La ecología estudia la escala completa de la vida, desde las bacterias diminutas hasta los procesos que abarcan todo el planeta. Los ecólogos estudian muchas relaciones diversas y complejas entre las especies, como la depredación y la polinización . La diversidad de la vida se organiza en diferentes hábitats , desde los ecosistemas terrestres hasta los acuáticos . |
Parte de una serie sobre |
Biología |
---|
La ecología (del griego antiguo οἶκος ( oîkos ) 'casa' y -λογία ( -logía ) 'estudio de') [A] es la ciencia natural de las relaciones entre los organismos vivos , incluidos los humanos , y su entorno físico . La ecología considera los organismos a nivel individual, poblacional , comunitario , ecosistémico y de biosfera . La ecología se superpone con las ciencias estrechamente relacionadas de la biogeografía , la biología evolutiva , la genética , la etología y la historia natural .
La ecología es una rama de la biología que estudia la abundancia , biomasa y distribución de los organismos en el contexto del medio ambiente. Abarca los procesos vitales, las interacciones y las adaptaciones ; el movimiento de materiales y energía a través de las comunidades vivas; el desarrollo sucesional de los ecosistemas; la cooperación, la competencia y la depredación dentro y entre especies ; y los patrones de biodiversidad y su efecto en los procesos ecosistémicos.
La ecología tiene aplicaciones prácticas en la biología de la conservación , la gestión de humedales , la gestión de recursos naturales ( agroecología , agricultura , silvicultura , agroforestería , pesca , minería , turismo ), la planificación urbana ( ecología urbana ), la salud comunitaria , la economía , las ciencias básicas y aplicadas y la interacción social humana ( ecología humana ).
La palabra ecología ( en alemán : Ökologie ) fue acuñada en 1866 por el científico alemán Ernst Haeckel . La ciencia de la ecología tal como la conocemos hoy comenzó con un grupo de botánicos estadounidenses en la década de 1890. [1] Los conceptos evolutivos relacionados con la adaptación y la selección natural son piedras angulares de la teoría ecológica moderna .
Los ecosistemas son sistemas de organismos que interactúan dinámicamente, las comunidades que forman y los componentes no vivos ( abióticos ) de su entorno. Los procesos ecosistémicos, como la producción primaria , el ciclo de nutrientes y la construcción de nichos , regulan el flujo de energía y materia a través de un entorno. Los ecosistemas tienen mecanismos de retroalimentación biofísica que moderan los procesos que actúan sobre los componentes vivos ( bióticos ) y abióticos del planeta. Los ecosistemas sostienen las funciones que sustentan la vida y brindan servicios ecosistémicos como la producción de biomasa (alimentos, combustibles, fibras y medicamentos), la regulación del clima , los ciclos biogeoquímicos globales , la filtración de agua , la formación del suelo , el control de la erosión , la protección contra inundaciones y muchas otras características naturales de valor científico, histórico, económico o intrínseco.
El ámbito de la ecología contiene una amplia gama de niveles de organización que interactúan y abarcan fenómenos desde el nivel micro (por ejemplo, las células ) hasta la escala planetaria (por ejemplo, la biosfera ) . Los ecosistemas, por ejemplo, contienen recursos abióticos y formas de vida que interactúan (es decir, organismos individuales que se agregan en poblaciones que se agregan en comunidades ecológicas distintas). Debido a que los ecosistemas son dinámicos y no necesariamente siguen una ruta sucesional lineal, los cambios pueden ocurrir rápida o lentamente durante miles de años antes de que los procesos biológicos produzcan etapas sucesionales forestales específicas. El área de un ecosistema puede variar mucho, desde diminuta a vasta. Un solo árbol tiene poca importancia para la clasificación de un ecosistema forestal, pero es críticamente relevante para los organismos que viven en él y sobre él. [2] Pueden existir varias generaciones de una población de pulgones durante la vida útil de una sola hoja. Cada uno de esos pulgones, a su vez, sustenta diversas comunidades bacterianas . [3] La naturaleza de las conexiones en las comunidades ecológicas no se puede explicar conociendo los detalles de cada especie de forma aislada, porque el patrón emergente no se revela ni se predice hasta que se estudia el ecosistema como un todo integrado. [4] Sin embargo, algunos principios ecológicos sí presentan propiedades colectivas en las que la suma de los componentes explica las propiedades del todo, como por ejemplo que las tasas de natalidad de una población sean iguales a la suma de los nacimientos individuales durante un período de tiempo designado. [5]
Las principales subdisciplinas de la ecología, la ecología de poblaciones (o de comunidades ) y la ecología de ecosistemas , presentan diferencias no solo en escala sino también en dos paradigmas contrastantes en el campo. La primera se centra en la distribución y abundancia de los organismos, mientras que la segunda se centra en los flujos de materiales y energía. [6]
Los comportamientos del sistema deben organizarse primero en diferentes niveles de la organización. Los comportamientos correspondientes a los niveles superiores se producen a un ritmo lento. Por el contrario, los niveles inferiores de la organización muestran un ritmo rápido. Por ejemplo, las hojas de los árboles responden rápidamente a cambios momentáneos en la intensidad de la luz, la concentración de CO2 y similares. El crecimiento del árbol responde más lentamente e integra estos cambios de corto plazo.
O'Neill y otros (1986) [7] : 76
La escala de la dinámica ecológica puede funcionar como un sistema cerrado, como los pulgones que migran a un solo árbol, y al mismo tiempo permanecer abierta a influencias de escala más amplia, como la atmósfera o el clima. Por lo tanto, los ecólogos clasifican los ecosistemas jerárquicamente analizando datos recopilados de unidades de escala más fina, como las asociaciones de vegetación , el clima y los tipos de suelo , e integran esta información para identificar patrones emergentes de organización uniforme y procesos que operan a escalas locales, regionales, de paisaje y cronológicas.
Para estructurar el estudio de la ecología en un marco conceptualmente manejable, el mundo biológico se organiza en una jerarquía anidada , que va en escala desde los genes , a las células , a los tejidos , a los órganos , a los organismos , a las especies , a las poblaciones , a los gremios , a las comunidades , a los ecosistemas , a los biomas , y hasta el nivel de la biosfera . [8] Este marco forma una panarquía [9] y exhibe comportamientos no lineales ; esto significa que "el efecto y la causa son desproporcionados, de modo que pequeños cambios en variables críticas, como el número de fijadores de nitrógeno , pueden conducir a cambios desproporcionados, tal vez irreversibles, en las propiedades del sistema". [10] : 14
La biodiversidad se refiere a la variedad de la vida y sus procesos. Incluye la variedad de organismos vivos, las diferencias genéticas entre ellos, las comunidades y los ecosistemas en los que se encuentran y los procesos ecológicos y evolutivos que los mantienen funcionando, pero en constante cambio y adaptación.
Noss y Carpenter (1994) [11] : 5
La biodiversidad (abreviatura de "diversidad biológica") describe la diversidad de la vida, desde los genes hasta los ecosistemas, y abarca todos los niveles de la organización biológica. El término tiene varias interpretaciones y hay muchas formas de indexar, medir, caracterizar y representar su compleja organización. [12] [13] [14] La biodiversidad incluye la diversidad de especies , la diversidad de ecosistemas y la diversidad genética , y los científicos están interesados en la forma en que esta diversidad afecta los complejos procesos ecológicos que operan en y entre estos respectivos niveles. [13] [15] [16] La biodiversidad desempeña un papel importante en los servicios ecosistémicos que, por definición, mantienen y mejoran la calidad de vida humana. [14] [17] [18] Las prioridades de conservación y las técnicas de gestión requieren diferentes enfoques y consideraciones para abordar el alcance ecológico completo de la biodiversidad. El capital natural que sustenta a las poblaciones es fundamental para mantener los servicios ecosistémicos [19] [20] y la migración de especies (por ejemplo, las migraciones de peces fluviales y el control de insectos aviares) se ha implicado como un mecanismo por el cual se experimentan esas pérdidas de servicios. [21] La comprensión de la biodiversidad tiene aplicaciones prácticas para los planificadores de la conservación a nivel de especies y ecosistemas, ya que hacen recomendaciones de gestión a empresas consultoras, gobiernos y la industria. [22]
El hábitat de una especie describe el entorno en el que se sabe que se encuentra una especie y el tipo de comunidad que se forma como resultado. [24] Más específicamente, "los hábitats pueden definirse como regiones en el espacio ambiental que se componen de múltiples dimensiones, cada una representando una variable ambiental biótica o abiótica; es decir, cualquier componente o característica del entorno relacionado directamente (por ejemplo, biomasa y calidad del forraje) o indirectamente (por ejemplo, elevación) con el uso de una ubicación por parte del animal". [25] : 745 Por ejemplo, un hábitat podría ser un entorno acuático o terrestre que puede categorizarse además como un ecosistema montañoso o alpino . Los cambios de hábitat proporcionan evidencia importante de competencia en la naturaleza donde una población cambia en relación con los hábitats que ocupan la mayoría de los otros individuos de la especie. Por ejemplo, una población de una especie de lagarto tropical ( Tropidurus hispidus ) tiene un cuerpo aplanado en relación con las principales poblaciones que viven en la sabana abierta. La población que vive en un afloramiento rocoso aislado se esconde en grietas donde su cuerpo aplanado ofrece una ventaja selectiva. Los cambios de hábitat también ocurren en el ciclo de vida de los anfibios y en los insectos que pasan de hábitats acuáticos a terrestres. A veces se usan los términos biotopo y hábitat de manera intercambiable, pero el primero se aplica al entorno de una comunidad, mientras que el segundo se aplica al entorno de una especie. [24] [26] [27]
Las definiciones de nicho datan de 1917, [30] pero G. Evelyn Hutchinson hizo avances conceptuales en 1957 [31] [32] al introducir una definición ampliamente adoptada: "el conjunto de condiciones bióticas y abióticas en las que una especie es capaz de persistir y mantener tamaños de población estables". [30] : 519 El nicho ecológico es un concepto central en la ecología de los organismos y se subdivide en el nicho fundamental y el nicho realizado . El nicho fundamental es el conjunto de condiciones ambientales bajo las cuales una especie es capaz de persistir. El nicho realizado es el conjunto de condiciones ambientales más ecológicas bajo las cuales una especie persiste. [30] [32] [33] El nicho hutchinsoniano se define más técnicamente como un " hiperespacio euclidiano cuyas dimensiones se definen como variables ambientales y cuyo tamaño es una función del número de valores que los valores ambientales pueden asumir para los cuales un organismo tiene aptitud positiva ". [34] : 71
