2018 en paleontología

Overview of the events of 2018 in paleontology
Lista de años en paleontología( mesa )
En paleontología de artrópodos
2015
2016
2017
2018
2019
2020
2021
En paleoentomología
2015
2016
2017
2018
2019
2020
2021
En paleomalacología
2015
2016
2017
2018
2019
2020
2021
En paleoictiología
2015
2016
2017
2018
2019
2020
2021
En paleontología de reptiles
2015
2016
2017
2018
2019
2020
2021
En la paleontología de los arcosaurios
2015
2016
2017
2018
2019
2020
2021
En paleontología de mamíferos
2015
2016
2017
2018
2019
2020
2021

La paleontología o paleontología es el estudio de las formas de vida prehistóricas en la Tierra a través del examen de fósiles de plantas y animales . [1] Esto incluye el estudio de fósiles corporales, huellas ( icnitas ), madrigueras , partes desechadas, heces fosilizadas ( coprolitos ), palinomorfos y residuos químicos . Debido a que los humanos han encontrado fósiles durante milenios, la paleontología tiene una larga historia tanto antes como después de formalizarse como ciencia . Este artículo registra descubrimientos y eventos significativos relacionados con la paleontología que ocurrieron o fueron publicados en el año 2018.

Animales extintos nombrados en 2018

Flora

Plantas

Hongos

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Chaenotheca succina [2]

noviembre esp.

Válido

Rikkinen y Schmidt en Rikkinen et al.

Eoceno ( Priaboniano )

Ámbar báltico

 Rusia
( Óblast de Kaliningrado ) 

Un hongo , una especie de Chaenotheca .

Nototiritos (?) leptostrobi [3]

noviembre esp.

Válido

Frolov en Frolov y Mashchuk

Jurásico temprano y medio

Formación Prisayanskaya

 Rusia

Un miembro de la familia Microthyriaceae .

Paleomico [4]

Gen. y sp. nov.

Válido

Poinar

Cretácico tardío ( Cenomaniano )

Ámbar de Birmania

 Birmania

Hongo descrito a partir de picnidios . El género incluye la nueva especie P. epallelus . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2020 .

Paleoambrosía [5]

Gen. y sp. nov.

Válido

Poinar y Vega

Cretácico tardío ( Cenomaniano )

Ámbar de Birmania

 Birmania

Hongo ambrosía asociado con el escarabajo Palaeotylus femoralis .
El género incluye la nueva especie P. entomophila .

Perexiflasca [6]

Gen. y sp. nov.

Válido

Krings, Harper y Taylor

Devónico ( Pragiano )

Sílex de Rhynie

 Reino Unido

Un organismo pequeño, parecido al quitridio . El género incluye una nueva especie, P. tayloriana .

Phyllopsora magna [7]

noviembre esp.

Válido

Kaasalainen, Rikkinen y Schmidt en Kaasalainen et al.

mioceno

Ámbar dominicano

 República Dominicana

Un hongo liquenizado , una especie de Phyllopsora .

Retesporangicus [8]

Gen. y sp. nov.

Válido

Strullu-Derrien en Strullu-Derrien et al.

Devónico temprano

Sílex de Rhynie

 Reino Unido

Hongo perteneciente al grupo Blastocladiomycota , de ubicación filogenética incierta dentro de este último grupo. El género incluye la nueva especie R. lyonii .

Vizellopsidites [9]

Gen. y sp. nov.

Válido

Khan, Bera y Bera

Plioceno tardío a Pleistoceno temprano

Formación Kimin

 India

Hongo fósil hallado en la superficie de fragmentos de hojas fosilizadas. El género incluye la nueva especie V. siwalika .

Windipila pumila [10]

noviembre esp.

Válido

Krings y Harper

Devónico temprano

Sílex de Rhynie

 Reino Unido

Una unidad reproductiva fúngica.

Cnidarios

Investigación

Nuevos taxones

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Acropora incógnita [14]

noviembre esp.

Válido

Berezovsky y Satanovska

Eoceno

 Ucrania

Un coral pétreo , una especie de Acropora .

Actinoseris riyadhensis [15]

noviembre esp.

Válido

Gameil, El-Sorogy y Al-Kahtany

Cretácico tardío ( Campaniano )

Formación Aruma

 Arabia Saudita

Un coral solitario . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2020.

Antheria fedorowskii [16]

noviembre esp.

Válido

Wang, Gorgij y Yao

Carbonífero tardío

 Irán

Un coral rugoso .

Antheria robusta [16]

noviembre esp.

Válido

Wang, Gorgij y Yao

Carbonífero tardío

 Irán

Un coral rugoso .

Asteroseris arabica [15]

noviembre esp.

Válido

Gameil, El-Sorogy y Al-Kahtany

Cretácico tardío ( Campaniano )

Formación Aruma

 Arabia Saudita

Un coral solitario . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2020.

Astraraeatrochus [17]

Gen. y sp. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Coral pétreo perteneciente a la superfamilia Haplaraeoidea y a la familia Astraraeidae. La especie tipo es A. bachi .

Astreoidógyra [18]

Gen. y sp. nov.

Válido

Ricci, Lathuilière y Rusciadelli

Jurásico tardío

 Italia

Miembro de la familia Rhipidogyridae . La especie tipo es A. giadae .

Aulocystis wendti [19]

noviembre esp.

Válido

Król, Zapalski y Berkowski

Devónico ( Emsiano )

Grupo Amerboh

 Marruecos

Un coral tabulado perteneciente a la familia Aulocystidae .

Bainbridgia bipartita [19]

noviembre esp.

Válido

Król, Zapalski y Berkowski

Devónico ( Emsiano )

Formación Kess-Kess

 Marruecos

Un coral tabulado perteneciente a la familia Pyrgiidae.

Battersbyia coactilis [20]

noviembre esp.

Válido

McLean

devoniano

 Canadá

Un coral rugoso.

