro dual es el cubo , y tienen los mismos grupos de simetría tridimensional , la simetría octaédrica . [3]
El octaedro regular es uno de los sólidos platónicos , un conjunto de poliedros cuyas caras son polígonos regulares congruentes y en cada vértice se juntan el mismo número de caras. [4] Este antiguo conjunto de poliedros recibió su nombre en honor a Platón , quien en su diálogo Timeo relacionó estos sólidos con la naturaleza. Uno de ellos, el octaedro regular, representaba el elemento clásico del viento . [5]
Tras su atribución a la naturaleza por parte de Platón, Johannes Kepler, en su Harmonices Mundi, esbozó cada uno de los sólidos platónicos. [5] En su Mysterium Cosmographicum , Kepler también propuso el Sistema Solar utilizando los sólidos platónicos colocados en otro y separándolos con seis esferas que se asemejaban a los seis planetas. Los sólidos ordenados comenzaban desde el más interno hasta el más externo: octaedro regular, icosaedro regular , dodecaedro regular , tetraedro regular y cubo . [6]
Muchos octaedros de interés son bipirámides cuadradas . [7] Una bipirámide cuadrada es una bipirámide construida uniendo dos pirámides cuadradas base con base. Estas pirámides cubren sus bases cuadradas, por lo que el poliedro resultante tiene ocho caras triangulares. [1]
Una bipirámide cuadrada se dice que es recta si las pirámides cuadradas son simétricamente regulares y ambos vértices están en la línea que pasa por el centro de la base; de lo contrario, es oblicua. [8] La bipirámide resultante tiene un grupo puntual tridimensional de grupo diedro de dieciséis: la apariencia es simétrica al girar alrededor del eje de simetría que pasa por los vértices y el centro de la base verticalmente, y tiene simetría especular relativa a cualquier bisectriz de la base; también es simétrica al reflejarla a través de un plano horizontal. [9] Por lo tanto, esta bipirámide cuadrada es transitiva por las caras o isoédrica. [10]
Si los bordes de una bipirámide cuadrada tienen todos la misma longitud, entonces esa bipirámide cuadrada es un octaedro regular.
El área de la superficie de un octaedro regular se puede determinar sumando todos sus ocho triángulos equiláteros, mientras que su volumen es el doble del volumen de una pirámide cuadrada; si la longitud del borde es , [11] El radio de una esfera circunscrita (una que toca el octaedro en todos los vértices), el radio de una esfera inscrita (una que es tangente a cada una de las caras del octaedro) y el radio de una esfera media (una que toca el medio de cada borde), son: [12]
El ángulo diedro de un octaedro regular formado por dos caras triangulares adyacentes es de 109,47°. Esto se puede obtener a partir del ángulo diedro de una pirámide cuadrada equilátera: su ángulo diedro entre dos caras triangulares adyacentes es el ángulo diedro de una pirámide cuadrada equilátera entre dos caras triangulares adyacentes, y su ángulo diedro entre dos caras triangulares adyacentes en el borde en el que se unen dos pirámides cuadradas equiláteras es el doble del ángulo diedro de una pirámide cuadrada equilátera entre su cara triangular y su base cuadrada. [13]
Un octaedro con longitud de arista se puede colocar con su centro en el origen y sus vértices en los ejes de coordenadas; las coordenadas cartesianas de los vértices son: En el espacio tridimensional , el octaedro con coordenadas de centro y radio es el conjunto de todos los puntos tales que .
El esqueleto de un octaedro regular se puede representar como un grafo según el teorema de Steinitz , siempre que el grafo sea plano (sus aristas de un grafo están conectadas a cada vértice sin cruzar otras aristas) y grafo 3-conexo (sus aristas permanecen conectadas siempre que se eliminen dos o más de tres vértices de un grafo). [14] [15] Su grafo se llama grafo octaédrico , un grafo platónico . [4]
El grafo octaédrico puede considerarse como un grafo tripartito completo , un grafo dividido en tres conjuntos independientes, cada uno de los cuales consta de dos vértices opuestos. [16] De manera más general, es un grafo de Turán .