Los patrones biogeográficos y las distribuciones de rango se explican o predicen a través del conocimiento de los rasgos de una especie y los requisitos de nicho. [35] Las especies tienen rasgos funcionales que están adaptados de manera única al nicho ecológico. Un rasgo es una propiedad, fenotipo o característica medible de un organismo que puede influir en su supervivencia. Los genes juegan un papel importante en la interacción del desarrollo y la expresión ambiental de los rasgos. [36] Las especies residentes desarrollan rasgos que se adaptan a las presiones de selección de su entorno local. Esto tiende a brindarles una ventaja competitiva y desalienta a las especies adaptadas de manera similar de tener un rango geográfico superpuesto. El principio de exclusión competitiva establece que dos especies no pueden coexistir indefinidamente viviendo del mismo recurso limitante ; una siempre superará a la otra. Cuando especies adaptadas de manera similar se superponen geográficamente, una inspección más cercana revela diferencias ecológicas sutiles en su hábitat o requisitos dietéticos. [37] Sin embargo, algunos modelos y estudios empíricos sugieren que las perturbaciones pueden estabilizar la coevolución y la ocupación compartida del nicho de especies similares que habitan comunidades ricas en especies. [38] El hábitat más el nicho se denomina ecotopo , que se define como el conjunto de variables ambientales y biológicas que afectan a una especie entera. [24]
Los organismos están sujetos a presiones ambientales, pero también modifican sus hábitats. La retroalimentación reguladora entre los organismos y su entorno puede afectar las condiciones desde escalas locales (por ejemplo, un estanque de castores ) hasta escalas globales, a lo largo del tiempo e incluso después de la muerte, como troncos en descomposición o depósitos de esqueletos de sílice de organismos marinos. [39] El proceso y el concepto de ingeniería de ecosistemas están relacionados con la construcción de nichos , pero el primero se relaciona solo con las modificaciones físicas del hábitat, mientras que el segundo también considera las implicaciones evolutivas de los cambios físicos en el medio ambiente y la retroalimentación que esto causa en el proceso de selección natural. Los ingenieros de ecosistemas se definen como: "organismos que modulan directa o indirectamente la disponibilidad de recursos para otras especies, al causar cambios en el estado físico de los materiales bióticos o abióticos. Al hacerlo, modifican, mantienen y crean hábitats". [40] : 373
El concepto de ingeniería de ecosistemas ha estimulado una nueva apreciación de la influencia que tienen los organismos en el ecosistema y el proceso evolutivo. El término "construcción de nichos" se utiliza con más frecuencia en referencia a los mecanismos de retroalimentación poco apreciados de la selección natural que imparten fuerzas sobre el nicho abiótico. [28] [41] Un ejemplo de selección natural a través de la ingeniería de ecosistemas se da en los nidos de insectos sociales , incluidas las hormigas, las abejas, las avispas y las termitas. Existe una homeostasis emergente u homeorhesis en la estructura del nido que regula, mantiene y defiende la fisiología de toda la colonia. Los montículos de termitas, por ejemplo, mantienen una temperatura interna constante mediante el diseño de chimeneas de aire acondicionado. La estructura de los nidos en sí está sujeta a las fuerzas de la selección natural. Además, un nido puede sobrevivir a lo largo de generaciones sucesivas, de modo que la progenie hereda tanto el material genético como un nicho heredado que se construyó antes de su tiempo. [5] [28] [29]
Los biomas son unidades de organización más grandes que categorizan regiones de los ecosistemas de la Tierra, principalmente de acuerdo con la estructura y composición de la vegetación. [42] Existen diferentes métodos para definir los límites continentales de los biomas dominados por diferentes tipos funcionales de comunidades vegetales que están limitadas en distribución por el clima, la precipitación, el tiempo y otras variables ambientales. Los biomas incluyen la selva tropical , el bosque templado latifoliado y mixto , el bosque templado caducifolio , la taiga , la tundra , el desierto cálido y el desierto polar . [43] Otros investigadores han categorizado recientemente otros biomas, como los microbiomas humano y oceánico . Para un microbio , el cuerpo humano es un hábitat y un paisaje. [44] Los microbiomas se descubrieron en gran medida a través de los avances en genética molecular , que han revelado una riqueza oculta de diversidad microbiana en el planeta. El microbioma oceánico juega un papel importante en la biogeoquímica ecológica de los océanos del planeta. [45]
La escala más grande de organización ecológica es la biosfera: la suma total de los ecosistemas del planeta. Las relaciones ecológicas regulan el flujo de energía, nutrientes y clima hasta la escala planetaria. Por ejemplo, la historia dinámica de la composición de CO2 y O2 de la atmósfera planetaria se ha visto afectada por el flujo biogénico de gases provenientes de la respiración y la fotosíntesis, con niveles que fluctúan a lo largo del tiempo en relación con la ecología y la evolución de plantas y animales. [46] La teoría ecológica también se ha utilizado para explicar fenómenos de regulación autoemergente a escala planetaria: por ejemplo, la hipótesis de Gaia es un ejemplo de holismo aplicado a la teoría ecológica. [47] La hipótesis de Gaia afirma que existe un ciclo de retroalimentación emergente generado por el metabolismo de los organismos vivos que mantiene la temperatura central de la Tierra y las condiciones atmosféricas dentro de un estrecho rango de tolerancia autorregulado. [48]
La ecología de poblaciones estudia la dinámica de las poblaciones de especies y cómo estas poblaciones interactúan con el entorno más amplio. [5] Una población está formada por individuos de la misma especie que viven, interactúan y migran a través del mismo nicho y hábitat. [49]
Una ley primaria de la ecología de poblaciones es el modelo de crecimiento maltusiano [50] que establece que "una población crecerá (o disminuirá) exponencialmente mientras el entorno experimentado por todos los individuos de la población permanezca constante". [50] : 18 Los modelos de población simplificados generalmente comienzan con cuatro variables: muerte, nacimiento, inmigración y emigración .
Un ejemplo de un modelo de población introductorio describe una población cerrada, como una isla, donde no se producen inmigración ni emigración. Las hipótesis se evalúan con referencia a una hipótesis nula que establece que los procesos aleatorios crean los datos observados. En estos modelos de islas, la tasa de cambio de la población se describe mediante:
donde N es el número total de individuos en la población, b y d son las tasas per cápita de nacimiento y muerte respectivamente, y r es la tasa per cápita de cambio de población. [50] [51]
Utilizando estas técnicas de modelado, el principio de crecimiento poblacional de Malthus fue posteriormente transformado en un modelo conocido como ecuación logística por Pierre Verhulst :
donde N(t) es el número de individuos medido como densidad de biomasa en función del tiempo, t , r es la tasa máxima de cambio per cápita comúnmente conocida como tasa intrínseca de crecimiento, y es el coeficiente de hacinamiento, que representa la reducción en la tasa de crecimiento de la población por individuo agregado. La fórmula establece que la tasa de cambio en el tamaño de la población ( ) crecerá hasta acercarse al equilibrio, donde ( ), cuando las tasas de aumento y hacinamiento están equilibradas, . Un modelo análogo común fija el equilibrio, como K , que se conoce como la "capacidad de carga".
La ecología de poblaciones se basa en estos modelos introductorios para comprender mejor los procesos demográficos en poblaciones de estudio reales. Los tipos de datos que se utilizan comúnmente incluyen el ciclo de vida , la fecundidad y la supervivencia, y se analizan utilizando técnicas matemáticas como el álgebra matricial . La información se utiliza para gestionar las reservas de vida silvestre y establecer cuotas de cosecha. [51] [52] En los casos en que los modelos básicos son insuficientes, los ecólogos pueden adoptar diferentes tipos de métodos estadísticos, como el criterio de información de Akaike , [53] o utilizar modelos que pueden volverse matemáticamente complejos a medida que "varias hipótesis en competencia se confrontan simultáneamente con los datos". [54]
El concepto de metapoblaciones se definió en 1969 [55] como "una población de poblaciones que se extinguen localmente y recolonizan". [56] : 105 La ecología de metapoblaciones es otro enfoque estadístico que se utiliza a menudo en la investigación de la conservación . [57] Los modelos de metapoblaciones simplifican el paisaje en parches de diferentes niveles de calidad, [58] y las metapoblaciones están vinculadas por los comportamientos migratorios de los organismos. La migración animal se distingue de otros tipos de movimiento porque implica la salida y el regreso estacional de los individuos de un hábitat. [59] La migración también es un fenómeno a nivel de población, como las rutas de migración seguidas por las plantas a medida que ocupaban los entornos postglaciales del norte. Los ecólogos de plantas utilizan registros de polen que se acumulan y estratifican en los humedales para reconstruir el momento de la migración y dispersión de las plantas en relación con los climas históricos y contemporáneos. Estas rutas de migración implicaron una expansión del rango a medida que las poblaciones de plantas se expandían de un área a otra. Existe una taxonomía más amplia de movimiento, como el desplazamiento diario, la búsqueda de alimento, el comportamiento territorial, la estasis y la dispersión. La dispersión suele distinguirse de la migración porque implica el movimiento permanente en un solo sentido de individuos desde su población de nacimiento a otra población. [60] [61]
En la terminología de metapoblaciones, los individuos que migran se clasifican como emigrantes (cuando abandonan una región) o inmigrantes (cuando entran en una región), y los sitios se clasifican como fuentes o sumideros. Un sitio es un término genérico que se refiere a los lugares donde los ecólogos toman muestras de poblaciones, como estanques o áreas de muestreo definidas en un bosque. Los parches fuente son sitios productivos que generan un suministro estacional de juveniles que migran a otras ubicaciones de parches. Los parches sumideros son sitios improductivos que solo reciben migrantes; la población en el sitio desaparecerá a menos que sea rescatada por un parche fuente adyacente o las condiciones ambientales se vuelvan más favorables. Los modelos de metapoblaciones examinan la dinámica de los parches a lo largo del tiempo para responder posibles preguntas sobre la ecología espacial y demográfica. La ecología de las metapoblaciones es un proceso dinámico de extinción y colonización. Pequeños parches de menor calidad (es decir, sumideros) se mantienen o rescatan por una afluencia estacional de nuevos inmigrantes. Una estructura metapoblacional dinámica evoluciona de año en año, donde algunos parches son sumideros en años secos y son fuentes cuando las condiciones son más favorables. Los ecólogos utilizan una combinación de modelos informáticos y estudios de campo para explicar la estructura de la metapoblación. [62] [63]
La ecología de comunidades examina cómo las interacciones entre las especies y su entorno afectan la abundancia, distribución y diversidad de especies dentro de las comunidades.
