En geometría , un 4-politopo uniforme (o policoron uniforme ) [1] es un politopo de 4 dimensiones que es transitivo por vértices y cuyas celdas son poliedros uniformes y sus caras son polígonos regulares .
Existen 47 politopos cuaternarios convexos uniformes no prismáticos . Existen dos conjuntos infinitos de formas prismáticas convexas, junto con 17 casos que surgen como prismas de los poliedros convexos uniformes. También existe un número desconocido de formas estelares no convexas.
Los 4-politopos regulares son un subconjunto de los 4-politopos uniformes, que satisfacen requisitos adicionales. Los 4-politopos regulares se pueden expresar con el símbolo de Schläfli { p , q , r } y tienen celdas de tipo { p , q }, caras de tipo { p }, figuras de arista { r } y figuras de vértice { q , r }.
La existencia de un 4-politopo regular { p , q , r } está restringida por la existencia de los poliedros regulares { p , q } que se convierten en celdas, y { q , r } que se convierte en la figura del vértice .
La existencia como un 4-politopo finito depende de una desigualdad: [15]
Los 16 4-politopos regulares , con la propiedad de que todas las celdas, caras, aristas y vértices son congruentes:
Los 24 espejos de F 4 se pueden descomponer en 2 grupos D 4 ortogonales :
|
Los 10 espejos de B 3 × A 1 se pueden descomponer en grupos ortogonales, 4 A 1 y D 3 :
|
Hay 5 familias fundamentales de grupos puntuales de simetría especular en 4 dimensiones: A 4 =, B4 =, D4 =, F4 =, H4 =. [7] También hay 3 grupos prismáticos A 3 A 1 =, B3A1 =, H3A1 =, y grupos duoprismáticos: I 2 (p)×I 2 (q) =. Cada grupo está definido por un dominio fundamental del tetraedro de Goursat delimitado por planos especulares.
Cada 4-politopo uniforme reflexivo se puede construir en uno o más grupos puntuales reflexivos en 4 dimensiones mediante una construcción de Wythoff , representada por anillos alrededor de permutaciones de nodos en un diagrama de Coxeter . Los hiperplanos especulares se pueden agrupar, como se ve por los nodos coloreados, separados por ramas pares. Los grupos de simetría de la forma [a,b,a], tienen una simetría extendida, [[a,b,a]], que duplica el orden de simetría. Esto incluye [3,3,3], [3,4,3] y [ p ,2, p ]. Los politopos uniformes en estos grupos con anillos simétricos contienen esta simetría extendida.
Si todos los espejos de un color determinado están sin anillar (inactivos) en un politopo uniforme determinado, tendrá una construcción de simetría inferior al eliminar todos los espejos inactivos. Si todos los nodos de un color determinado están anillados (activos), una operación de alternancia puede generar un nuevo 4-politopo con simetría quiral, que se muestra como nodos "vacíos" en círculos, pero la geometría no suele ser ajustable para crear soluciones uniformes.
Grupo Weyl | Cuaternión de Conway | Estructura abstracta | Orden | Diagrama de Coxeter | Notación de Coxeter | Subgrupo conmutador | Número de Coxeter (h) | Espejos m = 2 h | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Irreducible | ||||||||||||
Un 4 | +1/60[I×I].21 | S 5 | 120 | [3,3,3] | [3,3,3] + | 5 | 10 | |||||
D4 | ±1/3[T×T].2 | 1/ 2.2 s 4 | 192 | [3 1,1,1 ] | [3 1,1,1 ] + | 6 | 12 | |||||
B4 | ±1/6[O×O].2 | 2S4 = S2 ≀S4 | 384 | [4,3,3] | 8 | 4 | 12 | |||||
F4 | ±1/2[O×O].2 3 | 3.2S4 | 1152 | [3,4,3] | [3 + ,4,3 + ] | 12 | 12 | 12 | ||||
H4 | ±[I×I].2 | 2.(A 5 × A 5 ).2 | 14400 | [5,3,3] | [5,3,3] + | 30 | 60 | |||||
Grupos prismáticos | ||||||||||||
Un 3 Un 1 | +1/24[O×O].2 3 | Tamaño 4 × Profundidad 1 | 48 | [3,3,2] = [3,3]×[ ] | [3,3] + | - | 6 | 1 | ||||
B3A1 | ±1/24[O×O].2 | Tamaño 4 × Profundidad 1 | 96 | [4,3,2] = [4,3]×[ ] | - | 3 | 6 | 1 | ||||
H3A1 | ±1/60[I×I].2 | Un 5 ×D 1 | 240 | [5,3,2] = [5,3]×[ ] | [5,3] + | - | 15 | 1 | ||||
Grupos duoprismáticos (Utilice 2p,2q para números enteros pares) | ||||||||||||
Yo 2 ( p )Yo 2 ( q ) | ±1/ 2 [ D2p × D2q ] | D p × D q | 4 piezas | [ p ,2, q ] = [ p ]×[ q ] | [ p + ,2, q + ] | - | pag | q | ||||
Yo 2 ( 2p )Yo 2 ( q ) | ±1/2[D 4 p ×D 2 q ] | D2p × Dq | 8 piezas | [2 p ,2, q ] = [2 p ]×[ q ] | - | pag | pag | q | ||||
Yo 2 ( 2p )Yo 2 ( 2q ) | ±1/2[D 4 p ×D 4 q ] | D2p × D2q | 16 piezas | [2 p ,2,2 q ] = [2 p ]×[2 q ] | - | pag | pag | q | q |
Hay 64 4-politopos convexos uniformes, incluidos los 6 4-politopos convexos regulares y excluidos los conjuntos infinitos de duoprismas y prismas antiprismáticos .
Estos 64 4-politopos uniformes están indexados a continuación por George Olshevsky. Las formas de simetría repetidas están indexadas entre corchetes.
Además de los 64 anteriores, hay 2 conjuntos prismáticos infinitos que generan todas las formas convexas restantes:
La celda 5 tiene simetría pentacórica diploide [3,3,3] , [7] de orden 120, isomorfa a las permutaciones de cinco elementos, porque todos los pares de vértices están relacionados de la misma manera.
Se proporcionan facetas (celdas) agrupadas en sus ubicaciones en el diagrama de Coxeter eliminando nodos específicos.
# | Nombre Nombre Bowers (y acrónimo) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (5) | Pos. 2 (10) | Pos. 1 (10) | Pos. 0 (5) | Células | Caras | Bordes | Vértices | ||||
1 | Pentachoron de 5 células [7] (pluma) | {3,3,3} | (4) (3.3.3) | 5 | 10 | 10 | 5 | ||||
2 | Pentacoron rectificado de 5 celdas (rap) | r{3,3,3} | (3) (3.3.3.3) | (2) (3.3.3) | 10 | 30 | 30 | 10 | |||
3 | Pentacoron truncado de 5 células (punta) | t{3,3,3} | (3) (3.6.6) | (1) (3.3.3) | 10 | 30 | 40 | 20 | |||
4 | Pentacoron romboidal pequeño cantelado de 5 células (srip) | rr{3,3,3} | (2) (3.4.3.4) | (2) (3.4.4) | (1) (3.3.3.3) | 20 | 80 | 90 | 30 | ||
7 | Gran pentacoron romboidal de 5 células cantitruncado (agarre) | tr{3,3,3} | (2) (4.6.6) | (1) (3.4.4) | (1) (3.6.6) | 20 | 80 | 120 | 60 | ||
8 | Pentacoron prismatorrombado de 5 células, runcitruncado (prip) | t0,1,3 { 3,3,3} | (1) (3.6.6) | (2) (4.4.6) | (1) (3.4.4) | (1) (3.4.3.4) | 30 | 120 | 150 | 60 |
# | Nombre Nombre Bowers (y acrónimo) | Figura de vértice | Diagrama de Coxeter y símbolos Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. 3-0 (10) | Pos. 1-2 (20) | Alt | Células | Caras | Bordes | Vértices | ||||
5 | * Prismatodecacoron pequeño (spid) de 5 células runcinado | t0,3 { 3,3,3 } | (2) (3.3.3) | (6) (3.4.4) | 30 | 70 | 60 | 20 | ||
6 | * Decachoron bitruncado de 5 celdas (deca) | 2t{3,3,3} | (4) (3.6.6) | 10 | 40 | 60 | 30 | |||
9 | * Prismatodecacoron grande omnitruncado de 5 células (gippid) | t0,1,2,3 { 3,3,3 } | (2) (4.6.6) | (2) (4.4.6) | 30 | 150 | 240 | 120 | ||
No uniforme | omnisnub 5 celdas Snub decachoron (snad) Snub pentachoron (snip) [16] | alto 0,1,2,3 {3,3,3} | (2) (3.3.3.3.3) | (2) (3.3.3.3) | (4) (3.3.3) | 90 | 300 | 270 | 60 |
Las tres formas uniformes de 4-politopos marcadas con un asterisco , * , tienen la simetría pentacórica extendida más alta , de orden 240, [[3,3,3]] porque el elemento correspondiente a cualquier elemento de la celda de 5 subyacente se puede intercambiar con uno de los correspondientes a un elemento de su dual. Hay un pequeño subgrupo de índice [3,3,3] + , orden 60, o su duplicación [[3,3,3]] + , orden 120, que define una celda de 5 omnisnub que se incluye para completar, pero no es uniforme.