El grafo octaédrico es 4-conexo , lo que significa que se necesitan cuatro vértices para desconectar los vértices restantes. Es uno de los cuatro únicos poliedros simpliciales bien cubiertos 4-conexos , lo que significa que todos los conjuntos independientes máximos de sus vértices tienen el mismo tamaño. Los otros tres poliedros con esta propiedad son la bipirámide pentagonal , el disfenoide romo y un poliedro irregular con 12 vértices y 20 caras triangulares. [17]
El interior del compuesto de dos tetraedros duales es un octaedro, y este compuesto, llamado stella octangula , es su primera y única estelación . En consecuencia, un octaedro regular es el resultado de cortar de un tetraedro regular, cuatro tetraedros regulares de la mitad del tamaño lineal (es decir, rectificar el tetraedro). Los vértices del octaedro se encuentran en los puntos medios de las aristas del tetraedro, y en este sentido se relaciona con el tetraedro de la misma manera que el cuboctaedro y el icosidodecaedro se relacionan con los otros sólidos platónicos.
También se pueden dividir las aristas de un octaedro en la proporción de la media áurea para definir los vértices de un icosaedro regular . Esto se hace colocando primero vectores a lo largo de las aristas del octaedro de modo que cada cara esté limitada por un ciclo, y luego dividiendo de manera similar cada arista en la media áurea a lo largo de la dirección de su vector. Cinco octaedros definen cualquier icosaedro dado de esta manera, y juntos definen un compuesto regular . Un icosaedro regular producido de esta manera se llama octaedro romo . [18]
El octaedro regular puede considerarse como el antiprisma , un poliedro tipo prisma en el que las caras laterales se sustituyen por triángulos equiláteros alternados. También se le llama antiprisma trigonal . [19] Por lo tanto, tiene la propiedad de cuasirregular , un poliedro en el que dos caras poligonales diferentes se alternan y se encuentran en un vértice. [20]
Los octaedros y tetraedros pueden alternarse para formar un teselado de espacio uniforme en vértices, aristas y caras . Este y el teselado regular de cubos son los únicos panales uniformes de este tipo en el espacio tridimensional.
El tetrahemihexaedro uniforme es una faceta de simetría tetraédrica del octaedro regular, que comparte disposición de aristas y vértices . Tiene cuatro de las caras triangulares y tres cuadrados centrales.
Un octaedro regular es un triángulo rectángulo en el sistema métrico de Manhattan ( ℓ 1 ) .
Como todos los politopos convexos regulares, el octaedro se puede diseccionar en un número entero de ortosquemas disjuntos , todos con la misma forma característica del politopo. El ortosquema característico de un politopo es una propiedad fundamental porque el politopo se genera por reflexiones en las facetas de su ortosquema. El ortosquema se presenta en dos formas quirales que son imágenes especulares una de la otra. El ortosquema característico de un poliedro regular es un tetraedro irregular cuadrirrectangular .
Las caras del tetraedro característico del octaedro se encuentran en los planos de simetría especulares del octaedro . El octaedro es único entre los sólidos platónicos al tener un número par de caras que se encuentran en cada vértice. En consecuencia, es el único miembro de ese grupo que posee, entre sus planos especulares, algunos que no pasan por ninguna de sus caras. El grupo de simetría del octaedro se denota B 3 . El octaedro y su politopo dual , el cubo , tienen el mismo grupo de simetría pero diferentes tetraedros característicos.
El tetraedro característico del octaedro regular se puede encontrar mediante una disección canónica [21] del octaedro regularque lo subdivide en 48 de estos ortoesquemas característicosque rodea el centro del octaedro. Tres ortosquemas levógiros y tres ortosquemas diestros se encuentran en cada una de las ocho caras del octaedro, y los seis ortosquemas forman colectivamente un tetraedro trirectangular : una pirámide triangular con la cara del octaedro como base equilátera y su vértice de esquinas cúbicas en el centro del octaedro. [22]
Características del octaedro regular [23] | |||||
---|---|---|---|---|---|
borde | arco | diedro | |||
𝒍 | 90° | 109°28′ | |||
𝟀 | 54°44′8″ | 90° | |||
Yo [a] | 45° | 60° | |||
𝟁 | 35°15′52″ | 45° | |||
35°15′52″ |
Si el octaedro tiene una longitud de arista 𝒍 = 2, las seis aristas de su tetraedro característico tienen longitudes , , alrededor de su cara exterior de triángulo rectángulo (las aristas opuestas a los ángulos característicos 𝟀, 𝝉, 𝟁), [a] más , , (aristas que son los radios característicos del octaedro). La ruta de 3 aristas a lo largo de las aristas ortogonales del ortosquema es , , , primero desde un vértice de octaedro hasta un centro de arista de octaedro, luego girando 90° hasta el centro de una cara de octaedro, luego girando 90° hasta el centro de un octaedro. El ortosquema tiene cuatro caras de triángulos rectángulos diferentes. La cara exterior es un triángulo 90-60-30 que es un sexto de una cara de octaedro. Las tres caras interiores del octaedro son: un triángulo 45-90-45 con aristas , , , un triángulo rectángulo con aristas , , , y un triángulo rectángulo con aristas , , .