Johnson y Stinchcomb (2007) [64] : 250
La ecología de comunidades es el estudio de las interacciones entre un conjunto de especies que habitan la misma área geográfica. Los ecólogos de comunidades estudian los determinantes de los patrones y procesos de dos o más especies que interactúan. La investigación en ecología de comunidades puede medir la diversidad de especies en pastizales en relación con la fertilidad del suelo. También puede incluir el análisis de la dinámica depredador-presa, la competencia entre especies de plantas similares o las interacciones mutualistas entre cangrejos y corales.
Estos ecosistemas, como podemos llamarlos, son de los más diversos tipos y tamaños. Forman una categoría de los numerosos sistemas físicos del universo, que abarcan desde el universo en su conjunto hasta el átomo.
Tansley (1935) [65] : 299
Los ecosistemas pueden ser hábitats dentro de biomas que forman un todo integrado y un sistema que responde dinámicamente y que tiene complejos tanto físicos como biológicos. La ecología de los ecosistemas es la ciencia que determina los flujos de materiales (por ejemplo, carbono, fósforo) entre diferentes depósitos (por ejemplo, biomasa de árboles, materia orgánica del suelo). Los ecólogos de ecosistemas intentan determinar las causas subyacentes de estos flujos. La investigación en ecología de ecosistemas puede medir la producción primaria (g C/m^2) en un humedal en relación con las tasas de descomposición y consumo (g C/m^2/año). Esto requiere una comprensión de las conexiones comunitarias entre las plantas (es decir, los productores primarios) y los descomponedores (por ejemplo, hongos y bacterias). [66]
El concepto subyacente de un ecosistema se remonta a 1864 en la obra publicada de George Perkins Marsh ("El hombre y la naturaleza"). [67] [68] Dentro de un ecosistema, los organismos están vinculados a los componentes físicos y biológicos de su entorno al que están adaptados. [65] Los ecosistemas son sistemas adaptativos complejos donde la interacción de los procesos de la vida forma patrones autoorganizados en diferentes escalas de tiempo y espacio. [69] Los ecosistemas se clasifican ampliamente como terrestres , de agua dulce , atmosféricos o marinos . Las diferencias surgen de la naturaleza de los entornos físicos únicos que dan forma a la biodiversidad dentro de cada uno. Una adición más reciente a la ecología de los ecosistemas son los tecnoecosistemas , que se ven afectados por la actividad humana o son principalmente el resultado de ella. [5]
Una red alimentaria es la red ecológica arquetípica . Las plantas capturan la energía solar y la utilizan para sintetizar azúcares simples durante la fotosíntesis . A medida que las plantas crecen, acumulan nutrientes y son consumidas por los herbívoros que pastan , y la energía se transfiere a través de una cadena de organismos por consumo. Las vías de alimentación lineales simplificadas que se mueven desde una especie trófica basal hasta un consumidor superior se denominan cadena alimentaria . Las cadenas alimentarias en una comunidad ecológica crean una red alimentaria compleja. Las redes alimentarias son un tipo de mapa conceptual que se utiliza para ilustrar y estudiar las vías de los flujos de energía y materiales. [7] [70] [71]
Las mediciones empíricas generalmente se limitan a un hábitat específico, como una cueva o un estanque, y los principios extraídos de estudios a pequeña escala se extrapolan a sistemas más grandes. [72] Las relaciones alimentarias requieren investigaciones extensas, por ejemplo, en el contenido intestinal de los organismos, que puede ser difícil de descifrar, o se pueden usar isótopos estables para rastrear el flujo de dietas nutritivas y energía a través de una red alimentaria. [73] A pesar de estas limitaciones, las redes alimentarias siguen siendo una herramienta valiosa para comprender los ecosistemas comunitarios. [74]
Las redes alimentarias ilustran principios importantes de la ecología : algunas especies tienen muchos vínculos alimentarios débiles (por ejemplo, los omnívoros ), mientras que otras están más especializadas y tienen menos vínculos alimentarios más fuertes (por ejemplo, los depredadores primarios ). Estos vínculos explican cómo las comunidades ecológicas se mantienen estables a lo largo del tiempo [75] [76] y, con el tiempo, pueden ilustrar una red de vida "completa". [71] [77] [78] [79]
La alteración de las cadenas alimentarias puede tener un impacto dramático en la ecología de especies individuales o de ecosistemas enteros. Por ejemplo, se ha demostrado que la sustitución de una especie de hormiga por otra (invasora) afecta la forma en que los elefantes reducen la cobertura arbórea y, por lo tanto, la depredación de los leones sobre las cebras . [80] [81]
Un nivel trófico (del griego troph , τροφή, trophē, que significa "alimento" o "alimentación") es "un grupo de organismos que adquieren una mayoría considerable de su energía del nivel adyacente inferior (según las pirámides ecológicas ) más cercano a la fuente abiótica". [82] : 383 Los vínculos en las redes alimentarias conectan principalmente las relaciones de alimentación o el trofismo entre las especies. La biodiversidad dentro de los ecosistemas se puede organizar en pirámides tróficas, en las que la dimensión vertical representa las relaciones de alimentación que se alejan más de la base de la cadena alimentaria hacia los depredadores superiores, y la dimensión horizontal representa la abundancia o biomasa en cada nivel. [83] Cuando la abundancia o biomasa relativa de cada especie se clasifica en su respectivo nivel trófico, naturalmente se clasifican en una "pirámide de números". [84]
Las especies se clasifican ampliamente como autótrofos (o productores primarios ), heterótrofos (o consumidores ) y detritívoros (o descomponedores ). Los autótrofos son organismos que producen su propio alimento (la producción es mayor que la respiración) mediante la fotosíntesis o la quimiosíntesis . Los heterótrofos son organismos que deben alimentarse de otros para nutrirse y obtener energía (la respiración supera la producción). [5] Los heterótrofos se pueden subdividir en diferentes grupos funcionales, incluidos los consumidores primarios (herbívoros estrictos), los consumidores secundarios ( depredadores carnívoros que se alimentan exclusivamente de herbívoros) y los consumidores terciarios (depredadores que se alimentan de una mezcla de herbívoros y depredadores). [85] Los omnívoros no encajan perfectamente en una categoría funcional porque comen tejidos tanto vegetales como animales. Se ha sugerido que los omnívoros tienen una mayor influencia funcional como depredadores porque, en comparación con los herbívoros, son relativamente ineficientes en el pastoreo. [86]
Los niveles tróficos son parte de la visión holística o de sistemas complejos de los ecosistemas. [87] [88] Cada nivel trófico contiene especies no relacionadas que se agrupan porque comparten funciones ecológicas comunes, lo que da una visión macroscópica del sistema. [89] Si bien la noción de niveles tróficos proporciona información sobre el flujo de energía y el control de arriba hacia abajo dentro de las redes alimentarias, se ve afectada por la prevalencia de la omnívora en los ecosistemas reales. Esto ha llevado a algunos ecólogos a "reiterar que la noción de que las especies se agregan claramente en niveles tróficos discretos y homogéneos es una ficción". [90] : 815 No obstante, estudios recientes han demostrado que existen niveles tróficos reales, pero "por encima del nivel trófico de los herbívoros, las redes alimentarias se caracterizan mejor como una red enmarañada de omnívoros". [91] : 612
Una especie clave es una especie que está conectada a un número desproporcionadamente grande de otras especies en la red alimentaria . Las especies clave tienen niveles más bajos de biomasa en la pirámide trófica en relación con la importancia de su papel. Las muchas conexiones que tiene una especie clave significan que mantiene la organización y la estructura de comunidades enteras. La pérdida de una especie clave resulta en una serie de efectos en cascada dramáticos (denominados cascadas tróficas ) que alteran la dinámica trófica, otras conexiones de la red alimentaria y pueden causar la extinción de otras especies. [92] [93] El término especie clave fue acuñado por Robert Paine en 1969 y es una referencia a la característica arquitectónica de la piedra angular , ya que la eliminación de una especie clave puede resultar en un colapso de la comunidad, al igual que la eliminación de la piedra angular en un arco puede resultar en la pérdida de estabilidad del arco. [94]
Las nutrias marinas ( Enhydra lutris ) se citan comúnmente como un ejemplo de especie clave porque limitan la densidad de erizos de mar que se alimentan de algas marinas . Si se eliminan las nutrias marinas del sistema, los erizos pastan hasta que los bancos de algas marinas desaparecen, y esto tiene un efecto dramático en la estructura de la comunidad. [95] Se cree, por ejemplo, que la caza de nutrias marinas ha llevado indirectamente a la extinción de la vaca marina de Steller ( Hydrodamalis gigas ). [96] Si bien el concepto de especie clave se ha utilizado ampliamente como una herramienta de conservación , ha sido criticado por estar mal definido desde una postura operativa. Es difícil determinar experimentalmente qué especies pueden tener un papel clave en cada ecosistema. Además, la teoría de la red alimentaria sugiere que las especies clave pueden no ser comunes, por lo que no está claro con qué generalidad se puede aplicar el modelo de especies clave. [95] [97]
La complejidad se entiende como un gran esfuerzo computacional necesario para unir numerosas partes interactuantes que exceden la capacidad de memoria iterativa de la mente humana. Los patrones globales de diversidad biológica son complejos. Esta biocomplejidad surge de la interacción entre los procesos ecológicos que operan e influyen en los patrones a diferentes escalas que se van graduando entre sí, como las áreas de transición o los ecotonos que abarcan paisajes. La complejidad surge de la interacción entre los niveles de organización biológica a medida que la energía y la materia se integran en unidades más grandes que se superponen a las partes más pequeñas. "Lo que eran totalidades en un nivel se convierten en partes en uno superior". [98] : 209 Los patrones de pequeña escala no necesariamente explican los fenómenos de gran escala, de lo contrario capturados en la expresión (acuñada por Aristóteles) 'la suma es mayor que las partes'. [99] [100] [E]