Esta familia tiene simetría hexadecacórica diploide , [7] [4,3,3], de orden 24×16=384: 4!=24 permutaciones de los cuatro ejes, 2 4 =16 para la reflexión en cada eje. Hay 3 subgrupos de índices pequeños, y los dos primeros generan 4-politopos uniformes que también se repiten en otras familias, [1 + ,4,3,3], [4,(3,3) + ] y [4,3,3] + , todos de orden 192.
# | Nombre (nombre Bowers y acrónimo) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (8) | Pos. 2 (24) | Pos. 1 (32) | Pos. 0 (16) | Células | Caras | Bordes | Vértices | |||||
10 | Tesseract o Tesseract de 8 celdas (tes) | {4,3,3} | (4) (4.4.4) | 8 | 24 | 32 | 16 | |||||
11 | Teseracto rectificado (rit) | r{4,3,3} | (3) (3.4.3.4) | (2) (3.3.3) | 24 | 88 | 96 | 32 | ||||
13 | Teseracto truncado (tat) | t{4,3,3} | (3) (3.8.8) | (1) (3.3.3) | 24 | 88 | 128 | 64 | ||||
14 | Teseracto cantelado Teseracto romboidal pequeño (srit) | rr{4,3,3} | (2) (3.4.4.4) | (2) (3.4.4) | (1) (3.3.3.3) | 56 | 248 | 288 | 96 | |||
15 | Teseracto runcinado (también runcinado de 16 células ) Pequeño disprismatotesseractihexadecachoron (sidpith) | t0,3 { 4,3,3} | (1) (4.4.4) | (3) (4.4.4) | (3) (3.4.4) | (1) (3.3.3) | 80 | 208 | 192 | 64 | ||
16 | Teseracto bitruncado (también bitruncado de 16 celdas ) Tesseractihexadecachoron (tah) | 2t{4,3,3} | (2) (4.6.6) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
18 | Teseracto cantitruncado Gran teseracto romboidal (grano) | tr{4,3,3} | (2) (4.6.8) | (1) (3.4.4) | (1) (3.6.6) | 56 | 248 | 384 | 192 | |||
19 | Teseracto runcitruncado Hexadecacoron prismatorrombado (proh) | t0,1,3 { 4,3,3} | (1) (3.8.8) | (2) (4.4.8) | (1) (3.4.4) | (1) (3.4.3.4) | 80 | 368 | 480 | 192 | ||
21 | Teseracto omnitruncado (también omnitruncado de 16 celdas ) Gran disprismatotesseractihexadecachoron (gidpith) | t0,1,2,3 { 3,3,4} | (1) (4.6.8) | (1) (4.4.8) | (1) (4.4.6) | (1) (4.6.6) | 80 | 464 | 768 | 384 |
# | Nombre (acrónimo en estilo Bowers) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (8) | Pos. 2 (24) | Pos. 1 (32) | Pos. 0 (16) | Alt | Células | Caras | Bordes | Vértices | ||||
12 | Medio teseracto Demiteseracto = 16 celdas (hexadecimal) | = h{4,3,3}={3,3,4} | (4) (3.3.3) | (4) (3.3.3) | 16 | 32 | 24 | 8 | ||||
[17] | Teseracto cántico = Teseracto truncado de 16 celdas | = h2 { 4,3,3 }=t{4,3,3} | (4) (6.6.3) | (1) (3.3.3.3) | 24 | 96 | 120 | 48 | ||||
[11] | Teseracto rúnico = Teseracto rectificado (rit) | = h3 { 4,3,3 }=r{4,3,3} | (3) (3.4.3.4) | (2) (3.3.3) | 24 | 88 | 96 | 32 | ||||
[16] | Teseracto Runcicantic = Teseracto Bitruncado (tah) | = h2,3 {4,3,3}=2t{4,3,3 } | (2) (3.4.3.4) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
[11] | = Teseracto rectificado (rata) | = h1 { 4,3,3 }=r{4,3,3} | 24 | 88 | 96 | 32 | ||||||
[16] | = Teseracto bitruncado (tah) | = h1,2 { 4,3,3 }=2t{4,3,3} | 24 | 120 | 192 | 96 | ||||||
[23] | = Rectificado de 24 celdas (rico) | = h1,3 { 4,3,3 }=rr{3,3,4} | 48 | 240 | 288 | 96 | ||||||
[24] | = 24 celdas truncadas (tico) | = h1,2,3 { 4,3,3 }=tr{3,3,4} | 48 | 240 | 384 | 192 |
# | Nombre (acrónimo en estilo Bowers) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (8) | Pos. 2 (24) | Pos. 1 (32) | Pos. 0 (16) | Alt | Células | Caras | Bordes | Vértices | ||||
No uniforme | Teseracto omnisnub Teseracto snub (snet) [17] (O omnisnub de 16 celdas ) | alto 0,1,2,3 {4,3,3} | (1) (3.3.3.3.4) | (1) (3.3.3.4) | (1) (3.3.3.3) | (1) (3.3.3.3.3) | (4) (3.3.3) | 272 | 944 | 864 | 192 |
# | Nombre (nombre Bowers y acrónimo) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (8) | Pos. 2 (24) | Pos. 1 (32) | Pos. 0 (16) | Alt | Células | Caras | Bordes | Vértices | ||||
[12] | Hexadecacoron de 16 células [7] (hex) | {3,3,4} | (8) (3.3.3) | 16 | 32 | 24 | 8 | |||||
[22] | *16 celdas rectificadas (igual que 24 celdas ) (ico) | = r{3,3,4} | (2) (3.3.3.3) | (4) (3.3.3.3) | 24 | 96 | 96 | 24 | ||||
17 | Hexadecacoron truncado de 16 células (thex) | t{3,3,4} | (1) (3.3.3.3) | (4) (3.6.6) | 24 | 96 | 120 | 48 | ||||
[23] | *Cantelada de 16 celdas (igual que rectificada de 24 celdas ) (rico) | = rr{3,3,4} | (1) (3.4.3.4) | (2) (4.4.4) | (2) (3.4.3.4) | 48 | 240 | 288 | 96 | |||
[15] | Teseracto runcinado de 16 celdas (también) (sidpith) | t0,3 { 3,3,4} | (1) (4.4.4) | (3) (4.4.4) | (3) (3.4.4) | (1) (3.3.3) | 80 | 208 | 192 | 64 | ||
[16] | Teseracto bitruncado de 16 celdas (también) (tah) | 2t{3,3,4} | (2) (4.6.6) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
[24] | *Truncated 16-cell (Igual que truncated 24-cell ) (tico) | = tr{3,3,4} | (1) (4.6.6) | (1) (4.4.4) | (2) (4.6.6) | 48 | 240 | 384 | 192 | |||
20 | Teseracto prismatorombado de 16 celdas runcitruncado (prit) | t0,1,3 { 3,3,4} | (1) (3.4.4.4) | (1) (4.4.4) | (2) (4.4.6) | (1) (3.6.6) | 80 | 368 | 480 | 192 | ||
[21] | Teseracto omnitruncado de 16 celdas (también teseracto omnitruncado ) (gidpith) | t0,1,2,3 { 3,3,4} | (1) (4.6.8) | (1) (4.4.8) | (1) (4.4.6) | (1) (4.6.6) | 80 | 464 | 768 | 384 | ||
[31] | Cantitruncado alternado de 16 celdas (igual que el de 24 celdas ) (sadi) | sr{3,3,4} | (1) (3.3.3.3.3) | (1) (3.3.3) | (2) (3.3.3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 | ||
No uniforme | Tesseract Pyritosnub de 16 celdas rectificado con snub Runcic (pysnet) | Sr 3 {3,3,4} | (1) (3.4.4.4) | (2) (3.4.4) | (1) (4.4.4) | (1) (3.3.3.3.3) | (2) (3.4.4) | 176 | 656 | 672 | 192 |
El snub de 24 celdas se repite en esta familia para completar. Es una alternancia del truncado de 16 celdas o truncado de 24 celdas , con el grupo de semisimetría [(3,3) + ,4]. Las celdas octaédricas truncadas se convierten en icosaedros. Los cubos se convierten en tetraedros y se crean 96 nuevos tetraedros en los huecos de los vértices eliminados.