Battersbyia sentosa [20]

noviembre esp.

Válido

McLean

devoniano

 Canadá

Un coral rugoso.

Cambrorhytium gracilis [21]

noviembre esp.

Válido

Chang y otros.

Cámbrico temprano

 Porcelana

Cariophyllia (Caryophyllia) immurai [22]

noviembre esp.

Válido

Nico

mioceno

Grupo Bihoku

 Japón

Una especie de Caryophyllia .

Catenipora jingyangensis [23]

noviembre esp.

Válido

Liang, Elias y Lee

Ordovícico ( Katian )

Formación Beiguoshan

 Porcelana

Un coral tabulado .

Catenipora tiewadianensis [23]

noviembre esp.

Válido

Liang, Elias y Lee

Ordovícico ( Katian )

Formación Beiguoshan

 Porcelana

Un coral tabulado .

Catenipora tongchuanensis [23]

noviembre esp.

Válido

Liang, Elias y Lee

Ordovícico ( Sandia )

Formación Jinghe

 Porcelana

Un coral tabulado .

Clausastrea eliasovae [18]

noviembre esp.

Válido

Ricci, Lathuilière y Rusciadelli

Jurásico tardío

 Italia

Un miembro de la familia Montlivaltiidae .

Crinopora ireneae [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo perteneciente a la superfamilia Heterocoenioidea y a la familia Carolastraeidae.

Crinopora thomasi [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo perteneciente a la superfamilia Heterocoenioidea y a la familia Carolastraeidae.

Cunnolitas (Plesiocunnolites) riyadhensis [15]

noviembre esp.

Válido

Gameil, El-Sorogy y Al-Kahtany

Cretácico tardío ( Campaniano )

Formación Aruma

 Arabia Saudita

Un coral solitario . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2020.

Deltocyathoides bihokuensis [22]

noviembre esp.

Válido

Nico

mioceno

Grupo Bihoku

 Japón

Un coral pétreo .

Fuchungopora huilongensis [24]

noviembre esp.

Válido

Liang y otros.

Devónico ( Fameniano )

Formación Etoucun

 Porcelana

Un coral tabulado siringoporoide .

Geroastrea [17]

Gen. y sp. y comb. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria Francia Irán
 
 

Coral pétreo perteneciente a la superfamilia Cyclolitoidea y a la familia Synastraeidae. La especie tipo es G. alexi ; el género también incluye G. audiensis (Reig Oriol, 1992), G. haueri (Reuss, 1854) y G. parvistella (Oppenheim, 1930).

Gosaviaraea aimae [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo .

Kozaniastrea [25]

Gen. y sp. nov.

Válido

Perdedor, Steuber y Perdedor

Cretácico tardío ( Cenomaniano )

 Grecia

Coral pétreo perteneciente a la superfamilia Felixaraeoidea y a la familia Lamellofungiidae. La especie tipo es K. pachysepta .

Lithophyllon comptus [26]

noviembre esp.

Válido

Berezovsky y Satanovska

Eoceno

 Ucrania

Un coral pétreo , una especie de Lithophyllon .

Lonsdaleia carnica [27]

noviembre esp.

Válido

Rodríguez, Schönlaub & Kabon

Carbonífero ( Misisipiense )

Formación Kirchbach

 Austria

Un coral rugoso perteneciente a la familia Axophyllidae.

Lyrielasma landryense [20]

noviembre esp.

Válido

McLean

devoniano

 Canadá

Un coral rugoso.

Nefocoenia seewaldi [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo perteneciente a la superfamilia Phyllosmilioidea y a la familia Phyllosmiliidae.

Nefocoenia werneri [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo perteneciente a la superfamilia Phyllosmilioidea y a la familia Phyllosmiliidae.

Neopilophyllia [28]

Gen. y comb. nov.

Válido

Wang en Wang et al.

Silúrico ( Telychian )

Formación Ningqiang

 Porcelana

Coral rugoso perteneciente a la nueva familia Amplexoididae . La especie tipo es "Ningqiangophyllum" crassothecatum Cao (1975); El género también incluye "Ningqiangophyllum" tenuiseptatum irregulare Cao (1975) (elevado al rango de especie separada Neopilophyllia irregularis ), "Ningqiangophyllum" ephippium Cao (1975) y "Pilophyllia" alternata Chen en Wang et al. (1986).

Oculina complanatis [29]

noviembre esp.

Válido

Berezovsky y Satanovska

Eoceno

 Ucrania

Un coral pétreo , una especie de Oculina .

Opolestrea [30]

Gen. y comb. nov.

Válido

Morycowa

Triásico medio ( Anisiano )

Camas Karchowice

 Polonia

Coral pétreo perteneciente a la familia Eckastraeidae. La especie tipo es "Coelocoenia" exporrecta Weissermel (1925).

Paquiheterocoenia [17]

Gen. y sp. y comb. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria España
 

Coral pétreo perteneciente a la superfamilia Heterocoenioidea y a la familia Heterocoeniidae. La especie tipo es P. leipnerae ; el género también incluye P. grandis (Reuss, 1854) y P. fuchsi (Felix, 1903).

Pachyphylliopsis [17]

Gen. y sp. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria Irán Emiratos Árabes Unidos
 
 

Coral pétreo perteneciente a la superfamilia Phyllosmilioidea y a la familia Phyllosmiliidae. La especie tipo es P. magnum .

Paractinacis [17]

Gen. y sp. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria Alemania España
 
 

Coral pétreo perteneciente a la superfamilia Cyclolitoidea y a la familia Negoporitidae. La especie tipo es P. uliae ; el género también podría incluir a P. ? elegans (Reuss, 1854).

Plesiolitos [25]

Gen. y sp. nov.

Válido

Perdedor, Steuber y Perdedor

Cretácico tardío ( Cenomaniano )

 Grecia

Coral pétreo perteneciente a la superfamilia Misistelloidea. La especie tipo es P. winnii .