"La complejidad en ecología es de al menos seis tipos distintos: espacial, temporal, estructural, de proceso, conductual y geométrica". [101] : 3 A partir de estos principios, los ecólogos han identificado fenómenos emergentes y autoorganizados que operan en diferentes escalas ambientales de influencia, que van desde lo molecular hasta lo planetario, y que requieren diferentes explicaciones en cada nivel integrador . [48] [102] La complejidad ecológica se relaciona con la resiliencia dinámica de los ecosistemas que transitan hacia múltiples estados estables cambiantes dirigidos por fluctuaciones aleatorias de la historia. [9] [103] Los estudios ecológicos a largo plazo proporcionan registros importantes para comprender mejor la complejidad y la resiliencia de los ecosistemas en escalas temporales más largas y espaciales más amplias. Estos estudios son administrados por la Red Ecológica Internacional a Largo Plazo (LTER). [104] El experimento más largo que existe es el Experimento de la Hierba del Parque , que se inició en 1856. [105] Otro ejemplo es el estudio Hubbard Brook , que ha estado en funcionamiento desde 1960. [106]
El holismo sigue siendo una parte fundamental de la base teórica de los estudios ecológicos contemporáneos. El holismo aborda la organización biológica de la vida que se autoorganiza en capas de sistemas completos emergentes que funcionan de acuerdo con propiedades no reducibles. Esto significa que los patrones de orden superior de un sistema funcional completo, como un ecosistema , no se pueden predecir ni comprender mediante una simple suma de las partes. [107] "Las nuevas propiedades emergen porque los componentes interactúan, no porque se cambie la naturaleza básica de los componentes". [5] : 8
Los estudios ecológicos son necesariamente holísticos en oposición a reduccionistas . [36] [102] [108] El holismo tiene tres significados o usos científicos que se identifican con la ecología: 1) la complejidad mecanicista de los ecosistemas, 2) la descripción práctica de patrones en términos reduccionistas cuantitativos donde se pueden identificar correlaciones pero no se entiende nada acerca de las relaciones causales sin referencia al sistema completo, lo que conduce a 3) una jerarquía metafísica por la cual las relaciones causales de sistemas más grandes se entienden sin referencia a las partes más pequeñas. El holismo científico difiere del misticismo que se ha apropiado del mismo término. Un ejemplo de holismo metafísico se identifica en la tendencia al aumento del espesor exterior en las conchas de diferentes especies. La razón de un aumento del espesor se puede entender a través de la referencia a los principios de selección natural a través de la depredación sin la necesidad de hacer referencia o comprender las propiedades biomoleculares de las conchas exteriores. [109]
La ecología y la biología evolutiva se consideran disciplinas hermanas de las ciencias de la vida. La selección natural , la historia de vida , el desarrollo , la adaptación , las poblaciones y la herencia son ejemplos de conceptos que se entrelazan por igual en la teoría ecológica y evolutiva. Los rasgos morfológicos, conductuales y genéticos, por ejemplo, se pueden mapear en árboles evolutivos para estudiar el desarrollo histórico de una especie en relación con sus funciones y roles en diferentes circunstancias ecológicas. En este marco, las herramientas analíticas de los ecólogos y evolucionistas se superponen a medida que organizan, clasifican e investigan la vida a través de principios sistemáticos comunes, como la filogenética o el sistema de taxonomía de Linneo . [110] Las dos disciplinas a menudo aparecen juntas, como en el título de la revista Trends in Ecology and Evolution . [111] No existe un límite claro que separe la ecología de la evolución, y difieren más en sus áreas de enfoque aplicado. Ambas disciplinas descubren y explican propiedades y procesos emergentes y únicos que operan en diferentes escalas espaciales o temporales de organización. [36] [48] Si bien el límite entre la ecología y la evolución no siempre es claro, los ecólogos estudian los factores abióticos y bióticos que influyen en los procesos evolutivos, [112] [113] y la evolución puede ser rápida y ocurrir en escalas de tiempo ecológicas tan cortas como una generación. [114]
Todos los organismos pueden exhibir comportamientos. Incluso las plantas expresan un comportamiento complejo, que incluye la memoria y la comunicación. [116] La ecología del comportamiento es el estudio del comportamiento de un organismo en su entorno y sus implicaciones ecológicas y evolutivas. La etología es el estudio del movimiento o comportamiento observable en los animales. Esto podría incluir investigaciones de espermatozoides móviles de plantas, fitoplancton móvil , zooplancton nadando hacia el óvulo femenino, el cultivo de hongos por gorgojos , la danza de apareamiento de una salamandra o reuniones sociales de amebas . [117] [118] [119] [120] [121]
La adaptación es el concepto central unificador de la ecología del comportamiento. [122] Los comportamientos pueden registrarse como rasgos y heredarse de la misma manera que el color de los ojos y del pelo. Los comportamientos pueden evolucionar por medio de la selección natural como rasgos adaptativos que confieren utilidades funcionales que aumentan la aptitud reproductiva. [123] [124]
Las interacciones depredador-presa son un concepto introductorio a los estudios de la red alimentaria, así como a la ecología del comportamiento. [126] Las especies presa pueden exhibir diferentes tipos de adaptaciones conductuales a los depredadores, como evitarlos, huir o defenderse. Muchas especies presa se enfrentan a múltiples depredadores que difieren en el grado de peligro que representan. Para adaptarse a su entorno y enfrentar las amenazas depredadoras, los organismos deben equilibrar sus presupuestos energéticos a medida que invierten en diferentes aspectos de su historia de vida, como el crecimiento, la alimentación, el apareamiento, la socialización o la modificación de su hábitat. Las hipótesis planteadas en la ecología del comportamiento generalmente se basan en principios adaptativos de conservación, optimización o eficiencia. [33] [112] [127] Por ejemplo, "[l]a hipótesis de evitación de depredadores sensible a la amenaza predice que las presas deberían evaluar el grado de amenaza planteado por diferentes depredadores y adaptar su comportamiento de acuerdo con los niveles actuales de riesgo" [128] o "[l]a distancia óptima de inicio del vuelo ocurre donde se maximiza la aptitud post-encuentro esperada, lo que depende de la aptitud inicial de la presa, los beneficios obtenibles al no huir, los costos energéticos de escape y la pérdida de aptitud esperada debido al riesgo de depredación". [129]
En la ecología del comportamiento animal se observan exhibiciones y posturas sexuales elaboradas . Las aves del paraíso , por ejemplo, cantan y exhiben adornos elaborados durante el cortejo . Estas exhibiciones tienen un doble propósito: señalar individuos sanos o bien adaptados y genes deseables. Las exhibiciones son impulsadas por la selección sexual como un anuncio de la calidad de los rasgos entre los pretendientes . [130]
La ecología cognitiva integra teorías y observaciones de la ecología evolutiva y la neurobiología , principalmente la ciencia cognitiva , para entender el efecto que la interacción animal con su hábitat tiene sobre sus sistemas cognitivos y cómo esos sistemas restringen el comportamiento dentro de un marco ecológico y evolutivo. [131] "Hasta hace poco, sin embargo, los científicos cognitivos no han prestado suficiente atención al hecho fundamental de que los rasgos cognitivos evolucionaron bajo entornos naturales particulares. Con la consideración de la presión de selección sobre la cognición, la ecología cognitiva puede aportar coherencia intelectual al estudio multidisciplinario de la cognición". [132] [133] Como un estudio que involucra el "acoplamiento" o interacciones entre el organismo y el medio ambiente, la ecología cognitiva está estrechamente relacionada con el enactivismo , [131] un campo basado en la visión de que "...debemos ver al organismo y al medio ambiente como unidos en una especificación y selección recíprocas...". [134]
Los comportamientos socioecológicos son notables en los insectos sociales , los mohos mucilaginosos , las arañas sociales , la sociedad humana y las ratas topo desnudas donde ha evolucionado el eusocialismo . Los comportamientos sociales incluyen comportamientos recíprocamente beneficiosos entre parientes y compañeros de nido [119] [124] [135] y evolucionan a partir de la selección de parentesco y grupo. La selección de parentesco explica el altruismo a través de relaciones genéticas, por las cuales un comportamiento altruista que conduce a la muerte es recompensado por la supervivencia de copias genéticas distribuidas entre los parientes supervivientes. Los insectos sociales, incluidas las hormigas , las abejas y las avispas , son los más estudiados por este tipo de relación porque los zánganos machos son clones que comparten la misma composición genética que todos los demás machos de la colonia. [124] Por el contrario, los seleccionistas de grupo encuentran ejemplos de altruismo entre parientes no genéticos y lo explican a través de la selección que actúa sobre el grupo; por lo que se vuelve selectivamente ventajoso para los grupos si sus miembros expresan comportamientos altruistas entre sí. Los grupos con miembros predominantemente altruistas sobreviven mejor que los grupos con miembros predominantemente egoístas. [124] [136]
Las interacciones ecológicas se pueden clasificar ampliamente en una relación de anfitrión y una relación de asociado. Un anfitrión es cualquier entidad que alberga a otra que se llama asociado. [137] Las relaciones entre especies que son mutua o recíprocamente beneficiosas se denominan mutualismos . Los ejemplos de mutualismo incluyen hormigas cultivadoras de hongos que emplean simbiosis agrícola, bacterias que viven en los intestinos de insectos y otros organismos, el complejo de polinización de la avispa de los higos y la polilla de la yuca , líquenes con hongos y algas fotosintéticas , y corales con algas fotosintéticas. [138] [139] Si existe una conexión física entre anfitrión y asociado, la relación se llama simbiosis . Aproximadamente el 60% de todas las plantas, por ejemplo, tienen una relación simbiótica con hongos micorrízicos arbusculares que viven en sus raíces formando una red de intercambio de carbohidratos por nutrientes minerales . [140]