Esta familia tiene simetría icositetracórica diploide , [7] [3,4,3], de orden 24×48=1152: las 48 simetrías del octaedro para cada una de las 24 celdas. Hay 3 pequeños subgrupos de índice, con los dos primeros pares isomorfos generando 4-politopos uniformes que también se repiten en otras familias, [3 + ,4,3], [3,4,3 + ] y [3,4,3] + , todos de orden 576.
# | Nombre | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (24) | Pos. 2 (96) | Pos. 1 (96) | Pos. 0 (24) | Células | Caras | Bordes | Vértices | ||||
22 | Icositetracoron de 24 células (igual que el de 16 células rectificado ) [7] (ico) | {3,4,3} | (6) (3.3.3.3) | 24 | 96 | 96 | 24 | ||||
23 | 24 celdas rectificado (Igual que 16 celdas canteladas ) Icositetracoron rectificado (rico) | r{3,4,3} | (3) (3.4.3.4) | (2) (4.4.4) | 48 | 240 | 288 | 96 | |||
24 | 24 células truncadas (Igual que el 16 células cantitruncado ) Icositetracoron truncado (tico) | t{3,4,3} | (3) (4.6.6) | (1) (4.4.4) | 48 | 240 | 384 | 192 | |||
25 | Icositetracoron romboidal pequeño de 24 células canteladas (srico) | rr{3,4,3} | (2) (3.4.4.4) | (2) (3.4.4) | (1) (3.4.3.4) | 144 | 720 | 864 | 288 | ||
28 | Gran icositetracoron romboidal de 24 células (grico) | tr{3,4,3} | (2) (4.6.8) | (1) (3.4.4) | (1) (3.8.8) | 144 | 720 | 1152 | 576 | ||
29 | Prismatorromboide de 24 células, runcitruncado, icositetracoron (prico) | t0,1,3 { 3,4,3} | (1) (4.6.6) | (2) (4.4.6) | (1) (3.4.4) | (1) (3.4.4.4) | 240 | 1104 | 1440 | 576 |
# | Nombre | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (24) | Pos. 2 (96) | Pos. 1 (96) | Pos. 0 (24) | Alt | Células | Caras | Bordes | Vértices | ||||
31 | † Disicositetrachoron chato de 24 células (sadi) | s{3,4,3} | (3) (3.3.3.3.3) | (1) (3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 | |||
No uniforme | runcic desaire Prismatorhombisnub icositetrachoron (prissi) de 24 celdas | y 3 {3,4,3} | (1) (3.3.3.3.3) | (2) (3.4.4) | (1) (3.6.6) | (3) Trípode | 240 | 960 | 1008 | 288 | ||
[25] | snub cántico de 24 celdas (igual que 24 celdas cantelado ) (srico) | y 2 {3,4,3} | (2) (3.4.4.4) | (1) (3.4.3.4) | (2) (3.4.4) | 144 | 720 | 864 | 288 | |||
[29] | Runcicantic snub de 24 celdas (igual que runcitruncated de 24 celdas ) (prico) | y 2,3 {3,4,3} | (1) (4.6.6) | (1) (3.4.4) | (1) (3.4.4.4) | (2) (4.4.6) | 240 | 1104 | 1440 | 576 |
Al igual que la de 5 células, la de 24 células es autodual, por lo que las tres formas siguientes tienen el doble de simetrías, lo que eleva su total a 2304 ( simetría icositetracórica extendida [[3,4,3]]).
# | Nombre | Figura de vértice | Diagrama de Coxeter y símbolos Schläfli | Recuento de células por ubicación | Recuento de elementos | ||||
---|---|---|---|---|---|---|---|---|---|
Pos. 3-0 (48) | Pos. 2-1 (192) | Células | Caras | Bordes | Vértices | ||||
26 | Prismatotetracontoctachoron pequeño (spic) de 24 células runcinado | t0,3 { 3,4,3} | (2) (3.3.3.3) | (6) (3.4.4) | 240 | 672 | 576 | 144 | |
27 | Tetracontoctachoron bitruncado de 24 células (cont.) | 2t{3,4,3} | (4) (3.8.8) | 48 | 336 | 576 | 288 | ||
30 | Gran prismatotetracontoctachoron omnitruncado de 24 células (gippic) | t0,1,2,3 { 3,4,3 } | (2) (4.6.8) | (2) (4.4.6) | 240 | 1392 | 2304 | 1152 |
# | Nombre | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. 3-0 (48) | Pos. 2-1 (192) | Alt | Células | Caras | Bordes | Vértices | ||||
No uniforme | omnisnub 24 células Tetracontoctachoron snub (snoc) Icositetrachoron snub (sni) [18] | alto 0,1,2,3 {3,4,3} | (2) (3.3.3.3.4) | (2) (3.3.3.3) | (4) (3.3.3) | 816 | 2832 | 2592 | 576 |
Esta familia tiene simetría hexacosicórica diploide , [7] [5,3,3], de orden 120×120=24×600=14400: 120 para cada uno de los 120 dodecaedros, o 24 para cada uno de los 600 tetraedros. Hay un pequeño subgrupo de índice [5,3,3] + , todos de orden 7200.