Proplesiastraea rivkae [17]

noviembre esp.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Un coral pétreo perteneciente a la superfamilia Cladocoroidea y a la familia Columastraeidae.

Psydracophyllum hinnuleum [20]

noviembre esp.

Válido

McLean

devoniano

 Canadá

Un coral rugoso.

Striatopora marsupia [19]

noviembre esp.

Válido

Król, Zapalski y Berkowski

Devónico ( Emsiano )

Grupo Amerboh

 Marruecos

Un coral tabulado perteneciente a la familia Pachyporidae.

Estiloheterocenia [25]

Gen. y 2 sp. nov.

Válido

Perdedor, Steuber y Perdedor

Cretácico tardío ( Cenomaniano )

 Grecia

Coral pétreo perteneciente a la superfamilia Heterocoenioidea y a la familia Heterocoeniidae. La especie tipo es S. hellenensis ; el género también incluye a S. brunni .

Stylophora kibiensis [31]

noviembre esp.

Válido

Niko, Suzuki y Taguchi

mioceno

Grupo Katsuta

 Japón

Una especie de Stylophora .

Sutherlandia jamalensis [32]

noviembre esp.

Válido

Niko y otros.

Pérmico temprano

Formación Jamal

 Irán

Un coral tabulado perteneciente al orden Favositida y a la familia Favositidae.

Sinhidnófora [17]

Gen. y sp. y comb. nov.

Válido

Loser y Heinrich

Cretácico tardío

 Austria

Coral pétreo perteneciente a la superfamilia Cyclolitoidea y a la familia Synastraeidae. La especie tipo es S. wagreichi ; el género también incluye a S. multilamellosa (Reuss, 1854).

Wendticyathus [33]

Gen. y sp. nov.

Válido

Berkowski

Devónico ( Emsiano )

 Marruecos

Un coral rugoso . El género incluye nuevas especies W. nudus .

Xystriphylloides distintivo [34]

noviembre esp.

Válido

Yo

Devónico temprano

 Porcelana

Un coral rugoso .

Xystriphyllum helenense [20]

noviembre esp.

Válido

McLean

devoniano

 Canadá

Un coral rugoso.

Artrópodos

Briozoos

Nuevos taxones

NombreNovedadEstadoAutoresEdadTipo

localidad

PaísNotas

Acanthodesia variegata [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Membraniporidae .

Calyptotheca sidneyi [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Bitectiporidae .

Characodoma wesselinghi [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Cleidochasmatidae .

Cistomesón [36]

Gen. nov

Válido

Ernst, Krainer y Lucas

Misisipiano

Formación del valle del lago

 Estados Unidos

Un briozoo cistoporo de la familia Fistuliporidae .

Pleurocodonellina javanensis [35]

noviembre esp.

Válido

Di Martino y Taylor

Pleistoceno temprano

Formación Pucangan

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Smittinidae .

Turbicellepora yasuharai [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Celleporidae .

Braquiópodos

Investigación

  • Zhang et al. (2018) publicaron estudios sobre el desarrollo ontogenético de los primeros braquiópodos acrotretoides basados ​​en especímenes bien conservados de las primeras especies cámbricas Eohadrotreta zhenbaensis y Eohadrotreta? zhujiahensis de la Formación Shuijingtuo ( China ). [37] [38]
  • Sclafani et al. (2018) publican un estudio sobre la extinción y el origen de los miembros del orden Strophomenida durante la extinción masiva del Ordovícico tardío . [39]
  • García Joral, Baeza-Carratalá y Goy (2018) publican un estudio sobre el tamaño corporal de varias asociaciones de braquiópodos registradas en el intervalo de extinción anterior al recambio Toarciense , recolectadas en localidades representativas alrededor del Macizo Ibérico ( España y Portugal ). [40]

Nuevos taxones

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Acrotreta calabozoi [41]

noviembre esp.

Válido

Lavie

Ordovícico ( Sandia )

Formación Las Plantas

 Argentina

Adygella socotrana [42]

noviembre esp.

Válido

Gaetani en Gaetani et al.

Triásico medio

 Yemen

Un miembro de Terebratulida perteneciente a la familia Dielasmatidae.

Ahtiella famatiniana [43]

noviembre esp.

Válido

Benedicto

Ordovícico

 Argentina

Ahtiella tunaensis [43]

noviembre esp.

Válido

Benedicto

Ordovícico

 Argentina

Ala alatiforme [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la familia Choristitidae.

Alebusirhynchia vorosi [45]

noviembre esp.

Válido

Baeza-Carratalá, Dulai & Sandoval

Jurásico temprano

 España

Un miembro de Rhynchonellida .

Alekseevathyris [46]

Gen. y sp. nov.

Válido

Baranov y Blodgett

Devónico ( Givetiano )

Volcanes de Coronados

 Estados Unidos
( Alaska ) 

Miembro de Terebratulida perteneciente a la familia Stringocephalidae. La especie tipo es A. coronadosensis .

Altaethyrella tarimensis [47]

noviembre esp.

Válido

Sproat y Zhan

Ordovícico (finales del Katiano )

Formación Hadabulaktag

 Porcelana

Ambocoelia yidadeensis [48]

noviembre esp.

Válido

Zhang y Ma

Devónico ( Frasniano )

Formación Yidade

 Porcelana

Arpaspirífera [49] [50]

Gen. y comb. nov.

Válido

Gretchishnikova en Alekseeva et al.

Devónico ( Fameniano )

 Armenia Azerbaiyán
 

Miembro de la familia Cyrtosririferidae. La especie tipo es " Spirifer " latus Abrahamian (1974).

Aulacella finitima [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( EifelienseGivetiano )

 Azerbaiyán

Biernatium sucoi [51]

noviembre esp.

Válido

García-Alcalde

Devónico ( Givetiano )

Formación Portilla

 España

Un miembro de Orthida perteneciente a la familia Mystrophoridae.