Hay tres coloraciones uniformes del octaedro, nombradas por los colores de las caras triangulares que rodean cada vértice: 1212, 1112, 1111.
El grupo de simetría del octaedro es O h , de orden 48, el grupo hiperoctaédrico tridimensional . Los subgrupos de este grupo incluyen D 3d (orden 12), el grupo de simetría de un antiprisma triangular ; D 4h (orden 16), el grupo de simetría de una bipirámide cuadrada ; y T d (orden 24), el grupo de simetría de un tetraedro rectificado. Estas simetrías se pueden enfatizar mediante diferentes coloraciones de las caras.
Nombre | Octaedro | Tetraedro rectificado (Tetratetraedro) | Antiprisma triangular | Bipirámide cuadrada | Fusil rómbico |
---|---|---|---|---|---|
Imagen (coloración de cara) | (1111) | (1212) | (1112) | (1111) | (1111) |
Diagrama de Coxeter | = | ||||
Símbolo de Schläfli | {3,4} | r{3,3} | s{2,6} sr{2,3} | pies{2,4} { } + {4} | ftr{2,2} { } + { } + { } |
Símbolo de Wythoff | 4 | 3 2 | 2 | 4 3 | 2 | 6 2 | 2 3 2 | ||
Simetría | Oh , [4,3], (*432 ) | T d , [3,3], (*332) | D 3d , [2 + ,6], (2*3) D 3 , [2,3] + , (322) | D 4h , [2,4], (*422) | D 2h , [2,2], (*222) |
Orden | 48 | 24 | 12 6 | 16 | 8 |
Un octaedro puede ser cualquier poliedro con ocho caras. En un ejemplo anterior, el octaedro regular tiene 6 vértices y 12 aristas, el mínimo para un octaedro; los octaedros irregulares pueden tener hasta 12 vértices y 18 aristas. [24] Hay 257 octaedros convexos topológicamente distintos , excluyendo las imágenes especulares. Más específicamente, hay 2, 11, 42, 74, 76, 38, 14 para octaedros con 6 a 12 vértices respectivamente. [25] [26] (Dos poliedros son "topológicamente distintos" si tienen disposiciones intrínsecamente diferentes de caras y vértices, de modo que es imposible distorsionar uno en el otro simplemente cambiando las longitudes de las aristas o los ángulos entre las aristas o las caras). Algunos de los poliedros tienen ocho caras además de ser bipirámides cuadradas en los siguientes:
Los siguientes poliedros son combinatoriamente equivalentes al octaedro regular. Todos ellos tienen seis vértices, ocho caras triangulares y doce aristas que corresponden exactamente con las características del mismo:
Buckminster Fuller inventó en la década de 1950 un marco espacial de tetraedros y medios octaedros alternados derivado del panal tetraédrico-octaédrico . Se lo considera comúnmente como la estructura de construcción más resistente para resistir tensiones en voladizo .
Un octaedro regular se puede convertir en tetraedro añadiendo 4 tetraedros en caras alternadas. Al añadir tetraedros a las 8 caras se crea el octaedro estrellado .
tetraedro | octaedro estrellado |
---|
El octaedro pertenece a una familia de poliedros uniformes relacionados con el cubo.
Poliedros octaédricos uniformes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Simetría : [4,3], (*432) | [4,3] + (432) | [1 + ,4,3] = [3,3] (*332) | [3 + ,4] (3*2) | |||||||
{4,3} | t{4,3} | r{4,3} r{3 1,1 } | t{3,4} t{3 1,1 } | {3,4} {3 1,1 } | rr { 4,3} s2 {3,4} | tr{4,3} | sr{4,3} | h{4,3} {3,3} | h2 {4,3} t { 3,3} | s{3,4} s{3 1,1 } |
= | = | = | = o | = o | = | |||||
De poliedros duales a uniformes | ||||||||||
V43 | Versión 3.8 2 | V(3.4) 2 | Versión 4.6 2 | Versión 3 4 | Versión 3.4 3 | V4.6.8 | Versión 3 4 .4 | Versión 3 3 | Versión 3.6 2 | V3 5 |
También es uno de los ejemplos más simples de un hipersímplex , un politopo formado por ciertas intersecciones de un hipercubo con un hiperplano .