# | Nombre (nombre Bowers y acrónimo) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (120) | Pos. 2 (720) | Pos. 1 (1200) | Pos. 0 (600) | Alt | Células | Caras | Bordes | Vértices | ||||
32 | 120 células (hecatonicosachoron o dodecacontachoron) [7] Hecatonicosachoron (hi) | {5,3,3} | (4) (5.5.5) | 120 | 720 | 1200 | 600 | |||||
33 | Hecatonicosachoron rectificado de 120 células (rahi) | r{5,3,3} | (3) (3.5.3.5) | (2) (3.3.3) | 720 | 3120 | 3600 | 1200 | ||||
36 | Hecatonicosachoron truncado de 120 células (thi) | t{5,3,3} | (3) (3.10.10) | (1) (3.3.3) | 720 | 3120 | 4800 | 2400 | ||||
37 | Hecatonicosachoron romboidal pequeño cantelado de 120 células (srahi) | rr{5,3,3} | (2) (3.4.5.4) | (2) (3.4.4) | (1) (3.3.3.3) | 1920 | 9120 | 10800 | 3600 | |||
38 | Disprismatohexacosihecatonicosachoron pequeño (sidpixhi) de 120 células (también de 600 células ) | t0,3 { 5,3,3} | (1) (5.5.5) | (3) (4.4.5) | (3) (3.4.4) | (1) (3.3.3) | 2640 | 7440 | 7200 | 2400 | ||
39 | Hexacosihecatonicosachoron (xhi) bitruncado de 120 células (también bitruncado de 600 células ) | 2t{5,3,3} | (2) (5.6.6) | (2) (3.6.6) | 720 | 4320 | 7200 | 3600 | ||||
42 | Gran hecatonicosachoron romboidal (grahi) de 120 células, cantitruncado | tr{5,3,3} | (2) (4.6.10) | (1) (3.4.4) | (1) (3.6.6) | 1920 | 9120 | 14400 | 7200 | |||
43 | Prismatorromboide hexacosicoronado (prix) de 120 células, runcitruncado | t0,1,3 { 5,3,3} | (1) (3.10.10) | (2) (4.4.10) | (1) (3.4.4) | (1) (3.4.3.4) | 2640 | 13440 | 18000 | 7200 | ||
46 | Gran disprismatohexacosihecatonicosachoron (gidpixhi) omnitruncado de 120 células (también omnitruncado de 600 células ) | t0,1,2,3 { 5,3,3} | (1) (4.6.10) | (1) (4.4.10) | (1) (4.4.6) | (1) (4.6.6) | 2640 | 17040 | 28800 | 14400 | ||
No uniforme | Hecatonicosachoron snub (snixhi) de 120 células omnisnub [19] (igual que el omnisnub de 600 células ) | alto 0,1,2,3 {5,3,3} | (1) (3.3.3.3.5) | (1) (3.3.3.5) | (1) (3.3.3.3) | (1) (3.3.3.3.3) | (4) (3.3.3) | 9840 | 35040 | 32400 | 7200 |
# | Nombre (acrónimo en estilo Bowers) | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Simetría | Recuento de células por ubicación | Recuento de elementos | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3 (120) | Pos. 2 (720) | Pos. 1 (1200) | Pos. 0 (600) | Células | Caras | Bordes | Vértices | |||||
35 | Hexacosicoron de 600 células [7] (ex) | {3,3,5} | [5,3,3] orden 14400 | (20) (3.3.3) | 600 | 1200 | 720 | 120 | ||||
[47] | 20 celdas disminuidas de 600 = Gran antiprisma (espacio vacío) | Construcción no wythoffiana | [[10,2 + ,10]] orden 400 Índice 36 | (2) (3.3.3.5) | (12) (3.3.3) | 320 | 720 | 500 | 100 | |||
[31] | 24 celdas reducidas de 600 celdas = 24 celdas reducidas (sadi) | Construcción no wythoffiana | [3 + ,4,3] orden 576 índice 25 | (3) (3.3.3.3.3) | (5) (3.3.3) | 144 | 480 | 432 | 96 | |||
No uniforme | Bi-24-disminuido 600 células Bi-icositetradisminuido hexacosicoron (bidex) | Construcción no wythoffiana | orden 144 índice 100 | (6) TDI-TDI-TDI | 48 | 192 | 216 | 72 | ||||
34 | Hexacosicoron rectificado de 600 celdas (rox) | r{3,3,5} | [5,3,3] | (2) (3.3.3.3.3) | (5) (3.3.3.3) | 720 | 3600 | 3600 | 720 | |||
No uniforme | Prisma de remolino rectificado disminuido de 120 celdas, hexacosicoron rectificado disminuido (spidrox) | Construcción no wythoffiana | orden 1200 índice 12 | (2) 3.3.3.5 | (2) 4.4.5 | (5) P4 | 840 | 2640 | 2400 | 600 | ||
41 | Hexacosicoron truncado de 600 células (tex) | t{3,3,5} | [5,3,3] | (1) (3.3.3.3.3) | (5) (3.6.6) | 720 | 3600 | 4320 | 1440 | |||
40 | Hexacosicoron romboidal pequeño cantelado de 600 células (srix) | rr{3,3,5} | [5,3,3] | (1) (3.5.3.5) | (2) (4.4.5) | (1) (3.4.3.4) | 1440 | 8640 | 10800 | 3600 | ||
[38] | Runcinated de 600 celdas (también Runcinated de 120 celdas ) (sidpixhi) | t0,3 { 3,3,5} | [5,3,3] | (1) (5.5.5) | (3) (4.4.5) | (3) (3.4.4) | (1) (3.3.3) | 2640 | 7440 | 7200 | 2400 | |
[39] | bitruncado de 600 celdas (también bitruncado de 120 celdas ) (xhi) | 2t{3,3,5} | [5,3,3] | (2) (5.6.6) | (2) (3.6.6) | 720 | 4320 | 7200 | 3600 | |||
45 | Gran hexacosicoron romboidal (grix) de 600 células cantitruncado | tr{3,3,5} | [5,3,3] | (1) (5.6.6) | (1) (4.4.5) | (2) (4.6.6) | 1440 | 8640 | 14400 | 7200 | ||
44 | Prismatorrombated hecatonicosachoron (prahi) de 600 células, runcitruncado | t0,1,3 { 3,3,5} | [5,3,3] | (1) (3.4.5.4) | (1) (4.4.5) | (2) (4.4.6) | (1) (3.6.6) | 2640 | 13440 | 18000 | 7200 | |
[46] | omnitruncado de 600 celdas (también omnitruncado de 120 celdas ) (gidpixhi) | t0,1,2,3 { 3,3,5 } | [5,3,3] | (1) (4.6.10) | (1) (4.4.10) | (1) (4.4.6) | (1) (4.6.6) | 2640 | 17040 | 28800 | 14400 |
Esta familia de semiteseractos , [3 1,1,1 ], no introduce nuevos 4-politopos uniformes, pero vale la pena repetir estas construcciones alternativas. Esta familia tiene orden 12×16=192: 4!/2=12 permutaciones de los cuatro ejes, la mitad alternadas, 2 4 =16 para la reflexión en cada eje. Hay un pequeño subgrupo de índices que genera 4-politopos uniformes, [3 1,1,1 ] + , orden 96.
# | Nombre (acrónimo en estilo Bowers) | Figura de vértice | Diagrama de Coxeter = = | Recuento de células por ubicación | Recuento de elementos | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 0 (8) | Pos. 2 (24) | Pos. 1 (8) | Pos. 3 (8) | Pos. Alt (96) | 3 | 2 | 1 | 0 | ||||
[12] | demitesseract medio tesseract (Igual que 16 celdas ) (hexadecimal) | = h{4,3,3} | (4) (3.3.3) | (4) (3.3.3) | 16 | 32 | 24 | 8 | ||||
[17] | teseracto cántico (igual que el de 16 celdas truncado ) (thex) | = h2 {4,3,3 } | (1) (3.3.3.3) | (2) (3.6.6) | (2) (3.6.6) | 24 | 96 | 120 | 48 | |||
[11] | Teseracto rúnico (igual que teseracto rectificado ) (rit) | = h3 {4,3,3 } | (1) (3.3.3) | (1) (3.3.3) | (3) (3.4.3.4) | 24 | 88 | 96 | 32 | |||
[16] | Teseracto runcicantic (Igual que teseracto bitruncado ) (tah) | = h2,3 { 4,3,3 } | (1) (3.6.6) | (1) (3.6.6) | (2) (4.6.6) | 24 | 96 | 96 | 24 |
Cuando los 3 nodos de la rama bifurcada están anillados de manera idéntica, la simetría se puede incrementar en 6, ya que [3[3 1,1,1 ]] = [3,4,3], y por lo tanto estos politopos se repiten a partir de la familia de 24 células .
# | Nombre (acrónimo en estilo Bowers) | Figura de vértice | Diagrama de Coxeter = = | Recuento de células por ubicación | Recuento de elementos | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. 0,1,3 (24) | Pos. 2 (24) | Pos. Alt (96) | 3 | 2 | 1 | 0 | ||||
[22] | rectificado de 16 celdas (igual que 24 celdas ) (ico) | === {3 1,1,1 } = r{3,3,4} = {3,4,3} | (6) (3.3.3.3) | 48 | 240 | 288 | 96 | |||
[23] | Cantelado de 16 celdas (igual que rectificado de 24 celdas ) (rico) | === r{3 1,1,1 } = rr{3,3,4} = r{3,4,3} | (3) (3.4.3.4) | (2) (4.4.4) | 24 | 120 | 192 | 96 | ||
[24] | cantitruncado de 16 celdas (igual que truncado de 24 celdas ) (tico) | === t{3 1,1,1 } = tr{3,3,4} = t{3,4,3} | (3) (4.6.6) | (1) (4.4.4) | 48 | 240 | 384 | 192 | ||
[31] | snub de 24 celdas (sadi) | === s{3 1,1,1 } = sr{3,3,4} = s{3,4,3} | (3) (3.3.3.3.3) | (1) (3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 |
Aquí nuevamente el snub de 24 celdas , con el grupo de simetría [3 1,1,1 ] + esta vez, representa un truncamiento alternado del truncado de 24 celdas creando 96 nuevos tetraedros en la posición de los vértices eliminados. En contraste con su apariencia dentro de los grupos anteriores como 4-politopo parcialmente snubeado, solo dentro de este grupo de simetría tiene la analogía completa con los snubs de Kepler, es decir, el cubo snub y el dodecaedro snub .
