La superposición cuántica es un principio fundamental de la mecánica cuántica que establece que las combinaciones lineales de soluciones de la ecuación de Schrödinger son también soluciones de la ecuación de Schrödinger. Esto se desprende del hecho de que la ecuación de Schrödinger es una ecuación diferencial lineal en tiempo y posición. Más precisamente, el estado de un sistema viene dado por una combinación lineal de todas las funciones propias de la ecuación de Schrödinger que gobiernan ese sistema.
donde es el estado cuántico del qubit, y , denotan soluciones particulares de la ecuación de Schrödinger en notación de Dirac ponderadas por las dos amplitudes de probabilidad y que ambas son números complejos. Aquí corresponde al bit 0 clásico y al bit 1 clásico. Las probabilidades de medir el sistema en el estado o están dadas por y respectivamente (véase la regla de Born ). Antes de que se produzca la medición, el qubit está en una superposición de ambos estados.
Las franjas de interferencia en el experimento de doble rendija proporcionan otro ejemplo del principio de superposición.
Postulado de onda
La teoría de la mecánica cuántica postula que una ecuación de onda determina completamente el estado de un sistema cuántico en todo momento. Además, esta ecuación diferencial está restringida a ser lineal y homogénea . Estas condiciones significan que para dos soluciones cualesquiera de la ecuación de onda, y , una combinación lineal de esas soluciones también resuelve la ecuación de onda:
para coeficientes complejos arbitrarios y . [1] : 61 Si la ecuación de onda tiene más de dos soluciones, las combinaciones de todas esas soluciones son nuevamente soluciones válidas.
Transformación
La ecuación de onda cuántica se puede resolver utilizando funciones de posición, o utilizando funciones de momento, y en consecuencia la superposición de funciones de momento también son soluciones:
Las soluciones de posición y momento están relacionadas por una transformación lineal , una transformación de Fourier . Esta transformación es en sí misma una superposición cuántica y cada función de onda de posición se puede representar como una superposición de funciones de onda de momento y viceversa. Estas superposiciones involucran un número infinito de ondas componentes. [1] : 244
Generalización a estados base
Otras transformaciones expresan una solución cuántica como una superposición de vectores propios , cada uno correspondiente a un posible resultado de una medición en el sistema cuántico. Un vector propio para un operador matemático, , tiene la ecuación
donde es un posible valor cuántico medido para el observable . Una superposición de estos vectores propios puede representar cualquier solución:
Los estados como se denominan estados base.
Notación compacta para superposiciones
Se pueden realizar operaciones matemáticas importantes en soluciones de sistemas cuánticos utilizando solo los coeficientes de la superposición, suprimiendo los detalles de las funciones superpuestas. Esto conduce a sistemas cuánticos expresados en la notación de corchetes de Dirac : [1] : 245
Este enfoque es especialmente efectivo para sistemas como el espín cuántico sin análogo de coordenadas clásico. Esta notación abreviada es muy común en libros de texto y artículos sobre mecánica cuántica y la superposición de estados base es una herramienta fundamental en mecánica cuántica.
Consecuencias
Paul Dirac describió el principio de superposición de la siguiente manera:
La naturaleza no clásica del proceso de superposición se pone claramente de manifiesto si consideramos la superposición de dos estados, A y B , de modo que existe una observación que, cuando se realiza en el sistema en el estado A , es seguro que conduce a un resultado particular, digamos a , y cuando se realiza en el sistema en el estado B es seguro que conduce a algún resultado diferente, digamos b . ¿Cuál será el resultado de la observación cuando se realiza en el sistema en el estado superpuesto? La respuesta es que el resultado será a veces a y a veces b , de acuerdo con una ley de probabilidad que depende de los pesos relativos de A y B en el proceso de superposición. Nunca será diferente de a y b [es decir, ni a ni b ]. El carácter intermedio del estado formado por la superposición se expresa así a través de la probabilidad de un resultado particular para una observación que es intermedia entre las probabilidades correspondientes para los estados originales, no a través del resultado en sí mismo que es intermedio entre los resultados correspondientes para los estados originales. [2]
"La superposición de amplitudes... sólo es válida si no hay forma de saber, ni siquiera en principio, qué camino ha seguido la partícula. Es importante darse cuenta de que esto no implica que un observador tome nota de lo que sucede. Es suficiente destruir el patrón de interferencia, si la información de la trayectoria es accesible en principio desde el experimento o incluso si está dispersa en el entorno y más allá de cualquier posibilidad técnica de recuperación, pero en principio todavía está "ahí afuera". La ausencia de cualquier información de ese tipo es el criterio esencial para que aparezca la interferencia cuántica. [3]
Teoría
Formalismo general
Cualquier estado cuántico puede expandirse como una suma o superposición de los estados propios de un operador hermítico, como el hamiltoniano, porque los estados propios forman una base completa:
¿Dónde están los estados propios de energía del hamiltoniano? Para variables continuas como los estados propios de posición, :
donde es la proyección del estado en la base y se denomina función de onda de la partícula. En ambos casos observamos que se puede desarrollar como una superposición de un número infinito de estados base.