Los mutualismos indirectos ocurren cuando los organismos viven separados. Por ejemplo, los árboles que viven en las regiones ecuatoriales del planeta suministran oxígeno a la atmósfera que sustenta a las especies que viven en regiones polares distantes del planeta. Esta relación se llama comensalismo porque muchos otros reciben los beneficios del aire limpio sin costo o daño para los árboles que suministran el oxígeno. [5] [141] Si el asociado se beneficia mientras que el anfitrión sufre, la relación se llama parasitismo . Aunque los parásitos imponen un costo a su anfitrión (por ejemplo, a través del daño a sus órganos reproductivos o propágulos , negando los servicios de un socio beneficioso), su efecto neto sobre la aptitud del anfitrión no es necesariamente negativo y, por lo tanto, se vuelve difícil de pronosticar. [142] [143] La coevolución también está impulsada por la competencia entre especies o entre miembros de la misma especie bajo la bandera del antagonismo recíproco, como las gramíneas que compiten por el espacio de crecimiento. La hipótesis de la Reina Roja , por ejemplo, postula que los parásitos rastrean y se especializan en los sistemas de defensa genéticos localmente comunes de su anfitrión que impulsan la evolución de la reproducción sexual para diversificar la constitución genética de las poblaciones que responden a la presión antagónica. [144] [145]
La biogeografía (una amalgama de biología y geografía ) es el estudio comparativo de la distribución geográfica de los organismos y la correspondiente evolución de sus rasgos en el espacio y el tiempo. [146] La revista Journal of Biogeography se estableció en 1974. [147] La biogeografía y la ecología comparten muchas de sus raíces disciplinarias. Por ejemplo, la teoría de la biogeografía de islas , publicada por Robert MacArthur y Edward O. Wilson en 1967 [148] se considera uno de los fundamentos de la teoría ecológica. [149]
La biogeografía tiene una larga historia en las ciencias naturales en lo que respecta a la distribución espacial de plantas y animales. La ecología y la evolución proporcionan el contexto explicativo para los estudios biogeográficos. [146] Los patrones biogeográficos son el resultado de procesos ecológicos que influyen en las distribuciones de rango, como la migración y la dispersión . [149] y de procesos históricos que dividen poblaciones o especies en diferentes áreas. Los procesos biogeográficos que resultan en la división natural de las especies explican gran parte de la distribución moderna de la biota de la Tierra. La división de linajes en una especie se llama biogeografía vicarianza y es una subdisciplina de la biogeografía. [150] También existen aplicaciones prácticas en el campo de la biogeografía relacionadas con los sistemas y procesos ecológicos. Por ejemplo, el rango y la distribución de la biodiversidad y las especies invasoras en respuesta al cambio climático es una preocupación seria y un área activa de investigación en el contexto del calentamiento global . [151] [152]
Un concepto de ecología de poblaciones es la teoría de selección r/K, [D] uno de los primeros modelos predictivos en ecología utilizados para explicar la evolución de la historia de vida . La premisa detrás del modelo de selección r/K es que las presiones de selección natural cambian según la densidad de población . Por ejemplo, cuando una isla es colonizada por primera vez, la densidad de individuos es baja. El aumento inicial en el tamaño de la población no está limitado por la competencia, dejando una abundancia de recursos disponibles para un rápido crecimiento de la población. Estas primeras fases del crecimiento de la población experimentan fuerzas de selección natural independientes de la densidad , lo que se llama r -selección. A medida que la población se vuelve más poblada, se acerca a la capacidad de carga de la isla, lo que obliga a los individuos a competir más intensamente por menos recursos disponibles. En condiciones de hacinamiento, la población experimenta fuerzas de selección natural dependientes de la densidad, llamadas K -selección. [153]
En el modelo de selección r/K , la primera variable r es la tasa intrínseca de aumento natural del tamaño de la población y la segunda variable K es la capacidad de carga de una población. [33] Diferentes especies desarrollan diferentes estrategias de historia de vida que abarcan un continuo entre estas dos fuerzas selectivas. Una especie r -seleccionada es aquella que tiene altas tasas de natalidad, bajos niveles de inversión parental y altas tasas de mortalidad antes de que los individuos alcancen la madurez. La evolución favorece altas tasas de fecundidad en especies r -seleccionadas. Muchos tipos de insectos y especies invasoras exhiben características r -seleccionadas . En contraste, una especie K -seleccionada tiene bajas tasas de fecundidad, altos niveles de inversión parental en las crías y bajas tasas de mortalidad a medida que los individuos maduran. Los humanos y los elefantes son ejemplos de especies que exhiben características K -seleccionadas, incluyendo la longevidad y la eficiencia en la conversión de más recursos en menos crías. [148] [154]
La importante relación entre la ecología y la herencia genética es anterior a las técnicas modernas de análisis molecular. La investigación ecológica molecular se hizo más factible con el desarrollo de tecnologías genéticas rápidas y accesibles, como la reacción en cadena de la polimerasa (PCR) . El auge de las tecnologías moleculares y la afluencia de preguntas de investigación en este nuevo campo ecológico dieron como resultado la publicación de Molecular Ecology en 1992. [155] La ecología molecular utiliza varias técnicas analíticas para estudiar los genes en un contexto evolutivo y ecológico. En 1994, John Avise también jugó un papel destacado en esta área de la ciencia con la publicación de su libro Molecular Markers, Natural History and Evolution . [156] Las tecnologías más nuevas abrieron una ola de análisis genético en organismos que alguna vez fueron difíciles de estudiar desde un punto de vista ecológico o evolutivo, como bacterias, hongos y nematodos . La ecología molecular engendró un nuevo paradigma de investigación para investigar cuestiones ecológicas que de otro modo se considerarían intratables. Las investigaciones moleculares revelaron detalles previamente ocultos en las pequeñas complejidades de la naturaleza y mejoraron la resolución de preguntas de sondeo sobre la ecología conductual y biogeográfica. [156] Por ejemplo, la ecología molecular reveló un comportamiento sexual promiscuo y múltiples parejas masculinas en golondrinas de árboles que anteriormente se pensaba que eran socialmente monógamas . [157] En un contexto biogeográfico, la unión entre la genética, la ecología y la evolución resultó en una nueva subdisciplina llamada filogeografía . [158]
La historia de la vida en la Tierra ha sido una historia de interacción entre los seres vivos y su entorno. En gran medida, la forma física y los hábitos de la vegetación y la vida animal de la Tierra han sido moldeados por el medio ambiente. Considerando todo el lapso de tiempo terrestre, el efecto opuesto, en el que la vida modifica realmente su entorno, ha sido relativamente leve. Sólo en el lapso de tiempo representado por el presente siglo una especie, el hombre, ha adquirido un poder significativo para alterar la naturaleza de su mundo.
Rachel Carson, “Primavera silenciosa” [159]
La ecología es tanto una ciencia biológica como una ciencia humana. [5] La ecología humana es una investigación interdisciplinaria sobre la ecología de nuestra especie. "La ecología humana puede definirse: (1) desde un punto de vista bioecológico como el estudio del hombre como el dominante ecológico en las comunidades y sistemas de plantas y animales; (2) desde un punto de vista bioecológico como simplemente otro animal que afecta y es afectado por su entorno físico; y (3) como un ser humano, de alguna manera diferente de la vida animal en general, que interactúa con entornos físicos y modificados de una manera distintiva y creativa. Una ecología humana verdaderamente interdisciplinaria probablemente se ocupará de las tres". [160] : 3 El término se introdujo formalmente en 1921, pero muchos sociólogos, geógrafos, psicólogos y otras disciplinas se interesaron por las relaciones humanas con los sistemas naturales siglos antes, especialmente a fines del siglo XIX. [160] [161]
Las complejidades ecológicas que los seres humanos están enfrentando a través de la transformación tecnológica del bioma planetario han traído el Antropoceno . El conjunto único de circunstancias ha generado la necesidad de una nueva ciencia unificadora llamada sistemas humanos y naturales acoplados que se basa en, pero va más allá del campo de la ecología humana. [107] Los ecosistemas se vinculan con las sociedades humanas a través de las funciones críticas y abarcadoras de soporte de vida que sostienen. En reconocimiento de estas funciones y la incapacidad de los métodos tradicionales de valoración económica para ver el valor de los ecosistemas, ha habido un aumento del interés en el capital social - natural , que proporciona los medios para poner un valor al stock y uso de información y materiales derivados de los bienes y servicios de los ecosistemas . Los ecosistemas producen, regulan, mantienen y suministran servicios de necesidad crítica y beneficiosos para la salud humana (cognitiva y fisiológica), las economías, e incluso proporcionan una función de información o referencia como una biblioteca viviente que da oportunidades para la ciencia y el desarrollo cognitivo en los niños involucrados en la complejidad del mundo natural. Los ecosistemas se relacionan de manera importante con la ecología humana, ya que son la base fundamental de la economía global, ya que cada mercancía y la capacidad de intercambio provienen en última instancia de los ecosistemas de la Tierra. [107] [162] [163] [164]
La gestión de los ecosistemas no es sólo una cuestión de ciencia ni es simplemente una extensión de la gestión tradicional de los recursos; ofrece un replanteamiento fundamental de cómo los seres humanos pueden trabajar con la naturaleza.