Existe un 4-politopo uniforme convexo no wythoffiano, conocido como el gran antiprisma , que consta de 20 antiprismas pentagonales que forman dos anillos perpendiculares unidos por 300 tetraedros . Es vagamente análogo a los antiprismas tridimensionales , que consisten en dos polígonos paralelos unidos por una banda de triángulos . Sin embargo, a diferencia de ellos, el gran antiprisma no es miembro de una familia infinita de politopos uniformes.
Su simetría es el grupo de Coxeter iónico disminuido , [[10,2 + ,10]], orden 400.
# | Nombre (acrónimo en estilo Bowers) | Imagen | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Células por tipo | Recuento de elementos | Neto | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Células | Caras | Bordes | Vértices | ||||||||
47 | gran antiprisma (brecha) | Sin símbolo | 300 ( 3.3.3 ) | 20 ( 3.3.3.5 ) | 320 | 20 {5} 700 {3} | 500 | 100 |
Un politopo prismático es un producto cartesiano de dos politopos de menor dimensión; ejemplos conocidos son los prismas tridimensionales , que son productos de un polígono y un segmento de línea . Los 4-politopos prismáticos uniformes constan de dos familias infinitas:
La familia más obvia de 4-politopos prismáticos son los prismas poliédricos, es decir, productos de un poliedro con un segmento de línea . Las celdas de estos 4-politopos son dos poliedros uniformes idénticos que se encuentran en hiperplanos paralelos (las celdas de base ) y una capa de prismas que los une (las celdas laterales ). Esta familia incluye prismas para los 75 poliedros uniformes no prismáticos (de los cuales 18 son convexos; uno de ellos, el prisma cúbico, se menciona anteriormente como teseracto ). [ cita requerida ]
Hay 18 prismas poliédricos convexos creados a partir de 5 sólidos platónicos y 13 sólidos arquimedianos , así como para las infinitas familias de prismas y antiprismas tridimensionales . [ cita requerida ] El número de simetría de un prisma poliédrico es el doble del del poliedro base.
Esta simetría tetraédrica prismática es [3,3,2], orden 48. Hay dos subgrupos de índice 2, [(3,3) + ,2] y [3,3,2] + , pero el segundo no genera un 4-politopo uniforme.
# | Nombre (acrónimo en estilo Bowers) | Imagen | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Células por tipo | Recuento de elementos | Neto | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Células | Caras | Bordes | Vértices | |||||||||
48 | Prisma tetraédrico (tepe) | {3,3}×{ } t 0,3 {3,3,2} | 2 3.3.3 | 4 3.4.4 | 6 | 8 {3} 6 {4} | 16 | 8 | ||||
49 | Prisma tetraédrico truncado (tuttip) | t{3,3}×{ } t 0,1,3 {3,3,2} | 2 3.6.6 | 4 3.4.4 | 4 4.4.6 | 10 | 8 {3} 18 {4} 8 {6} | 48 | 24 |
# | Nombre (acrónimo en estilo Bowers) | Imagen | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Células por tipo | Recuento de elementos | Neto | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Células | Caras | Bordes | Vértices | |||||||||
[51] | Prisma tetraédrico rectificado (igual que el prisma octaédrico ) (ope) | r{3,3}×{ } t 1,3 {3,3,2} | 2 3.3.3.3 | 4 3.4.4 | 6 | 16 {3} 12 {4} | 30 | 12 | ||||
[50] | Prisma tetraédrico cantelado (igual que prisma cuboctaédrico ) (cope) | rr{3,3}×{ } t 0,2,3 {3,3,2} | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | |||
[54] | Prisma tetraédrico truncado (igual que prisma octaédrico truncado ) (topo) | tr{3,3}×{ } t 0,1,2,3 {3,3,2} | 2 4.6.6 | 8 6.4.4 | 6 4.4.4 | 16 | 48 {4} 16 {6} | 96 | 48 | |||
[59] | Prisma tetraédrico romo (igual que prisma icosaédrico ) (ipe) | sr{3,3}×{ } | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | ||||
No uniforme | Antiprisma tetraédrico omnisnub Antiprisma icosaédrico piritoédrico (pikap) | 2 3.3.3.3.3 | 8 3.3.3.3 | 6+24 3.3.3 | 40 | 16+96 {3} | 96 | 24 |
Esta familia de simetría octaédrica prismática es [4,3,2], orden 96. Hay 6 subgrupos de índice 2, orden 48 que se expresan en 4-politopos alternados a continuación. Las simetrías son [(4,3) + ,2], [1 + ,4,3,2], [4,3,2 + ], [4,3 + ,2], [4,(3,2) + ] y [4,3,2] + .
# | Nombre (acrónimo en estilo Bowers) | Imagen | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Células por tipo | Recuento de elementos | Neto | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Células | Caras | Bordes | Vértices | ||||||||||
[10] | Prisma cúbico (Igual que teseracto ) (Igual que duoprisma 4-4 ) (tes) | {4,3}×{ } t 0,3 {4,3,2} | 2 4.4.4 | 6 4.4.4 | 8 | 24 {4} | 32 | 16 | |||||
50 | Prisma cuboctaédrico (igual que prisma tetraédrico cantelado ) (cope) | r{4,3}×{ } t 1,3 {4,3,2} | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | ||||
51 | Prisma octaédrico (Igual que prisma tetraédrico rectificado ) (Igual que prisma antiprismático triangular ) (ope) | {3,4}×{ } t 2,3 {4,3,2} | 2 3.3.3.3 | 8 3.4.4 | 10 | 16 {3} 12 {4} | 30 | 12 | |||||
52 | Prisma rombicuboctaédrico (sircope) | rr{4,3}×{ } t 0,2,3 {4,3,2} | 2 3.4.4.4 | 8 3.4.4 | 18 4.4.4 | 28 | 16 {3} 84 {4} | 120 | 48 | ||||
53 | Prisma cúbico truncado (ticcup) | t{4,3}×{ } t 0,1,3 {4,3,2} | 2 3.8.8 | 8 3.4.4 | 6 4.4.8 | 16 | 16 {3} 36 {4} 12 {8} | 96 | 48 | ||||
54 | Prisma octaédrico truncado (igual que prisma tetraédrico cantitruncado ) (topo) | t{3,4}×{ } t 1,2,3 {4,3,2} | 2 4.6.6 | 6 4.4.4 | 8 4.4.6 | 16 | 48 {4} 16 {6} | 96 | 48 | ||||
55 | Prisma cuboctaédrico truncado (giroscopio) | tr{4,3}×{ } t 0,1,2,3 {4,3,2} | 2 4.6.8 | 12 4.4.4 | 8 4.4.6 | 6 4.4.8 | 28 | 96 {4} 16 {6} 12 {8} | 192 | 96 | |||
56 | Prisma cúbico romo (sniccup) | sr{4,3}×{ } | 2 3.3.3.3.4 | 32 3.4.4 | 6 4.4.4 | 40 | 64 {3} 72 {4} | 144 | 48 | ||||
[48] | Prisma tetraédrico (tepe) | h{4,3}×{ } | 2 3.3.3 | 4 3.4.4 | 6 | 8 {3} 6 {4} | 16 | 8 | |||||
[49] | Prisma tetraédrico truncado (tuttip) | h2 { 4,3 }×{ } | 2 3.3.6 | 4 3.4.4 | 4 4.4.6 | 6 | 8 {3} 6 {4} | 16 | 8 | ||||
[50] | Prisma cuboctaédrico (cope) | rr{3,3}×{ } | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | ||||
[52] | Prisma rombicuboctaédrico (sircope) | s 2 {3,4}×{ } | 2 3.4.4.4 | 8 3.4.4 | 18 4.4.4 | 28 | 16 {3} 84 {4} | 120 | 48 | ||||
[54] | Prisma octaédrico truncado (topo) | tr{3,3}×{ } | 2 4.6.6 | 6 4.4.4 | 8 4.4.6 | 16 | 48 {4} 16 {6} | 96 | 48 | ||||
[59] | Prisma icosaédrico (ipe) | s{3,4}×{ } | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | |||||
[12] | 16 celdas (hexadecimal) | s{2,4,3} | 2+6+8 3.3.3.3 | 16 | 32 {3} | 24 | 8 | ||||||
No uniforme | Antiprisma tetraédrico omnisnub = Antiprisma icosaédrico piritoédrico (pikap) | sr{2,3,4} | 2 3.3.3.3.3 | 8 3.3.3.3 | 6+24 3.3.3 | 40 | 16+96 {3} | 96 | 24 | ||||
No uniforme | Hosochoron octaédrico de arista chata Alterprisma piritos chato (pysna) | sr 3 {2,3,4} | 2 3.4.4.4 | 6 4.4.4 | 8 3.3.3.3 | 24 3.4.4 | 40 | 16+48 {3} 12+12+24+24 {4} | 144 | 48 | |||
No uniforme | Antiprisma cúbico omnisnub Antiprisma cúbico snub (sniccap) | 2 3.3.3.3.4 | 12+48 3.3.3 | 8 3.3.3.3 | 6 3.3.3.4 | 76 | 16+192 {3} 12 {4} | 192 | 48 | ||||
No uniforme | Hosocorona cúbica chata rúnica Alterprisma tetraédrico truncado (tuta) | y 3 {2,4,3} | 2 3.6.6 | 6 3.3.3 | 8 cúpula triangular | 16 | 52 | 60 | 24 |
Esta simetría icosaédrica prismática es [5,3,2], orden 240. Hay dos subgrupos de índice 2, [(5,3) + ,2] y [5,3,2] + , pero el segundo no genera un policoron uniforme.