Ejemplo
Dada la ecuación de Schrödinger
donde indexa el conjunto de estados propios del hamiltoniano con valores propios de energía vemos inmediatamente que
dónde
es una solución de la ecuación de Schrödinger pero no es generalmente un estado propio porque y no son generalmente iguales. Decimos que está formado por una superposición de estados propios de energía. Ahora consideremos el caso más concreto de un electrón que tiene espín hacia arriba o hacia abajo. Ahora indexamos los estados propios con los espinores en la base:
donde y denotan estados de espín hacia arriba y hacia abajo respectivamente. Como se explicó anteriormente, las magnitudes de los coeficientes complejos dan la probabilidad de encontrar el electrón en cualquiera de los estados de espín definidos:
donde la probabilidad de encontrar la partícula con espín hacia arriba o hacia abajo se normaliza a 1. Nótese que y son números complejos, de modo que
es un ejemplo de un estado permitido. Ahora obtenemos
Si consideramos un qubit con posición y espín, el estado es una superposición de todas las posibilidades para ambos:
donde tenemos un estado general que es la suma de los productos tensoriales de las funciones de onda del espacio de posición y los espinores.
Se ha construido un " diapasón " piezoeléctrico que puede colocarse en una superposición de estados vibrantes y no vibrantes. El resonador está formado por unos 10 billones de átomos. [8]
Investigaciones recientes indican que la clorofila dentro de las plantas parece explotar la característica de superposición cuántica para lograr una mayor eficiencia en el transporte de energía, permitiendo que las proteínas pigmentarias estén más espaciadas de lo que sería posible de otra manera. [9] [10]
En los ordenadores cuánticos
En las computadoras cuánticas , un qubit es el análogo del bit de información clásico y los qubits pueden superponerse. [11] : 13 A diferencia de los bits clásicos, una superposición de qubits representa información sobre dos estados en paralelo. [11] : 31 Controlar la superposición de qubits es un desafío central en la computación cuántica. Los sistemas de qubits como los espines nucleares con una pequeña fuerza de acoplamiento son robustos a las perturbaciones externas, pero el mismo pequeño acoplamiento dificulta la lectura de los resultados. [11] : 278
Véase también
Estados propios : entidad matemática que describe la probabilidad de cada medición posible en un sistema.Pages displaying short descriptions of redirect targets
^ PAM Dirac (1947). Los principios de la mecánica cuántica (2.ª ed.). Clarendon Press. pág. 12.
^ Zeilinger A (1999). "Experimento y fundamentos de la física cuántica". Rev. Mod. Phys . 71 (2): S288–S297. Código Bibliográfico :1999RvMPS..71..288Z. doi :10.1103/revmodphys.71.s288.
^ Monroe, C.; Meekhof, DM; King, BE; Wineland, DJ (24 de mayo de 1996). "Un estado de superposición de un átomo al estilo del "gato de Schrödinger". Science . 272 (5265): 1131–1136. doi :10.1126/science.272.5265.1131. ISSN 0036-8075.
^ "Dualidad onda-partícula de C60". 31 de marzo de 2012. Archivado desde el original el 31 de marzo de 2012.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
^ Nairz, Olaf. "onda de luz estacionaria".Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (septiembre de 2019). «Superposición cuántica de moléculas más allá de los 25 kDa». Nature Physics . 15 (12): 1242–1245. Código Bibliográfico :2019NatPh..15.1242F. doi :10.1038/s41567-019-0663-9. S2CID 203638258.
^ Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., Tüxen, J. (2013). "Interferencia de ondas de materia con partículas seleccionadas de una biblioteca molecular con masas superiores a 10 000 uma", Physical Chemistry Chemical Physics , 15 : 14696-14700. arXiv :1310.8343
^ Scientific American: Macro-rarezas: "Micrófono cuántico" coloca un objeto visible a simple vista en dos lugares a la vez: un nuevo dispositivo pone a prueba los límites del gato de Schrödinger
^ Scholes, Gregory; Elisabetta Collini; Cathy Y. Wong; Krystyna E. Wilk; Paul MG Curmi; Paul Brumer; Gregory D. Scholes (4 de febrero de 2010). "Recolección de luz coherentemente conectada en algas marinas fotosintéticas a temperatura ambiente". Nature . 463 (7281): 644–647. Bibcode :2010Natur.463..644C. doi :10.1038/nature08811. PMID 20130647. S2CID 4369439.
^ Moyer, Michael (septiembre de 2009). «Enredo cuántico, fotosíntesis y mejores células solares». Scientific American . Consultado el 12 de mayo de 2010 .
Bohr, N. (1927/1928). El postulado cuántico y el desarrollo reciente de la teoría atómica, Nature Supplement 14 de abril de 1928, 121: 580–590.
Cohen-Tannoudji, C. , Diu, B., Laloë, F. (1973/1977). Mecánica cuántica , traducido del francés por SR Hemley, N. Ostrowsky, D. Ostrowsky, segunda edición, volumen 1, Wiley, Nueva York, ISBN 0471164321 .
Einstein, A. (1949). Observaciones sobre los ensayos reunidos en este volumen cooperativo, traducidos del original alemán por el editor, págs. 665-688 en Schilpp, PA editor (1949), Albert Einstein: Philosopher-Scientist, volumen II , Open Court, La Salle IL.
Feynman, RP , Leighton, RB, Sands, M. (1965). Las conferencias Feynman sobre física , volumen 3, Addison-Wesley, Reading, MA.
Merzbacher, E. (1961/1970). Mecánica cuántica , segunda edición, Wiley, Nueva York.
Messiah, A. (1961). Mecánica cuántica , volumen 1, traducido por GM Temmer del francés Mécanique Quantique , Holanda Septentrional, Amsterdam.
Wheeler, JA ; Zurek, WH (1983). Teoría cuántica y medición . Princeton NJ: Princeton University Press.