Grumbine (1994) [165] : 27
La ecología es una ciencia empleada en la restauración, reparando sitios perturbados mediante la intervención humana, en la gestión de recursos naturales y en evaluaciones de impacto ambiental . Edward O. Wilson predijo en 1992 que el siglo XXI "será la era de la restauración en ecología". [166] La ciencia ecológica ha experimentado un auge en la inversión industrial de restauración de ecosistemas y sus procesos en sitios abandonados después de una perturbación. Los administradores de recursos naturales, en silvicultura , por ejemplo, emplean ecólogos para desarrollar, adaptar e implementar métodos basados en ecosistemas en las fases de planificación, operación y restauración del uso de la tierra. Otro ejemplo de conservación se ve en la costa este de los Estados Unidos en Boston, MA. La ciudad de Boston implementó la Ordenanza de Humedales, [167] mejorando la estabilidad de sus entornos de humedales mediante la implementación de enmiendas del suelo que mejorarán el almacenamiento y el flujo de agua subterránea, y la poda o eliminación de vegetación que podría dañar la calidad del agua. [ cita requerida ] La ciencia ecológica se utiliza en los métodos de cosecha sostenible, gestión de enfermedades e incendios, en la gestión de poblaciones de peces, para integrar el uso de la tierra con áreas y comunidades protegidas, y la conservación en paisajes geopolíticos complejos. [22] [165] [168] [169]
El ambiente de los ecosistemas incluye tanto parámetros físicos como atributos bióticos. Está interconectado dinámicamente y contiene recursos para los organismos en cualquier momento a lo largo de su ciclo de vida. [5] [170] Al igual que la ecología, el término ambiente tiene diferentes significados conceptuales y se superpone con el concepto de naturaleza. El ambiente "incluye el mundo físico, el mundo social de las relaciones humanas y el mundo construido de la creación humana". [171] : 62 El ambiente físico es externo al nivel de organización biológica bajo investigación, incluyendo factores abióticos como la temperatura, la radiación, la luz, la química, el clima y la geología. El ambiente biótico incluye genes, células, organismos, miembros de la misma especie ( conespecíficos ) y otras especies que comparten un hábitat. [172]
Sin embargo, la distinción entre ambientes externos e internos es una abstracción que analiza la vida y el medio ambiente en unidades o hechos que son inseparables en la realidad. Existe una interpenetración de causa y efecto entre el medio ambiente y la vida. Las leyes de la termodinámica , por ejemplo, se aplican a la ecología por medio de su estado físico. Con una comprensión de los principios metabólicos y termodinámicos, se puede rastrear una contabilidad completa del flujo de energía y material a través de un ecosistema. De esta manera, las relaciones ambientales y ecológicas se estudian a través de referencia a partes materiales conceptualmente manejables y aisladas . Sin embargo, después de que los componentes ambientales efectivos se comprenden a través de la referencia a sus causas, se vinculan conceptualmente nuevamente como un todo integrado, o sistema holocenótico como se lo llamó alguna vez. Esto se conoce como el enfoque dialéctico de la ecología. El enfoque dialéctico examina las partes pero integra el organismo y el medio ambiente en un todo dinámico (o umwelt ). El cambio en un factor ecológico o ambiental puede afectar simultáneamente el estado dinámico de todo un ecosistema. [36] [173]
Una perturbación es cualquier proceso que cambia o elimina biomasa de una comunidad, como un incendio, una inundación, una sequía o la depredación. [174] Las perturbaciones son a la vez causa y producto de fluctuaciones naturales dentro de una comunidad ecológica. [175] [174] [176] [177] La biodiversidad puede proteger a los ecosistemas de las perturbaciones. [177]
El efecto de una perturbación es a menudo difícil de predecir, pero hay numerosos ejemplos en los que una sola especie puede perturbar masivamente un ecosistema. Por ejemplo, un protozoo unicelular ha sido capaz de matar hasta el 100% de los erizos de mar en algunos arrecifes de coral en el Mar Rojo y el Océano Índico Occidental . Los erizos de mar permiten que los complejos ecosistemas de arrecifes prosperen al comer algas que de otro modo inhibirían el crecimiento de los corales. [178] De manera similar, las especies invasoras pueden causar estragos en los ecosistemas. Por ejemplo, las pitones birmanas invasoras han causado una disminución del 98% de los pequeños mamíferos en los Everglades . [179]
El metabolismo –la velocidad a la que la energía y los recursos materiales se absorben del entorno, se transforman dentro de un organismo y se asignan al mantenimiento, el crecimiento y la reproducción– es un rasgo fisiológico fundamental.
Ernest y otros [180] : 991
La Tierra se formó hace aproximadamente 4.500 millones de años. [181] A medida que se enfrió y se formaron una corteza y océanos, su atmósfera pasó de estar dominada por hidrógeno a estar compuesta principalmente de metano y amoníaco . Durante los siguientes mil millones de años, la actividad metabólica de la vida transformó la atmósfera en una mezcla de dióxido de carbono , nitrógeno y vapor de agua. Estos gases cambiaron la forma en que la luz del sol llegaba a la superficie de la Tierra y los efectos de invernadero atrapaban el calor. Había fuentes sin explotar de energía libre dentro de la mezcla de gases reductores y oxidantes que prepararon el escenario para que evolucionaran los ecosistemas primitivos y, a su vez, la atmósfera también evolucionó. [182]
A lo largo de la historia, la atmósfera de la Tierra y los ciclos biogeoquímicos han estado en un equilibrio dinámico con los ecosistemas planetarios. La historia se caracteriza por períodos de transformación significativa seguidos de millones de años de estabilidad. [183] La evolución de los primeros organismos, probablemente microbios metanógenos anaeróbicos , comenzó el proceso al convertir el hidrógeno atmosférico en metano (4H 2 + CO 2 → CH 4 + 2H 2 O). La fotosíntesis anoxigénica redujo las concentraciones de hidrógeno y aumentó el metano atmosférico , al convertir el sulfuro de hidrógeno en agua u otros compuestos de azufre (por ejemplo, 2H 2 S + CO 2 + h v → CH 2 O + H 2 O + 2S). Las primeras formas de fermentación también aumentaron los niveles de metano atmosférico. La transición a una atmósfera predominantemente de oxígeno (la Gran Oxidación ) no comenzó hasta hace aproximadamente 2.4–2.3 mil millones de años, pero los procesos fotosintéticos comenzaron entre 0.3 y 1 mil millones de años antes. [183] [184]
La biología de la vida opera dentro de un cierto rango de temperaturas. El calor es una forma de energía que regula la temperatura. El calor afecta las tasas de crecimiento, la actividad, el comportamiento y la producción primaria . La temperatura depende en gran medida de la incidencia de la radiación solar . La variación espacial latitudinal y longitudinal de la temperatura afecta en gran medida a los climas y, en consecuencia, a la distribución de la biodiversidad y los niveles de producción primaria en diferentes ecosistemas o biomas en todo el planeta. El calor y la temperatura se relacionan de manera importante con la actividad metabólica. Los poiquilotermos , por ejemplo, tienen una temperatura corporal que está en gran medida regulada y depende de la temperatura del entorno externo. Por el contrario, los homeotermos regulan su temperatura corporal interna gastando energía metabólica . [112] [113] [173]
Existe una relación entre la luz, la producción primaria y los presupuestos energéticos ecológicos . La luz solar es la principal fuente de energía para los ecosistemas del planeta. La luz está compuesta de energía electromagnética de diferentes longitudes de onda . La energía radiante del sol genera calor, proporciona fotones de luz medidos como energía activa en las reacciones químicas de la vida y también actúa como catalizador de la mutación genética . [112] [113] [173] Las plantas, las algas y algunas bacterias absorben la luz y asimilan la energía a través de la fotosíntesis . Los organismos capaces de asimilar energía mediante la fotosíntesis o mediante la fijación inorgánica de H 2 S son autótrofos . Los autótrofos, responsables de la producción primaria, asimilan la energía de la luz que se almacena metabólicamente como energía potencial en forma de enlaces entálpicos bioquímicos . [112] [113] [173]
Las condiciones de los humedales, como aguas poco profundas, alta productividad vegetal y sustratos anaeróbicos, proporcionan un entorno adecuado para importantes procesos físicos, biológicos y químicos. Debido a estos procesos, los humedales desempeñan un papel vital en los ciclos globales de nutrientes y elementos.
Cronk y Fennessy (2001) [185] : 29
La difusión del dióxido de carbono y el oxígeno es aproximadamente 10.000 veces más lenta en el agua que en el aire. Cuando los suelos se inundan, pierden oxígeno rápidamente, volviéndose hipóxicos (un ambiente con una concentración de O 2 inferior a 2 mg/litro) y finalmente completamente anóxicos donde las bacterias anaeróbicas prosperan entre las raíces. El agua también influye en la intensidad y la composición espectral de la luz, ya que se refleja en la superficie del agua y las partículas sumergidas. [185] Las plantas acuáticas exhiben una amplia variedad de adaptaciones morfológicas y fisiológicas que les permiten sobrevivir, competir y diversificarse en estos ambientes. Por ejemplo, sus raíces y tallos contienen grandes espacios de aire ( aerénquima ) que regulan el transporte eficiente de gases (por ejemplo, CO 2 y O 2 ) utilizados en la respiración y la fotosíntesis. Las plantas de agua salada ( halófitas ) tienen adaptaciones especializadas adicionales, como el desarrollo de órganos especiales para desprenderse de la sal y osmorregular sus concentraciones internas de sal (NaCl), para vivir en ambientes estuarinos , salobres u oceánicos . Los microorganismos anaeróbicos del suelo en ambientes acuáticos utilizan nitrato , iones de manganeso , iones férricos , sulfato , dióxido de carbono y algunos compuestos orgánicos ; otros microorganismos son anaerobios facultativos y utilizan oxígeno durante la respiración cuando el suelo se vuelve más seco. La actividad de los microorganismos del suelo y la química del agua reducen los potenciales de oxidación-reducción del agua. El dióxido de carbono, por ejemplo, se reduce a metano (CH 4 ) por bacterias metanogénicas. [185] La fisiología de los peces también está especialmente adaptada para compensar los niveles de sal ambiental a través de la osmorregulación. Sus branquias forman gradientes electroquímicos que median la excreción de sal en agua salada y la absorción en agua dulce. [186]
La forma y la energía de la tierra se ven afectadas significativamente por las fuerzas gravitacionales. A gran escala, la distribución de las fuerzas gravitacionales en la tierra es desigual e influye en la forma y el movimiento de las placas tectónicas , así como en los procesos geomorfológicos como la orogenia y la erosión . Estas fuerzas gobiernan muchas de las propiedades geofísicas y distribuciones de los biomas ecológicos en toda la Tierra. A escala de los organismos, las fuerzas gravitacionales proporcionan señales direccionales para el crecimiento de plantas y hongos ( gravitropismo ), señales de orientación para las migraciones de animales e influyen en la biomecánica y el tamaño de los animales. [112] Los rasgos ecológicos, como la asignación de biomasa en los árboles durante el crecimiento, están sujetos a fallas mecánicas ya que las fuerzas gravitacionales influyen en la posición y la estructura de las ramas y las hojas. [187] Los sistemas cardiovasculares de los animales están adaptados funcionalmente para superar la presión y las fuerzas gravitacionales que cambian según las características de los organismos (por ejemplo, altura, tamaño, forma), su comportamiento (por ejemplo, bucear, correr, volar) y el hábitat ocupado (por ejemplo, agua, desiertos cálidos, tundra fría). [188]