# | Nombre (nombre Bowers y acrónimo) | Imagen | Figura de vértice | Diagrama de Coxeter y símbolos de Schläfli | Células por tipo | Recuento de elementos | Neto | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Células | Caras | Bordes | Vértices | ||||||||||
57 | Prisma dodecaédrico (droga) | {5,3}×{ } t 0,3 {5,3,2} | 2 5.5.5 | 12 4.4.5 | 14 | 30 {4} 24 {5} | 80 | 40 | |||||
58 | Prisma icosidodecaédrico (iddip) | r{5,3}×{ } t 1,3 {5,3,2} | 2 3.5.3.5 | 20 3.4.4 | 12 4.4.5 | 34 | 40 {3} 60 {4} 24 {5} | 150 | 60 | ||||
59 | Prisma icosaédrico (igual que prisma tetraédrico chato ) (ipe) | {3,5}×{ } t 2,3 {5,3,2} | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | |||||
60 | Prisma dodecaédrico truncado (tiddip) | t{5,3}×{ } t 0,1,3 {5,3,2} | 2 3.10.10 | 20 3.4.4 | 12 4.4.10 | 34 | 40 {3} 90 {4} 24 {10} | 240 | 120 | ||||
61 | Prisma rombicosidodecaédrico (sriddip) | rr{5,3}×{ } t 0,2,3 {5,3,2} | 2 3.4.5.4 | 20 3.4.4 | 30 4.4.4 | 12 4.4.5 | 64 | 40 {3} 180 {4} 24 {5} | 300 | 120 | |||
62 | Prisma icosaédrico truncado (tipo) | t{3,5}×{ } t 1,2,3 {5,3,2} | 2 5.6.6 | 12 4.4.5 | 20 4.4.6 | 34 | 90 {4} 24 {5} 40 {6} | 240 | 120 | ||||
63 | Prisma icosidodecaédrico truncado (griddip) | tr{5,3}×{ } t 0,1,2,3 {5,3,2} | 2 4.6.10 | 30 4.4.4 | 20 4.4.6 | 12 4.4.10 | 64 | 240 {4} 40 {6} 24 {10} | 480 | 240 | |||
64 | Prisma dodecaédrico chato (sniddip) | sr{5,3}×{ } | 2 3.3.3.3.5 | 80 3.4.4 | 12 4.4.5 | 94 | 160 {3} 150 {4} 24 {5} | 360 | 120 | ||||
No uniforme | Antiprisma dodecaédrico omnisnub Antiprisma dodecaédrico snub (sniddap) | 2 3.3.3.3.5 | 30+120 3.3.3 | 20 3.3.3.3 | 12 3.3.3.5 | 184 | 20+240 {3} 24 {5} | 220 | 120 |
La segunda es la familia infinita de duoprismas uniformes , productos de dos polígonos regulares . El diagrama de Coxeter-Dynkin de un duoprisma esSu figura de vértice es un tetraedro difenoide ..
Esta familia se superpone con la primera: cuando uno de los dos polígonos "factoriales" es un cuadrado, el producto es equivalente a un hiperprisma cuya base es un prisma tridimensional. El número de simetría de un duoprisma cuyos factores son un p -gono y un q -gono (un " p,q -duoprisma") es 4 pq si p ≠ q ; si los factores son ambos p -gonos, el número de simetría es 8 p 2 . El teseracto también puede considerarse un 4,4-duoprisma.
El vector f extendido de { p }×{ q } es ( p , p ,1)*( q , q ,1) = ( pq ,2 pq , pq + p + q , p + q ).
No existe un análogo uniforme en cuatro dimensiones para la familia infinita de antiprismas tridimensionales .
Conjunto infinito de duoprismas pq -- prismas p q -gonales, prismas q p -gonales:
Nombre | Gráfico de Coxeter | Células | Imágenes | Neto |
---|---|---|---|---|
Duoprisma 3-3 (triddip) | 3+3 prismas triangulares | |||
3-4 duoprisma (tisdip) | 3 cubos 4 prismas triangulares | |||
Duoprisma 4-4 (tes) (igual que teseracto) | 4+4 cubos | |||
3-5 duoprisma (trapedipo) | 3 prismas pentagonales 5 prismas triangulares | |||
4-5 duoprisma (squipdip) | 4 prismas pentagonales 5 cubos | |||
5-5 duoprisma (pedip) | Prismas pentagonales 5+5 | |||
3-6 duoprisma (thiddip) | 3 prismas hexagonales 6 prismas triangulares | |||
4-6 duoprisma (shiddip) | 4 prismas hexagonales 6 cubos | |||
5-6 duoprisma (phiddip) | 5 prismas hexagonales 6 prismas pentagonales | |||
Duoprisma 6-6 (hiddip) | 6+6 prismas hexagonales |
3-3 | 3-4 | 3-5 | 3-6 | 3-7 | 3-8 |
4-3 | 4-4 | 4-5 | 4-6 | 4-7 | 4-8 |
5-3 | 5-4 | 5-5 | 5-6 | 5-7 | 5-8 |
6-3 | 6-4 | 6-5 | 6-6 | 6-7 | 6-8 |
7-3 | 7-4 | 7-5 | 7-6 | 7-7 | 7-8 |
8-3 | 8-4 | 8-5 | 8-6 | 8-7 | 8-8 |
Son posibles alteraciones.=da la familia de duoantiprismas , pero generalmente no se pueden hacer uniformes. p=q=2 es el único caso convexo que se puede hacer uniforme, dando las 16 celdas regulares. p=5, q=5/3 es el único caso no convexo que se puede hacer uniforme, dando el llamado gran duoantiprisma .da el prismantiprismoide p-2q-gonal (una alternancia de aristas del duoprisma 2p-4q), pero esto no se puede hacer uniforme en ningún caso. [20]
El conjunto infinito de prismas prismáticos uniformes se superpone con los duoprismas 4-p: (p≥3) -- p cubos y 4 prismas p -gonales - (Todos son iguales al duoprisma 4-p ) El segundo politopo de la serie es una simetría inferior del teseracto regular , {4}×{4}.