Broggeria omaguaca [52]

noviembre esp.

Válido

Benedicto, Lavie y Muñoz

Ordovícico ( Tremadociano )

 Argentina

Buxtonia sulcata [53]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Buxtoniidae.

Callaiapsida divitiae [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Rhynchonellida perteneciente a la familia Stenoscismatidae.

Calliprotonia kerrae [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Echinoconchidae .

Calliprotonia umbonalis [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Echinoconchidae.

Chelononia minimauris [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Strophomenata perteneciente a la superfamilia Orthotetoidea y a la familia Schuchertellidae.

Churkinella [46]

Gen. y sp. nov.

Válido

Baranov y Blodgett

Devónico ( Givetiano )

Volcanes de Coronados

 Estados Unidos
( Alaska ) 

Miembro de Terebratulida perteneciente a la familia Stringocephalidae. La especie tipo es C. craigensis .

Cingulodermis pustulatus [54]

noviembre esp.

Válido

Mergl

Devónico ( Emsiano )

 Marruecos

Commarginalia norrisi [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Proboscidelloidea y a la familia Paucispinauriidae.

Composita largitas [55]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Wahoo

 Canadá
( Yukón ) 

Coronadothyris [46]

Gen. y sp. nov.

Válido

Baranov y Blodgett

Devónico ( Givetiano )

Volcanes de Coronados

 Estados Unidos
( Alaska ) 

Miembro de Terebratulida perteneciente a la familia Stringocephalidae. La especie tipo es C. mica .

Costisorthis lisae [51]

noviembre esp.

Válido

García-Alcalde

Devónico ( Givetiano )

Formación Candás

 España

Un miembro de Orthida perteneciente a la familia Dalmanellidae.

Cerdo doméstico de Cyrtiorina [56]

noviembre esp.

Válido

Zong y Ma

Devónico ( Fameniano )

Formación Hongguleleng

 Porcelana

Un braquiópodo perteneciente al grupo Spiriferida .

Cyrtospirifer dansikensis [49] [50]

noviembre esp.

Válido

Afanasjeva en Alekseeva et al.

Devónico ( Fameniano )

 Azerbaiyán

Dalejina aulacelliformis [54]

noviembre esp.

Válido

Mergl

Devónico ( Emsiano )

 Marruecos

Datnella [57]

Gen. y comb. nov.

Válido

Baránov

Devónico temprano

 Rusia

Miembro de Atrypida . La especie tipo es D. datnensis (Baranov, 1995).

Deltachania elongata [53]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Athyrida perteneciente a la superfamilia Athyroidea.

Desquamatia globosa jozefkae [58]

Subsp. nov

Válido

Baliński en Skompski et al.

Devónico ( límite GivetianoFrasniano )

Camas Szydłówek

 Polonia

Un miembro de Atrypida perteneciente a la familia Atrypidae.

Diazoma ghyumuschlugensis [49] [50]

noviembre esp.

Válido

Oleneva en Alekseeva et al.

Devónico ( Frasniano )

 Azerbaiyán

Dichospirifer felixi [49] [50]

noviembre esp.

Válido

Gretchishnikova en Alekseeva et al.

Devónico ( Fameniano )

 Azerbaiyán

Dutroproducto [44]

Gen. y sp. nov.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Retariidae. La especie tipo es D. dutroi .

Echinalosia minuta [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Strophalosioidea y a la familia Dasyalosiidae.

Echinaria circularis [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Echinoconchidae.

Eofolidostrofia (Megapholidostrofia) gigas [59]

noviembre esp.

Válido

Strusz y Percival

Silúrico ( Wenlock )

 Australia

Eressella [60]

Gen. y comb. nov.

Válido

Halamski y Baliński

Devónico medio

 Alemania Marruecos Polonia
 
 

Miembro de Rhynchonellida perteneciente a la familia Uncinulidae. La especie tipo es " Rhynchonella " coronata Kayser (1871).

Eridmatina [44]

Gen. y comb. nov.

Válido

Casa de agua

Carbonífero y Pérmico

Formación Gaptank

 Canadá
( Yukón ) Estados Unidos 
 

Miembro de Spiriferida perteneciente a la familia Spiriferellidae. La especie tipo es "Eridmatus" marathonensis Cooper & Grant (1976); el género también incluye "Eridmatus" petita Waterhouse & Waddington (1982)

Ettrainia [44]

Gen. y sp. nov.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Spiriferida perteneciente a la superfamilia Choristitoidea y a la familia Palaeochoristitidae. La especie tipo es E. costellata .

Flexaria echinata [61]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación del río Hart

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Buxtoniidae.

Forticosta [44]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Spiriferida perteneciente a la superfamilia Spiriferoidea y a la familia Neospiriferidae. La especie tipo es F. transversa .

Gemmulicosta undulata [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Buxtoniidae.

Gypidulina grandis [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( EifelienseGivetiano )

 Azerbaiyán

Harkeria elongata [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Yakovleviidae.

Harkeria sulcoprofundus [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Yakovleviidae.

Hartea [61]

Gen. y sp. nov.

Homónimo junior

Casa de agua

Carbonífero

Formación del río Hart

 Canadá
( Yukón ) 

Miembro de Spiriferida perteneciente a la familia Ambocoeliidae. La especie tipo es H. venustus . El nombre genérico es obra de Hartea Wright (1865).

Talia [44]

Gen. y comb. nov.

Válido

Casa de agua

Pérmico

 Porcelana

Miembro de Spiriferida perteneciente a la familia Ambocoeliidae. La especie tipo es "Attenuatella" mengi He, Shi, Feng y Peng (2007)

Heteralosia scotti [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Strophalosioidea y a la familia Strophalosiidae.

Hustedia quadrifidus [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Rhynchonellata perteneciente al grupo Retziida y a la familia Retziidae.

Hustedia trífida [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Rhynchonellata perteneciente al grupo Retziida y a la familia Retziidae.