La presión climática y osmótica impone restricciones fisiológicas a los organismos, especialmente a aquellos que vuelan y respiran a grandes altitudes o se sumergen en las profundidades del océano. [189] Estas restricciones influyen en los límites verticales de los ecosistemas en la biosfera, ya que los organismos son fisiológicamente sensibles y están adaptados a las diferencias de presión atmosférica y osmótica del agua. [112] Por ejemplo, los niveles de oxígeno disminuyen con la disminución de la presión y son un factor limitante para la vida a mayores altitudes. [190] El transporte de agua por las plantas es otro proceso ecofisiológico importante afectado por los gradientes de presión osmótica. [191] [192] [193] La presión del agua en las profundidades de los océanos requiere que los organismos se adapten a estas condiciones. Por ejemplo, los animales buceadores como las ballenas , los delfines y las focas están especialmente adaptados para lidiar con los cambios en el sonido debido a las diferencias de presión del agua. [194] Las diferencias entre las especies de mixinos proporcionan otro ejemplo de adaptación a la presión de las profundidades marinas a través de adaptaciones proteicas especializadas. [195]
Las fuerzas turbulentas en el aire y el agua afectan el medio ambiente y la distribución, forma y dinámica de los ecosistemas. A escala planetaria, los ecosistemas se ven afectados por los patrones de circulación de los vientos alisios globales . La energía eólica y las fuerzas turbulentas que crea pueden influir en el calor, los nutrientes y los perfiles bioquímicos de los ecosistemas. [112] Por ejemplo, el viento que corre sobre la superficie de un lago crea turbulencia, mezclando la columna de agua e influyendo en el perfil ambiental para crear zonas con capas térmicas , lo que afecta la forma en que se estructuran los peces, las algas y otras partes del ecosistema acuático . [198] [199] La velocidad del viento y la turbulencia también influyen en las tasas de evapotranspiración y los presupuestos energéticos de las plantas y los animales. [185] [200] La velocidad del viento, la temperatura y el contenido de humedad pueden variar a medida que los vientos viajan a través de diferentes características y elevaciones del terreno. Por ejemplo, los vientos del oeste entran en contacto con las montañas costeras e interiores del oeste de América del Norte para producir una sombra de lluvia en el lado de sotavento de la montaña. El aire se expande y la humedad se condensa a medida que los vientos aumentan su altitud; esto se denomina elevación orográfica y puede causar precipitaciones. Este proceso ambiental produce divisiones espaciales en la biodiversidad, ya que las especies adaptadas a condiciones más húmedas se limitan a los valles montañosos costeros y no pueden migrar a través de los ecosistemas xéricos (por ejemplo, de la cuenca del Columbia en el oeste de América del Norte) para mezclarse con linajes hermanos que están segregados en los sistemas montañosos del interior. [201] [202]
Las plantas convierten el dióxido de carbono en biomasa y emiten oxígeno a la atmósfera. Hace aproximadamente 350 millones de años (finales del período Devónico ), la fotosíntesis había elevado la concentración de oxígeno atmosférico por encima del 17%, lo que permitió que se produjera la combustión. [203] El fuego libera CO2 y convierte el combustible en cenizas y alquitrán. El fuego es un parámetro ecológico importante que plantea muchas cuestiones relacionadas con su control y supresión. [204] Si bien la cuestión del fuego en relación con la ecología y las plantas se reconoce desde hace mucho tiempo, [205] Charles Cooper llamó la atención sobre la cuestión de los incendios forestales en relación con la ecología de la supresión y la gestión de los incendios forestales en la década de 1960. [206] [207]
Los nativos norteamericanos estuvieron entre los primeros en influir en los regímenes de incendios al controlar su propagación cerca de sus hogares o al encender fuegos para estimular la producción de alimentos herbáceos y materiales de cestería. [208] El fuego crea una edad de ecosistema heterogénea y una estructura de dosel, y el suministro de nutrientes del suelo alterado y la estructura de dosel despejado abren nuevos nichos ecológicos para el establecimiento de plántulas. [209] [210] La mayoría de los ecosistemas están adaptados a los ciclos naturales de incendios. Las plantas, por ejemplo, están equipadas con una variedad de adaptaciones para lidiar con los incendios forestales. Algunas especies (por ejemplo, Pinus halepensis ) no pueden germinar hasta que sus semillas hayan sobrevivido a un incendio o hayan estado expuestas a ciertos compuestos del humo. La germinación de semillas desencadenada por el medio ambiente se llama serotinía . [211] [212] El fuego juega un papel importante en la persistencia y resiliencia de los ecosistemas. [176]
El suelo es la capa superior viva de suciedad mineral y orgánica que cubre la superficie del planeta. Es el principal centro organizador de la mayoría de las funciones de los ecosistemas y tiene una importancia crítica en la ciencia agrícola y la ecología. La descomposición de la materia orgánica muerta (por ejemplo, las hojas del suelo del bosque) da como resultado suelos que contienen minerales y nutrientes que alimentan la producción vegetal. El conjunto de los ecosistemas de suelo del planeta se denomina pedosfera , donde una gran biomasa de la biodiversidad de la Tierra se organiza en niveles tróficos. Los invertebrados que se alimentan y trituran hojas más grandes, por ejemplo, crean trozos más pequeños para los organismos más pequeños en la cadena alimentaria. En conjunto, estos organismos son los detritívoros que regulan la formación del suelo. [213] [214] Las raíces de los árboles, los hongos, las bacterias, los gusanos, las hormigas, los escarabajos, los ciempiés, las arañas, los mamíferos, las aves, los reptiles, los anfibios y otras criaturas menos conocidas trabajan para crear la red trófica de la vida en los ecosistemas del suelo. Los suelos forman fenotipos compuestos donde la materia inorgánica se envuelve en la fisiología de una comunidad completa. A medida que los organismos se alimentan y migran a través de los suelos, desplazan físicamente los materiales, un proceso ecológico llamado bioturbación . Esto airea los suelos y estimula el crecimiento y la producción heterotrófica. Los microorganismos del suelo se ven influenciados por la dinámica trófica del ecosistema y se retroalimentan a ella. No se puede discernir un único eje de causalidad que separe los sistemas biológicos de los geomorfológicos en los suelos. [215] [216] Los estudios paleoecológicos de los suelos sitúan el origen de la bioturbación en una época anterior al período Cámbrico. Otros eventos, como la evolución de los árboles y la colonización de la tierra en el período Devónico, desempeñaron un papel importante en el desarrollo temprano del trofismo ecológico en los suelos. [214] [217] [218]
Los ecólogos estudian y miden los presupuestos de nutrientes para entender cómo se regulan, fluyen y reciclan estos materiales a través del medio ambiente. [112] [113] [173] Esta investigación ha llevado a comprender que existe una retroalimentación global entre los ecosistemas y los parámetros físicos de este planeta, incluidos los minerales, el suelo, el pH, los iones, el agua y los gases atmosféricos. Seis elementos principales ( hidrógeno , carbono , nitrógeno , oxígeno , azufre y fósforo ; H, C, N, O, S y P) forman la constitución de todas las macromoléculas biológicas y alimentan los procesos geoquímicos de la Tierra. Desde la escala más pequeña de la biología, el efecto combinado de miles de millones y miles de millones de procesos ecológicos amplifican y, en última instancia, regulan los ciclos biogeoquímicos de la Tierra. Comprender las relaciones y los ciclos mediados entre estos elementos y sus vías ecológicas tiene una importancia significativa para comprender la biogeoquímica global. [219]
La ecología de los presupuestos globales de carbono ofrece un ejemplo del vínculo entre la biodiversidad y la biogeoquímica. Se estima que los océanos de la Tierra contienen 40.000 gigatoneladas (Gt) de carbono, que la vegetación y el suelo contienen 2070 Gt y que las emisiones de combustibles fósiles son de 6,3 Gt de carbono por año. [220] Ha habido importantes reestructuraciones en estos presupuestos globales de carbono durante la historia de la Tierra, reguladas en gran medida por la ecología de la tierra. Por ejemplo, a través de la desgasificación volcánica de principios y mediados del Eoceno , la oxidación del metano almacenado en humedales y los gases del fondo marino aumentaron las concentraciones atmosféricas de CO 2 (dióxido de carbono) a niveles tan altos como 3500 ppm . [221]
En el Oligoceno , hace veinticinco a treinta y dos millones de años, hubo otra reestructuración significativa del ciclo global del carbono cuando las gramíneas desarrollaron un nuevo mecanismo de fotosíntesis, la fotosíntesis C 4 , y expandieron sus áreas de distribución. Esta nueva vía evolucionó en respuesta a la caída de las concentraciones atmosféricas de CO 2 por debajo de 550 ppm. [222] La abundancia y distribución relativas de la biodiversidad alteran la dinámica entre los organismos y su entorno de tal manera que los ecosistemas pueden ser tanto causa como efecto en relación con el cambio climático. Las modificaciones impulsadas por el hombre a los ecosistemas del planeta (por ejemplo, perturbaciones, pérdida de biodiversidad , agricultura) contribuyen al aumento de los niveles atmosféricos de gases de efecto invernadero. Se proyecta que la transformación del ciclo global del carbono en el próximo siglo aumentará las temperaturas planetarias, conducirá a fluctuaciones más extremas en el clima, alterará la distribución de las especies y aumentará las tasas de extinción. El efecto del calentamiento global ya se está registrando en el derretimiento de los glaciares, el derretimiento de los casquetes polares de las montañas y el aumento del nivel del mar. En consecuencia, la distribución de las especies está cambiando a lo largo de las costas y en las áreas continentales donde los patrones de migración y las zonas de reproducción están siguiendo los cambios predominantes en el clima. Grandes secciones de permafrost también se están derritiendo para crear un nuevo mosaico de áreas inundadas que tienen mayores tasas de actividad de descomposición del suelo que aumentan las emisiones de metano (CH 4 ). Existe preocupación por el aumento del metano atmosférico en el contexto del ciclo global del carbono, porque el metano es un gas de efecto invernadero que es 23 veces más eficaz en la absorción de la radiación de onda larga que el CO 2 en una escala de tiempo de 100 años. [223] Por lo tanto, existe una relación entre el calentamiento global, la descomposición y la respiración en los suelos y humedales que produce importantes retroalimentaciones climáticas y ciclos biogeoquímicos alterados a nivel global. [107] [224] [225] [226] [227] [228]
Por ecología entendemos toda la ciencia de las relaciones del organismo con el medio ambiente, incluidas, en sentido amplio, todas las "condiciones de existencia". Así, la teoría de la evolución explica las relaciones de mantenimiento de los organismos de manera mecanicista como consecuencias necesarias de causas efectivas, y constituye así la base monista de la ecología.