Nombre | {3}×{4} | {4}×{4} | {5}×{4} | {6}×{4} | {7}×{4} | {8}×{4} | {p}×{4} |
---|---|---|---|---|---|---|---|
Diagramas de Coxeter | |||||||
Imagen | |||||||
Células | 3 {4}×{} 4 {3}×{} | 4 {4}×{} 4 {4}×{} | 5 {4}×{} 4 {5}×{} | 6 {4}×{} 4 {6}×{} | 7 {4}×{} 4 {7}×{} | 8 {4}×{} 4 {8}×{} | p {4}×{} 4 {p}×{} |
Neto |
Los conjuntos infinitos de prismas antiprismáticos uniformes se construyen a partir de dos antiprismas uniformes paralelos ): (p≥2) -- 2 antiprismas p -gonales, conectados por 2 prismas p -gonales y 2 prismas triangulares p.
Nombre | s{2,2}×{} | s{2,3}×{} | s{2,4}×{} | s{2,5}×{} | s{2,6}×{} | s{2,7}×{} | s{2,8}×{} | s{2,p}×{} |
---|---|---|---|---|---|---|---|---|
Diagrama de Coxeter | ||||||||
Imagen | ||||||||
Figura de vértice | ||||||||
Células | 2 s{2,2} (2) {2}×{}= {4} 4 {3}×{} | 2 s{2,3} 2 {3}×{} 6 {3}×{} | 2 s{2,4} 2 {4}×{} 8 {3}×{} | 2 s{2,5} 2 {5}×{} 10 {3}×{} | 2 s{2,6} 2 {6}×{} 12 {3}×{} | 2 s{2,7} 2 {7}×{} 14 {3}×{} | 2 s{2,8} 2 {8}×{} 16 {3}×{} | 2 s{2,p} 2 {p}×{} 2 p {3}×{} |
Neto |
Un prisma antiprismático p-gonal tiene 4 caras p -triángulo, 4 caras p -cuadradas y 4 caras p-gonales. Tiene 10 caras p y 4 caras p -vértices.
Coxeter mostró solo dos soluciones uniformes para grupos de Coxeter de rango 4 con todos los anillos alternados (mostrados con nodos circulares vacíos). La primera es, s{2 1,1,1 } que representaba una forma de subgrupo de índice 24 ( simetría [2,2,2] + , orden 8) del semiteseracto ,, h{4,3,3} (simetría [1 + ,4,3,3] = [3 1,1,1 ], orden 192). El segundo es, s{3 1,1,1 }, que es una forma de subgrupo de índice 6 (simetría [3 1,1,1 ] + , orden 96) del snub de 24 celdas ,, s{3,4,3}, (simetría [3 + ,4,3], orden 576).
Otras alternancias, como, como una alternancia del teseracto omnitruncado , no se pueden hacer uniformes ya que la resolución de longitudes de aristas iguales está en general sobredeterminada (hay seis ecuaciones pero solo cuatro variables). Tales figuras alternadas no uniformes se pueden construir como 4-politopos transitivos de vértice mediante la eliminación de uno de los dos medios conjuntos de vértices de la figura anillada completa, pero tendrán longitudes de arista desiguales. Al igual que las alternancias uniformes, tendrán la mitad de la simetría de la figura uniforme, como [4,3,3] + , orden 192, es la simetría del teseracto omnitruncado alternado . [21]
Las construcciones de Wythoff con alternancias producen figuras transitivas de vértices que pueden hacerse equiláteras, pero no uniformes porque los huecos alternados (alrededor de los vértices eliminados) crean celdas que no son regulares ni semirregulares. Un nombre propuesto para tales figuras es politopos escaliformes . [22] Esta categoría permite un subconjunto de sólidos de Johnson como celdas, por ejemplo, la cúpula triangular .
Cada configuración de vértice dentro de un sólido de Johnson debe existir dentro de la figura de vértice. Por ejemplo, una pirámide cuadrada tiene dos configuraciones de vértice: 3.3.4 alrededor de la base y 3.3.3.3 en el vértice.
A continuación se muestran las redes y las figuras de vértices de los cuatro casos equiláteros convexos, junto con una lista de celdas alrededor de cada vértice.
Diagrama de Coxeter | y 3 {2,4,3}, | y 3 {3,4,3}, | Otros | |
---|---|---|---|---|
Relación | 24 de los 48 vértices del prisma rombicuboctaédrico | 288 de 576 vértices de 24 celdas truncadas | 72 de 120 vértices de 600 celdas | 600 de 720 vértices de 600 celdas rectificadas |
Proyección | Dos anillos de pirámides | |||
Neto | hosochoron cúbico chato rúnico [23] [24] | Runcic snub de 24 celdas [25] [26] | [27] [28] [29] | [30] [31] |
Células | ||||
Figura de vértice | (1) 3.4.3.4: cúpula triangular (2) 3.4.6: cúpula triangular (1) 3.3.3: tetraedro (1) 3.6.6: tetraedro truncado | (1) 3.4.3.4: cúpula triangular (2) 3.4.6: cúpula triangular (2) 3.4.4: prisma triangular (1) 3.6.6: tetraedro truncado (1) 3.3.3.3: icosaedro | (2) 3.3.3.5: icosaedro tridisminuido (4) 3.5.5: icosaedro tridisminuido | (1) 3.3.3.3: pirámide cuadrada (4) 3.3.4: pirámide cuadrada (2) 4.4.5: prisma pentagonal (2) 3.3.3.5 antiprisma pentagonal |
Los 46 4-politopos de Wythoff incluyen los seis 4-politopos regulares convexos . Los otros cuarenta pueden derivarse de los policoros regulares mediante operaciones geométricas que preservan la mayoría o la totalidad de sus simetrías y, por lo tanto, pueden clasificarse por los grupos de simetría que tienen en común.
Cuadro resumen de operaciones de truncamiento | Ejemplos de ubicaciones del punto generador caleidoscópico en el dominio fundamental. |
Las operaciones geométricas que derivan los 40 4-politopos uniformes a partir de los 4-politopos regulares son operaciones de truncamiento . Un 4-politopo puede truncarse en los vértices, aristas o caras, lo que lleva a la adición de celdas correspondientes a esos elementos, como se muestra en las columnas de las tablas siguientes.
El diagrama de Coxeter-Dynkin muestra los cuatro espejos del caleidoscopio de Wythoff como nodos, y los bordes entre los nodos están etiquetados con un número entero que muestra el ángulo entre los espejos ( π / n radianes o 180 / n grados). Los nodos en círculos muestran qué espejos están activos para cada forma; un espejo está activo con respecto a un vértice que no se encuentra sobre él.