Isorthis (Arcualla) delegatensis [59]

noviembre esp.

Válido

Strusz y Percival

Silúrico ( Wenlock )

 Australia

Jagtithyris [62]

Gen. y comb. nov.

Válido

Simón y Mottequin

Cretácico tardío ( Maastrichtiano )

 Países Bajos

Pariente de Leptothyrellopsis , asignado a la nueva familia Jagtithyrididae. El género incluye " Terebratella (¿Morrisia?)" suessi Bosquet (1859).

Junglelomia simplex [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Choristitoidea y a la familia Palaeochoristitidae.

Juxathyris subcircularis [63]

noviembre esp.

Válido

Wu y otros.

Pérmico ( Changhsingiano )

Formación Changxing

 Porcelana

Un miembro de Athyridida .

Komiella bitteri [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de la familia Rugosochonetidae.

Krotovia norfordi [44]

noviembre esp.

Válido

Casa de agua

Carbonífero y Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Echinoconchidae.

Kukulkánus [64]

Gen. y sp. nov.

Válido

Torres-Martínez, Sour-Tovar & Barragán

Pérmico ( ArtinskianoKunguriano )

Formación Paso Hondo

 México

Braquiópodo perteneciente al grupo Productida y a la familia Productidae . La especie tipo es K. spinosus .

"Kutorginella" primigenia [61]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación del río Hart

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Retariidae.

Latisulco [44]

Gen. y comb. nov.

Válido

Casa de agua

Pérmico

Formación de resortes óseos

 Estados Unidos
( Texas ) 

Miembro de Rhynchonellata perteneciente al grupo Retziida y a la familia Retziidae. La especie tipo es "Hustedia" hessensis King (1931)

Leiochonetes onimarensis [65]

noviembre esp.

Válido

Tazawa

Carbonífero ( Misisipiense )

Formación Hikoroichi

 Japón

Miembro de la familia Rugosochonetidae perteneciente a la subfamilia Svalbardiinae.

Leptaena (Leptaena) australis [59]

noviembre esp.

Válido

Strusz y Percival

Silúrico ( Wenlock )

 Australia

Leurosina katasumiensis [66]

noviembre esp.

Válido

Afanasyeva, Jun-Ichi y Yukio

Pérmico ( Kunguriense )

Formación Nabeyama

 Japón

Un miembro de Chonetida perteneciente a la familia Rugosochonetidae .

Levipustula canadensis [53]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Strophalosiidina perteneciente a la superfamilia Scacchinelloidea y a la familia Levipustulidae.

Martínez Chaconia [67]

Gen. y sp. nov.

Válido

Torres-Martínez y Sour-Tovar

Carbonífero ( Bashkirio - Moscoviano )

Formación Ixtaltepec

 México

Miembro de Productida perteneciente a la familia Linoproductidae . La especie tipo es M. luisae .

Mirandifera [44]

Gen. y comb. nov.

Válido

Casa de agua

Pérmico

Formación de la Montaña Catedral

 Canadá
( Yukón ) Estados Unidos ( Texas ) 
 
 

Miembro de Spiriferida perteneciente a la familia Martiniidae. La especie tipo es "Martinia" Miranda Cooper & Grant (1976); el género también incluye "Martinia" wolfcampensis King (1931)

Misunitiris [68]

Gen. y sp. nov.

Válido

Baeza-Carratalá, Pérez-Valera & Pérez-Valera

Triásico medio ( Ladiniense )

Formación Siles

 España

Braquiópodo perteneciente al grupo Terebratellidina y a la superfamilia Zeillerioidea. La especie tipo es M. goyi .

Morinorhynchus tucksoni [59]

noviembre esp.

Válido

Strusz y Percival

Silúrico ( Wenlock )

 Australia

Muirwoodiciana [53]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Miembro de Productida perteneciente a la familia Yakovleviidae. La especie tipo es M. inexpectans .

Musalitinispira [57]

Gen. y sp. nov.

Válido

Baránov

Devónico temprano

 Rusia

Miembro de Atrypida . La especie tipo es M. dogdensis .

Misterio [53]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Miembro de Rhynchonellida perteneciente a la superfamilia Rhynchoporoidea y a la familia Rhynchoporidae. La especie tipo es M. mysticus .

Nahoniella decorus [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferinida perteneciente al grupo Syringothyridina y a la familia Licharewiidae.

Nassichukia [44]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Buxtoniidae. La especie tipo es N. nodosa .

Nazeriproductus lazarevi [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Productoidea y a la familia Retariidae.

Neochonetes (Huangichonetes) matsukawensis [69]

noviembre esp.

Válido

Tazawa y Araki

Pérmico ( Wordiano )

Formación Kamiyasse

 Japón

Un miembro de la familia Rugosochonetidae .

Newberria alaskensis [46]

noviembre esp.

Válido

Baranov y Blodgett

Devónico ( Givetiano )

Volcanes de Coronados

 Estados Unidos
( Alaska ) 

Un miembro de Terebratulida perteneciente a la familia Stringocephalidae.

Nucleospira quidongensis [59]

noviembre esp.

Válido

Strusz y Percival

Silúrico ( Wenlock )

 Australia

Ogilviecoelia initiatus [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la familia Ambocoeliidae.

Ogilviecoelia shii [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la familia Ambocoeliidae.

Opsiconidion bouceki [70]

noviembre esp.

Válido

Mergl, Frýda y Kubajko

Silúrico ( Ludfordiano )

Formación Kopanina

 República Checa

Un miembro de Acrotretoidea perteneciente a la familia Biernatidae.

Parémesis de Opsiconidion [70]

noviembre esp.

Válido

Mergl, Frýda y Kubajko

Silúrico ( Ludfordiano )

Formación Kopanina

 República Checa

Un miembro de Acrotretoidea perteneciente a la familia Biernatidae.

Orthotetes dorsosulcata [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Strophomenata perteneciente a la superfamilia Orthotetoidea y a la familia Orthotetidae.