Ernst Haeckel (1866) [229] : 140 [B]
La ecología tiene un origen complejo, debido en gran parte a su naturaleza interdisciplinaria. [230] Los filósofos griegos antiguos como Hipócrates y Aristóteles fueron de los primeros en registrar observaciones sobre la historia natural. Sin embargo, veían la vida en términos de esencialismo , donde las especies se conceptualizaban como cosas estáticas e inmutables, mientras que las variedades se consideraban aberraciones de un tipo idealizado . Esto contrasta con la comprensión moderna de la teoría ecológica , donde las variedades se consideran los fenómenos reales de interés y tienen un papel en los orígenes de las adaptaciones por medio de la selección natural . [5] [231] [232] Las primeras concepciones de la ecología, como el equilibrio y la regulación en la naturaleza, se remontan a Heródoto (fallecido c . 425 a. C.), quien describió uno de los primeros relatos de mutualismo en su observación de la "odontología natural". Observó que los cocodrilos del Nilo abrían la boca para dar a los playeros un acceso seguro para arrancar sanguijuelas , lo que proporcionaba nutrición al playero e higiene bucal al cocodrilo. [230] Aristóteles ejerció una influencia temprana en el desarrollo filosófico de la ecología. Él y su alumno Teofrasto realizaron extensas observaciones sobre las migraciones de plantas y animales, la biogeografía, la fisiología y su comportamiento, dando lugar a un análogo temprano del concepto moderno de nicho ecológico. [233] [234]
En ningún otro lugar se puede ver ilustrado con mayor claridad lo que puede llamarse la sensibilidad de un complejo orgánico de este tipo, expresada por el hecho de que todo lo que afecta a cualquier especie que pertenece a él debe tener rápidamente su influencia de algún tipo sobre el conjunto entero. Así se verá obligado a ver la imposibilidad de estudiar cualquier forma completamente sin relación con las otras formas, y la necesidad de realizar un estudio exhaustivo del conjunto como condición para una comprensión satisfactoria de cualquier parte.
Stephen Forbes (1887) [235]
Los conceptos ecológicos como las cadenas alimentarias, la regulación de la población y la productividad se desarrollaron por primera vez en el siglo XVIII, a través de las obras publicadas del microscopista Antonie van Leeuwenhoek (1632-1723) y el botánico Richard Bradley (1688?-1732). [5] El biogeógrafo Alexander von Humboldt (1769-1859) fue un pionero en el pensamiento ecológico y fue uno de los primeros en reconocer los gradientes ecológicos, donde las especies se reemplazan o alteran en forma a lo largo de gradientes ambientales , como una clina que se forma a lo largo de un aumento en la elevación. Humboldt se inspiró en Isaac Newton , ya que desarrolló una forma de "física terrestre". Al estilo newtoniano, aportó una exactitud científica para la medición a la historia natural e incluso aludió a conceptos que son la base de una ley ecológica moderna sobre las relaciones entre especies y áreas. [236] [237] [238] Los historiadores naturales, como Humboldt, James Hutton y Jean-Baptiste Lamarck (entre otros) sentaron las bases de las ciencias ecológicas modernas. [239] El término "ecología" ( en alemán : Oekologie, Ökologie ) fue acuñado por Ernst Haeckel en su libro Generelle Morphologie der Organismen (1866). [240] Haeckel fue un zoólogo, artista, escritor y, más tarde en su vida, profesor de anatomía comparada. [229] [241]
Las opiniones difieren sobre quién fue el fundador de la teoría ecológica moderna. Algunos señalan la definición de Haeckel como el comienzo; [242] otros dicen que fue Eugenius Warming con la escritura de Ecología de las plantas: Una introducción al estudio de las comunidades vegetales (1895), [243] o los principios de Carl Linnaeus sobre la economía de la naturaleza que maduraron a principios del siglo XVIII. [244] [245] Linnaeus fundó una rama temprana de la ecología que llamó la economía de la naturaleza. [244] Sus obras influyeron en Charles Darwin, quien adoptó la frase de Linnaeus sobre la economía o política de la naturaleza en El origen de las especies . [229] Linnaeus fue el primero en enmarcar el equilibrio de la naturaleza como una hipótesis comprobable. Haeckel, que admiraba el trabajo de Darwin, definió la ecología en referencia a la economía de la naturaleza, lo que ha llevado a algunos a cuestionar si la ecología y la economía de la naturaleza son sinónimos. [245]
Desde Aristóteles hasta Darwin, el mundo natural se consideraba predominantemente estático e inmutable. Antes de El origen de las especies , había poca apreciación o comprensión de las relaciones dinámicas y recíprocas entre los organismos, sus adaptaciones y el medio ambiente. [231] Una excepción es la publicación de 1789 Natural History of Selborne de Gilbert White (1720-1793), considerada por algunos como uno de los primeros textos sobre ecología. [248] Si bien Charles Darwin es conocido principalmente por su tratado sobre la evolución, [249] fue uno de los fundadores de la ecología del suelo , [250] e hizo mención del primer experimento ecológico en El origen de las especies . [246] La teoría evolutiva cambió la forma en que los investigadores abordaban las ciencias ecológicas. [251]
La ecología moderna es una ciencia joven que atrajo la atención científica por primera vez hacia fines del siglo XIX (alrededor de la misma época en que los estudios evolutivos estaban ganando interés científico). La científica Ellen Swallow Richards adoptó el término " oecología " (que eventualmente se transformó en economía doméstica ) en los EE. UU. ya en 1892. [252]
A principios del siglo XX, la ecología pasó de ser una forma más descriptiva de historia natural a una forma más analítica de historia natural científica . [236] [239] [253] Frederic Clements publicó el primer libro estadounidense de ecología en 1905, [254] presentando la idea de las comunidades vegetales como un superorganismo . Esta publicación inició un debate entre el holismo ecológico y el individualismo que duró hasta la década de 1970. El concepto de superorganismo de Clements proponía que los ecosistemas progresan a través de etapas regulares y determinadas de desarrollo seral que son análogas a las etapas de desarrollo de un organismo. El paradigma clementsiano fue desafiado por Henry Gleason , [255] quien afirmó que las comunidades ecológicas se desarrollan a partir de la asociación única y coincidente de organismos individuales. Este cambio perceptivo volvió a poner el foco en las historias de vida de los organismos individuales y cómo esto se relaciona con el desarrollo de asociaciones comunitarias. [256]
La teoría de los superorganismos de Clements fue una aplicación exagerada de una forma idealista de holismo. [36] [109] El término "holismo" fue acuñado en 1926 por Jan Christiaan Smuts , un general sudafricano y figura histórica polarizadora que se inspiró en el concepto de superorganismo de Clements. [257] [C] Casi al mismo tiempo, Charles Elton fue pionero en el concepto de cadenas alimentarias en su libro clásico Animal Ecology . [84] Elton [84] definió las relaciones ecológicas utilizando conceptos de cadenas alimentarias, ciclos alimentarios y tamaño de los alimentos, y describió las relaciones numéricas entre diferentes grupos funcionales y su abundancia relativa. El "ciclo alimentario" de Elton fue reemplazado por "red alimentaria" en un texto ecológico posterior. [258] Alfred J. Lotka introdujo muchos conceptos teóricos aplicando principios termodinámicos a la ecología.
En 1942, Raymond Lindeman escribió un artículo fundamental sobre la dinámica trófica de la ecología, que se publicó póstumamente después de haber sido rechazado inicialmente por su énfasis teórico. La dinámica trófica se convirtió en la base de gran parte del trabajo posterior sobre el flujo de energía y material a través de los ecosistemas. Robert MacArthur avanzó la teoría matemática, las predicciones y las pruebas en ecología en la década de 1950, lo que inspiró una escuela resurgiente de ecólogos matemáticos teóricos. [239] [259] [260] La ecología también se ha desarrollado a través de contribuciones de otras naciones, incluido Vladimir Vernadsky de Rusia y su fundación del concepto de biosfera en la década de 1920 [261] y Kinji Imanishi de Japón y sus conceptos de armonía en la naturaleza y segregación de hábitats en la década de 1950. [262] El reconocimiento científico de las contribuciones a la ecología de las culturas que no hablan inglés se ve obstaculizado por las barreras del idioma y la traducción. [261]
Toda esta cadena de envenenamiento parece descansar sobre una base de diminutas plantas que deben haber sido los concentradores originales. Pero ¿qué sucede en el extremo opuesto de la cadena alimentaria, el ser humano que, probablemente ignorando toda esta secuencia de acontecimientos, ha preparado su aparejo de pesca, ha capturado una serie de peces en las aguas del lago Clear y los ha llevado a casa para freírlos para su cena?
Rachel Carson (1962) [263] : 48
La ecología surgió en interés popular y científico durante el movimiento ambientalista de los años 1960-1970 . Existen fuertes vínculos históricos y científicos entre la ecología, la gestión ambiental y la protección. [239] El énfasis histórico y los escritos naturalistas poéticos que abogan por la protección de los lugares salvajes por parte de ecologistas notables en la historia de la biología de la conservación , como Aldo Leopold y Arthur Tansley , han sido vistos como muy alejados de los centros urbanos donde, se afirma, se encuentra la concentración de la contaminación y la degradación ambiental . [239] [264] Palamar (2008) [264] señala un eclipsamiento por el ambientalismo dominante de las mujeres pioneras de principios del siglo XX que lucharon por la ecología de la salud urbana (entonces llamada euténica ) [252] y provocaron cambios en la legislación ambiental. Mujeres como Ellen Swallow Richards y Julia Lathrop , entre otras, fueron precursoras de los movimientos ambientalistas más popularizados después de los años 1950.
En 1962, el libro Primavera silenciosa de la bióloga marina y ecologista Rachel Carson ayudó a movilizar el movimiento ambientalista al alertar al público sobre los pesticidas tóxicos , como el DDT , que se bioacumulan en el medio ambiente. Carson utilizó la ciencia ecológica para vincular la liberación de toxinas ambientales con la salud humana y del ecosistema . Desde entonces, los ecologistas han trabajado para unir su comprensión de la degradación de los ecosistemas del planeta con la política ambiental, la ley, la restauración y la gestión de los recursos naturales. [22] [239] [264] [265]
La ecología cognitiva se centra en la ecología y la evolución de la "cognición", definida como los procesos neuronales relacionados con la adquisición, retención y uso de la información... deberíamos basarnos en el conocimiento ecológico y evolutivo para estudiar la cognición.