Operación | Símbolo de Schläfli | Simetría | Diagrama de Coxeter | Descripción |
---|---|---|---|---|
Padre | t 0 {p, q, r} | [p,q,r] | Forma regular original {p,q,r} | |
Rectificación | t1 {p,q,r } | Operación de truncamiento aplicada hasta que los bordes originales se degeneran en puntos. | ||
Birectificación (Rectificación dual) | t2 {p, q ,r} | Las caras están completamente truncadas en puntos. Igual que el dual rectificado. | ||
Trirectificación ( doble ) | t3 {p,q,r } | Las celdas se truncan en puntos. Dual regular {r,q,p} | ||
Truncamiento | t 0,1 {p,q,r} | Cada vértice se corta de modo que se conserva el centro de cada arista original. En el lugar donde estaba el vértice aparece una nueva celda, la figura del vértice original . Cada celda original se trunca igualmente. | ||
Truncamiento de bits | t 1,2 {p,q,r} | Un truncamiento entre una forma rectificada y la forma rectificada dual. | ||
Tritruncamiento | t2,3 {p, q ,r} | Dual truncado {r,q,p}. | ||
Cantelacion | t 0,2 {p,q,r} | Un truncamiento aplicado a aristas y vértices y define una progresión entre la forma regular y la forma rectificada dual. | ||
Bicantelación | t 1,3 {p,q,r} | Dual cantelado {r,q,p}. | ||
Runcinación (o expansión ) | t 0,3 {p,q,r} | Un truncamiento aplicado a las celdas, caras y aristas; define una progresión entre una forma regular y la dual. | ||
Cantitruncación | t 0,1,2 {p,q,r} | Las operaciones de cantelación y truncamiento se aplican juntas. | ||
Bicantitruncación | t 1,2,3 {p,q,r} | Cantitruncado dual {r,q,p}. | ||
Runcitruncamiento | t 0,1,3 {p,q,r} | Las operaciones de truncamiento y ejecución se aplican juntas. | ||
Antología de runcicantes | t 0,2,3 {p,q,r} | Runcitruncado dual {r,q,p}. | ||
Omnitruncamiento (antitruncamiento runcic) | t 0,1,2,3 {p,q,r} | Aplicación de los tres operadores. | ||
Medio | h{2p,3,q} | [1 + ,2p,3,q] =[(3,p,3),q] | Alternancia de, lo mismo que | |
Cántico | h2 {2p,3 , q} | Lo mismo que | ||
Rúnico | h3 {2p, 3 ,q} | Lo mismo que | ||
Runcicantico | h2,3 {2p, 3 ,q} | Lo mismo que | ||
Cuarto | q{2p,3,2q} | [1 + ,2p,3,2q,1 + ] | Lo mismo que | |
Desaire | s{p,2q,r} | [p + ,2q,r] | Truncamiento alterno | |
Desaire cántico | s 2 {p, 2q, r} | Truncamiento alternado cantelado | ||
Desaire de Runcic | s 3 {p,2q,r} | Truncamiento alternado runcinado | ||
Desaire runcicantico | s 2,3 {p,2q,r} | Truncamiento alternado runcicantelado | ||
Snub rectificado | sr{p,q,2r} | [(p,q) + ,2r] | Rectificación truncada alternada | |
alto 0,3 {2p,q,2r} | [(2p,q,2r,2 + )] | Runcinación alternada | ||
Bisnub | 2s{2p,q,2r} | [2p,q + ,2r] | Truncamiento de bits alternado | |
Omnisnub | alto 0,1,2,3 {p,q,r} | [p,q,r] + | Truncamiento omnialterno alternado |
Véase también los panales uniformes convexos , algunos de los cuales ilustran estas operaciones aplicadas al panal cúbico regular .
Si dos politopos son duales entre sí (como el teseracto y el de 16 celdas, o el de 120 celdas y el de 600 celdas), entonces bitruncating , runcinating u omnitruncating producen la misma figura que la misma operación en el otro. Por lo tanto, cuando solo aparece el participio en la tabla, debe entenderse que se aplica a cualquiera de los padres.
Las 46 policoras uniformes construidas a partir de la simetría A 4 , B 4 , F 4 , H 4 se dan en esta tabla por su simetría extendida completa y diagramas de Coxeter. También se incluye la simetría D 4 , aunque solo crea duplicados. Las alternancias se agrupan por su simetría quiral. Se dan todas las alternancias, aunque la de 24 celdas chata , con sus 3 construcciones de diferentes familias, es la única que es uniforme. Los recuentos entre paréntesis son repeticiones o no uniformes. Los diagramas de Coxeter se dan con índices de subíndice del 1 al 46. Se incluye la familia duoprismática 3-3 y 4-4, la segunda por su relación con la familia B 4 .
Grupo Coxeter | Simetría extendida | Policora | Simetría extendida quiral | Panales de alternancia | ||
---|---|---|---|---|---|---|
[3,3,3] | [3,3,3] (orden 120) | 6 | (1) |(2) |(3) (4) |(7) |(8) | |||
[2 + [3,3,3]] (orden 240) | 3 | (5) |(6) |(9) | [2 + [3,3,3]] + (orden 120) | (1) | (−) | |
[3,3 1,1 ] | [3,3 1,1 ] (orden 192) | 0 | (ninguno) | |||
[1[3,3 1,1 ]]=[4,3,3] = (orden 384) | (4) | (12) |(17) |(11) |(16) | ||||
[3[3 1,1,1 ]]=[3,4,3] = (Orden 1152) | (3) | (22) |(23) |(24) | [3[3,3 1,1 ]] + =[3,4,3] + (orden 576) | (1) | (31) (=) (−) | |
[4,3,3] | [3[1 + ,4,3,3]]=[3,4,3] = (Orden 1152) | (3) | (22) |(23) |(24) | |||
[4,3,3] (orden 384) | 12 | (10) |(11) |(12) |(13) |(14) (15) |(16) |(17) |(18) |(19) (20) |(21) | [1 + ,4,3,3] + (orden 96) | (2) | (12) (=) (31) (−) | |
[4,3,3] + (orden 192) | (1) | (−) | ||||
[3,4,3] | [3,4,3] (Orden 1152) | 6 | (22) |(23) |(24) (25) |(28) |(29) | [2 + [3 + ,4,3 + ]] (orden 576) | 1 | (31) |
[2 + [3,4,3]] (orden 2304) | 3 | (26) |(27) |(30) | [2 + [3,4,3]] + (orden 1152) | (1) | (−) | |
[5,3,3] | [5,3,3] (orden 14400) | 15 | (32) |(33) |(34) |(35) |(36) (37) |(38) |(39) |(40) |(41) (42) |(43) |(44) |(45) |(46) | [5,3,3] + (orden 7200) | (1) | (−) |
[3,2,3] | [3,2,3] (orden 36) | 0 | (ninguno) | [3,2,3] + (orden 18) | 0 | (ninguno) |
[2 + [3,2,3]] (orden 72) | 0 | [2 + [3,2,3]] + (orden 36) | 0 | (ninguno) | ||
[[3],2,3]=[6,2,3] = (orden 72) | 1 | [1[3,2,3]]=[[3],2,3] + =[6,2,3] + (orden 36) | (1) | |||
[(2 + ,4)[3,2,3]]=[2 + [6,2,6]] = (orden 288) | 1 | [(2 + ,4)[3,2,3]] + =[2 + [6,2,6]] + (orden 144) | (1) | |||
[4,2,4] | [4,2,4] (orden 64) | 0 | (ninguno) | [4,2,4] + (orden 32) | 0 | (ninguno) |
[2 + [4,2,4]] (orden 128) | 0 | (ninguno) | [2 + [(4,2 + ,4,2 + )]] (orden 64) | 0 | (ninguno) | |
[(3,3)[4,2*,4]]=[4,3,3] = (orden 384) | (1) | (10) | [(3,3)[4,2*,4]] + =[4,3,3] + (orden 192) | (1) | (12) | |
[[4],2,4]=[8,2,4] = (orden 128) | (1) | [1[4,2,4]]=[[4],2,4] + =[8,2,4] + (orden 64) | (1) | |||
[(2 + ,4)[4,2,4]]=[2 + [8,2,8]] = (orden 512) | (1) | [(2 + ,4)[4,2,4]] + =[2 + [8,2,8]] + (orden 256) | (1) |
Además de las familias de prismas de duoprismas y antiprismas infinitos antes mencionadas, que tienen infinitos miembros no convexos, se han descubierto muchas policoras estelares uniformes. En 1852, Ludwig Schläfli descubrió cuatro policoras estelares regulares : {5,3,5/2}, {5/2,3,5}, {3,3,5/2} y {5/2,3,3}. En 1883, Edmund Hess descubrió las otras seis: {3,5,5/2}, {5/2,5,3}, {5,5/2,5}, {5/2,5,5/2}, {5,5/2,3} y {3,5/2,5}. Norman Johnson describió tres policoras estelares uniformes de tipo antiprisma en su tesis doctoral de 1966: se basan en los tres poliedros ditrigonales que comparten las aristas y los vértices del dodecaedro regular. Desde entonces, otros investigadores, entre ellos Jonathan Bowers y George Olshevsky, han descubierto muchas más, con lo que se ha llegado a un total de 2127 policoros estelares uniformes conocidos en la actualidad (sin contar el conjunto infinito de duoprismas basados en polígonos estelares). Actualmente no hay ninguna prueba de que el conjunto esté completo.
{{cite web}}
: CS1 maint: copia archivada como título ( enlace )