Papulíferas [53]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Miembro de Spiriferida perteneciente a la familia Martiniidae. La especie tipo es P. plana .

Paucispinifera abramovi [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Paucispiniferidae.

Paucispinífera carbonífera [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Paucispiniferidae.

Paucispinifera sulcata [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Paucispiniferidae.

Pingüispirador kesskess [54]

noviembre esp.

Válido

Mergl

Devónico ( Emsiano )

 Marruecos

Piridiorhynchus jafariani [71]

noviembre esp.

Válido

Baranov y otros.

Devónico ( Fameniano )

Formación Khoshyeilagh

 Irán

Un miembro de Rhynchonellida perteneciente a la familia Trigonirhynchiidae.

Plicatospiriferella undulata [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la familia Spiriferellidae.

Poletaevia [44]

Gen. y comb. nov.

Válido

Casa de agua

Carbonífero

Formación del fiordo Hare

 Canadá
( Nunavut ) 

Miembro de Productida perteneciente a la superfamilia Paucispiniferoidea y a la familia Anidanthidae. La especie tipo es "Liraria" paucispina Carter & Poletaev (1998)

Pripyatispirifer caucasius [49] [50]

noviembre esp.

Válido

Afanasjeva en Alekseeva et al.

Devónico ( Frasniano )

 Azerbaiyán

Protoanidanthus monstratus [55]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Paucispiniferoidea y a la familia Anidanthidae.

Protoanidanthus nichollsi [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Paucispiniferoidea y a la familia Anidanthidae.

Pumilusia [44]

Gen. y comb. nov.

Válido

Casa de agua

Carbonífero

Formación La Prasada

 Estados Unidos
( Nuevo México ) 

Miembro de Productida perteneciente a la superfamilia Linoproductoidea y a la familia Ovatiidae. La especie tipo es "Linoproductus" pumilus Sutherland & Harlow (1973)

Punctospirifer iwatensis [65]

noviembre esp.

Válido

Tazawa

Carbonífero ( Misisipiense )

Formación Hikoroichi

 Japón

Un miembro de Spiriferinida perteneciente a la familia Punctospiriferidae.

Resserella dagnensis [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( EmsianoEifeliano )

 Azerbaiyán

Reticulariopsis rotunda [49] [50]

noviembre esp.

Válido

Oleneva en Alekseeva et al.

Devónico ( Givetiano )

 Azerbaiyán

Rhipidomella arpensis [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( Givetiano )

 Azerbaiyán

Rhipidomella borealis [55]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Wahoo

 Canadá
( Yukón ) 

Un miembro de Orthida perteneciente a la familia Rhipidomellidae.

Rhynchopora grigorievae [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Rhynchonellida perteneciente a la superfamilia Rhynchoporoidea y a la familia Rhynchoporidae.

Rincoporusia [61]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación del río Hart

 Canadá
( Yukón ) 

Miembro de Rhynchonellida perteneciente a la superfamilia Rhynchoporoidea y a la familia Rhynchoporidae. La especie tipo es R. multiplicata .

Rorespirifer prodigium [55]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Ingelarelloidea y a la familia Rorespiriferidae.

Rugaria arcula [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de la familia Rugosochonetidae .

Rugivestigia [44]

Gen. y sp. nov.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Productida perteneciente a la familia Paucispiniferidae. La especie tipo es R. commarginalis .

Rugosochonetes multistriatus [49] [50]

noviembre esp.

Válido

Afanasjeva en Alekseeva et al.

Carbonífero ( Tournaisiano )

 Azerbaiyán

Saltospirifer gibberosus [53]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Blackie

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Spiriferoidea y a la familia Spiriferidae.

Sangredonia alaminata [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Horridoniidae.

Sarytchevinella praecursor [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Linoproductoidea y a la familia Striatiferidae.

Schizambon langei [72]

noviembre esp.

Válido

Freeman, Miller y Dattilo

Límite Cámbrico-Ordovícico

 Estados Unidos
( Texas ) 

Un braquiópodo linguliforme .

Esquizoforia lata [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( EmsianoEifeliano )

 Azerbaiyán

Esquizoforia schnuri altera [49] [50]

Subsp. nov

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( Givetiano )

 Azerbaiyán

Septatrypa tumulorum [73]

noviembre esp.

Válido

Balinés y halamés

Devónico ( Emsiano )

 Marruecos

Septospirifer hughi [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Spiriferoidea y a la familia Neospiriferidae.

Sieberella parva [49] [50]

noviembre esp.

Válido

Alekseeva y Gretchishnikova en Alekseeva et al.

Devónico ( EmsianoEifeliano )

 Azerbaiyán

Sphenospira dansikensis [49] [50]

noviembre esp.

Válido

Gretchishnikova en Alekseeva et al.

Devónico ( Fameniano )

 Azerbaiyán

Spinatrypina (Spinatrypina) krivensis [57]

noviembre esp.

Válido

Baránov

Devónico temprano

 Rusia

Un miembro de Atrypida .

Spinocyrtia irinae [49] [50]

noviembre esp.

Válido

Afanasjeva en Alekseeva et al.

Devónico ( Eifeliense y Givetiano )

 Azerbaiyán

Spirelytha biakovi [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Elitoidea y a la familia Toryniferidae.

Spiriferinaella simplicata [44]

noviembre esp.

Válido

Casa de agua

Carbonífero y Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Paeckelmanelloidea y a la familia Pterospiriferidae.

Estataria [44]

Gen. y comb. nov.

Válido

Casa de agua

Pérmico

Formación de la Montaña Catedral

 Estados Unidos
( Texas ) 

Miembro de Rhynchonellata perteneciente al grupo Retziida y a la familia Retziidae. La especie tipo es "Hustedia" stataria Cooper & Grant (1976)

Stenorhynchia ulrici [73]

noviembre esp.