El octaedro está relacionado topológicamente como parte de una secuencia de poliedros regulares con símbolos de Schläfli {3, n }, que continúan en el plano hiperbólico .
* n 32 mutación de simetría de teselaciones regulares: {3, n } | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Esférico | Euclides. | Hiper compacto. | Paraíso. | Hiperbólica no compacta | |||||||
3.3 | 3 3 | 34 | 3 5 | 3 6 | 3 7 | 3 8 | 3 ∞ | 3 12i | 3 9i | 3 6i | 3 3i |
El octaedro regular también puede considerarse un tetraedro rectificado y puede llamarse tetratetraedro . Esto se puede demostrar mediante un modelo de cara de dos colores. Con esta coloración, el octaedro tiene simetría tetraédrica .
Compare esta secuencia de truncamiento entre un tetraedro y su dual:
Familia de poliedros tetraédricos uniformes | |||||||
---|---|---|---|---|---|---|---|
Simetría : [3,3] , (*332) | [3,3] + , (332) | ||||||
{3,3} | t{3,3} | r{3,3} | t{3,3} | {3,3} | rr{3,3} | tr{3,3} | sr{3,3} |
De poliedros duales a uniformes | |||||||
V3.3.3 | V3.6.6 | V3.3.3.3 | V3.6.6 | V3.3.3 | V3.4.3.4 | V4.6.6 | V3.3.3.3.3 |
Las formas anteriores también pueden realizarse como cortes ortogonales a la diagonal larga de un teseracto . Si esta diagonal está orientada verticalmente con una altura de 1, entonces los primeros cinco cortes anteriores se encuentran a alturas r ,3/8 , 1/2 , 5/8 , y s , donde r es cualquier número en el rango 0 < r ≤ 1/4 , y s es cualquier número en el rango 3/4 ≤ s < 1 .
El octaedro como tetratetraedro existe en una secuencia de simetrías de poliedros cuasirregulares y teselas con configuraciones de vértice (3. n ) 2 , progresando desde teselas de la esfera hasta el plano euclidiano y dentro del plano hiperbólico. Con una simetría de notación orbifold de * n 32 todas estas teselas son construcciones de Wythoff dentro de un dominio fundamental de simetría, con puntos generadores en la esquina del ángulo recto del dominio. [29] [30]
* n 32 simetrías orbifold de teselaciones cuasirregulares : (3. n ) 2 | |||||||
---|---|---|---|---|---|---|---|
Construcción | Esférico | Euclidiano | Hiperbólico | ||||
*332 | *432 | *532 | *632 | *732 | *832... | *∞32 | |
Figuras cuasirregulares | |||||||
Vértice | (3.3)2 | (3.4) 2 | (3.5) 2 | (3.6) 2 | (3.7) 2 | (3.8) 2 | (3.∞) 2 |
Como antiprisma trigonal , el octaedro está relacionado con la familia de simetría diedro hexagonal.
Poliedros esféricos diedros hexagonales uniformes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simetría : [6,2] , (*622) | [6,2] + , (622) | [6,2 + ], (2*3) | ||||||||||||
{6,2} | t{6,2} | r{6,2} | t{2,6} | {2,6} | rr{6,2} | tr{6,2} | sr{6,2} | s{2,6} | ||||||
De duales a uniformes | ||||||||||||||
V6 2 | V12 2 | V6 2 | V4.4.6 | Versión 2 6 | V4.4.6 | V4.4.12 | V3.3.3.6 | V3.3.3.3 |
Nombre del antiprisma | Antiprisma digonal | Antiprisma triangular (trigonal) | Antiprisma cuadrado (tetragonal) | Antiprisma pentagonal | Antiprisma hexagonal | Antiprisma heptagonal | ... | Antiprisma apeirogonal |
---|---|---|---|---|---|---|---|---|
Imagen de poliedro | ... | |||||||
Imagen de mosaico esférico | Imagen de mosaico plano | |||||||
Configuración de vértice. | 2.3.3.3 | 3.3.3.3 | 4.3.3.3 | 5.3.3.3 | 6.3.3.3 | 7.3.3.3 | ... | ∞.3.3.3 |
El truncamiento de dos vértices opuestos da como resultado un bifrusto cuadrado .
El octaedro se puede generar como el caso de un superelipsoide 3D con todos los valores de exponente establecidos en 1.