Válido

Halamski y Baliński

Devónico ( Emsiano )

 Marruecos

Tegulispirifera placitus [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferida perteneciente a la superfamilia Spiriferoidea y a la familia Spiriferidae.

Tethysiella impudens [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Paucispiniferidae.

Thomasaria caucásica [49] [50]

noviembre esp.

Válido

Oleneva en Alekseeva et al.

Devónico ( Eifeliense )

 Azerbaiyán

Trigonatrypa drotae [54]

noviembre esp.

Válido

Mergl

Devónico ( Emsiano )

 Marruecos

Tuberculatella bunnakia [44]

Nombre. noviembre

Válido

Casa de agua

Carbonífero

 Tailandia

Un miembro de Productida perteneciente a la familia Avoniidae; un nombre de reemplazo para Tuberculatella tuberculata Waterhouse (1982).

Tubersulculus ovalis [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la familia Echinoconchidae.

Tumarinia solominae [44]

noviembre esp.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Spiriferinida perteneciente al grupo Syringothyridina y a la familia Licharewiidae.

Undispirifer dansikensis [49] [50]

noviembre esp.

Válido

Oleneva en Alekseeva et al.

Devónico ( Eifeliense )

 Azerbaiyán

Unispirifer arpensis [49] [50]

noviembre esp.

Válido

Afanasjeva en Alekseeva et al.

Carbonífero ( Tournaisiano )

 Azerbaiyán

Planiconcha de Villaconcha [44]

noviembre esp.

Válido

Casa de agua

Pérmico

Formación Jungle Creek

 Canadá
( Yukón ) 

Un miembro de Productida perteneciente a la superfamilia Echinoconchoidea y a la familia Waagenoconchidae.

Yanzaria [44]

Gen. y comb. y sp. nov.

Válido

Casa de agua

Carbonífero y Pérmico

Esquistos de Fenestella

 Canadá
( Yukón ) India 
 

Miembro de Rhynchonellida perteneciente a la familia Tetracameridae. La especie tipo es "Camarophoria" dowhatensis Diener (1915); el género también incluye la nueva especie Y. solitarius .

Yukonalosia [44]

Gen. y sp. nov.

Válido

Casa de agua

Carbonífero

Formación Jungle Creek

 Canadá
( Yukón ) 

Miembro de Productida perteneciente a la superfamilia Strophalosioidea y a la familia Dasyalosiidae. La especie tipo es Y. arctica .

Zaigunrostrum nakhichevanense [74]

noviembre esp.

Válido

Pajnevich

Devónico ( Fameniano )

 Azerbaiyán

Un braquiópodo perteneciente al grupo Rhynchonellida y a la familia Trigonirhynchiidae.

Zezinia [74]

Gen. y sp. nov.

Válido

Pajnevich

Devónico ( Frasniano )

 Azerbaiyán

Braquiópodo perteneciente al grupo Rhynchonellida y a la familia Uncinulidae. La especie tipo es Z. multicostata .

Moluscos

Equinodermos

Conodontos

Investigación

  • Shirley et al. (2018) publicaron un estudio que prueba los modelos propuestos de crecimiento de elementos conodontes . [75]
  • Terrill, Henderson y Anderson (2018) publican un estudio sobre las secciones histológicas de elementos dentales conodontes del Ordovícico y Pérmico de la Formación Bell Canyon ( Texas , Estados Unidos ), la arenisca Harding ( Colorado , Estados Unidos), la Formación Ali Bashi ( Irán ) y el Ártico canadiense, examinando esos fósiles para detectar la presencia y distribución de biomarcadores de tejidos blandos. [76]
  • Wheeley et al. (2018) publican un estudio que evalúa la variación de δ 18 O dentro de un conjunto de conodontes rico en especies del miembro Factory Cove del Ordovícico ( Floiano ) de la Formación Shallow Bay , Grupo Cow Head (oeste de Terranova, Canadá ), así como también evalúa las implicaciones de estos datos para determinar la paleotermometría de los océanos antiguos y los modelos ecológicos de conodontes. [ 77] [78] [79]
  • Zhang et al. (2018) publicaron un estudio sobre el tamaño corporal y la diversidad de conodontos del Carniano del sur de China y sus implicaciones para inferir los cambios bióticos y ambientales durante el evento pluvial del Carniano. [80]
  • Golding (2018) publicó un estudio que evalúa la similitud de las faunas de conodontes del Paleozoico tardío y el Triásico conocidas en Cache Creek Terrane ( Canadá ). [81]
  • Golding (2018) presenta la reconstrucción del aparato multielemental del conodonto del Triásico Medio de Columbia Británica (Canadá) perteneciente al grupo Neogondolella regalis dentro del género Neogondolella . [82]
  • La reconstrucción del número y disposición de elementos en el aparato de Hindeodus parvus publicada por Zhang et al. (2017) [83] es criticada por Agematsu, Golding y Orchard (2018); [84] Purnell et al. (2018) defienden sus conclusiones originales. [85]
  • Suttner, Kido y Briguglio (2018) describen un grupo de conodontos icriodóntidos pertenecientes a la especie Caudicriodus woschmidti , que aporta nueva información sobre la estructura del aparato de los conodontos icriodóntidos, a partir de sedimentos del Devónico inferior en el sur de Burgenland ( Austria ). [86]
  • Zimmerman, Johnson y Polly (2018) publican un estudio sobre las especies pertenecientes al género Neognathodus , en el que se evalúa si los grupos de morfotipos previamente definidos son fiables y distintos entre sí. [87]

Nuevos taxones

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Ancyrogondolella diakowi [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae .

Ancyrogondolella equalis [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae.

Ancyrogondolella inequalis [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae.

Ancyrogondolella praespiculata [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae.

Ancyrogondolella transformis [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae.

Baltoniodus cooperi [89]

noviembre esp.

Válido

Carlorosi, Sarmiento y Heredia

Ordovícico ( Dapingiano )

Formación Santa Gertrudis

 Argentina

Declinognathodus intermedius [90]

noviembre esp.

Válido

Hu, Qi y Nemyrovska

Carbonífero

 Porcelana

Declinognathodus tuberculoso [90]

noviembre esp.

Válido

Hu, Qi y Nemyrovska

Carbonífero

 Porcelana

Gedikella [91]

Gen. y sp. nov.

Válido

Kılıç, Plasencia y Önder

Triásico medio ( Anisiano )

 Pavo

Miembro de la familia Gondolellidae . La especie tipo es G. quadrata .

Gnathodus mirousei [92]

noviembre esp.

Válido

Sanz-López & Blanco-Ferrera

Carbonífero ( Misisipiense )

Formación Alba
Formación Aspe-Brousset
Caliza de roca negra

 Bélgica China Irlanda Italia España Reino Unido Estados Unidos ( Illinois )
 
 
 
 
  
 

Idiognathodus abdivitus [93]

noviembre esp.

Válido

Hogancamp y Barrick

Carbonífero

Formación Atrasado
Esquisto Eudora

 Estados Unidos
( Nuevo México ) 

Originalmente descrito como una especie de Idiognathodus , pero posteriormente transferido al género Heckelina . [94]

Idiognathodus centralis [93]

noviembre esp.

Válido

Hogancamp y Barrick

Carbonífero

Formación Atrasado
Esquisto Eudora

 Estados Unidos
( Nuevo México ) 

Idiognathodus sweeti [93]

noviembre esp.

Válido

Hogancamp y Barrick

Carbonífero

Formación Atrasado
Esquisto Eudora

 Estados Unidos
( Nuevo México ) 

Idiognathoides chaagulootus [95]

noviembre esp.

Válido

Frederick y Barrick

Carbonífero ( Pensilvaniano temprano )

Caliza Ladrones

 Estados Unidos
( Alaska ) 

Kamuellerella rectangularis [91]

noviembre esp.

Válido

Kılıç, Plasencia y Önder

Triásico medio ( Anisiano )

 Pavo

Un miembro de la familia Gondolellidae .

Ketinella goermueshi [91]

noviembre esp.

Válido

Kılıç, Plasencia y Önder

Triásico medio ( Anisiano )

 Pavo

Un miembro de la familia Gondolellidae .

Magnigondolella [96]

Gen. y 5 sp. y comb. nov.

Válido

Golding y huerto

Triásico medio ( Anisiano )

Formación Favret
Formación Sapo

 Canadá
( Columbia Británica ) China Estados Unidos ( Nevada ) 
 
 
 

Miembro de la familia Gondolellidae . La especie tipo es M. salomae ;
el género también incluye nuevas especies como M. alexanderi , M. cyri , M. julii y M. nebuchadnezzari ,
así como " Neogondolella " regale Mosher (1970) y "Neogondolella" dilacerata Golding & Orchard (2016).

Mesogondolella hendersoni [97]

noviembre esp.

Válido

Yuan, Zhang y Shen

Pérmico ( Changhsingiano )

Grupo Selong

 Porcelana

Mockina spinosa [88]

noviembre esp.

Válido

Huerta

Triásico Tardío ( Noriano )

Formación Pardonet

 Canadá
( Columbia Británica ) 

Un miembro de la familia Gondolellidae .

Peroné de Neopolygnathus [98]

noviembre esp.

Válido

Hartenfels y Becker

Devónico ( Fameniano )

 Marruecos

Neospathodus arcus [99]

noviembre esp.

Válido

Maekawa en Maekawa, Komatsu y Koike

Triásico temprano

Formación Taho

 Japón

Novispathodus shirokawai [99]

noviembre esp.

Válido

Maekawa en Maekawa, Komatsu y Koike

Triásico temprano

Formación Taho

 Japón

Novispathodus tahoensis [99]

noviembre esp.

Válido

Maekawa en Maekawa, Komatsu y Koike

Triásico temprano

Formación Taho

 Japón

'Ozarkodina'? chenae [100]

noviembre esp.

Válido

Lu y otros.

Devónico ( Emsiano )

Formación Ertang

 Porcelana

'Ozarkodina'? wuxuanensis [100]

noviembre esp.

Válido

Lu y otros.

Devónico ( Emsiano )

Formación Ertang

 Porcelana

Polygnathus linguiformis saharicus [101]

Subsp. nov

Válido

Narkiewicz y Königshof

Devónico (finales del EifelianoGivetiense medio )

Formación Ispena
Formación Si Phai

 Marruecos España Tayikistán Turquía Vietnam
 
 
 
 

Polygnathus linguiformis vietnamicus [101]

Subsp. nov

Válido

Narkiewicz y Königshof

Devónico ( Givetiano )


Formación Si Phai de Plum Brook Shale

 Alemania Marruecos Estados Unidos ( Ohio ) Vietnam
 
 
 
 

Polygnathus praeinversus [100]

noviembre esp.

Válido

Lu y otros.

Devónico ( Emsiano )

Formación Ertang

 Porcelana

Polygnathus rhenanus siphai [101]

Subsp. nov

Válido

Narkiewicz y Königshof

Devónico ( Givetiano )

Formación Candás
Formación Si Phai

 China Marruecos España Vietnam
 
 
 

Polygnathus xylus bacbo [101]

Subsp. nov

Válido

Narkiewicz y Königshof

Devónico ( Givetiano )

Formación Si Phai

 Vietnam

Pseudognathodus posadachaconae [102]

noviembre esp.

Válido

Sanz-López, Blanco-Ferrera & Miller

Carbonífero ( Misisipiense )

Caliza de Prestatyn

 Reino Unido

Un miembro de la familia Gnathodontidae .

Pseudopolygnathus primus tafilensis [98]

Subsp. nov

Válido

Hartenfels y Becker

Devónico ( Fameniano )

 Marruecos

Pustulognato [103]

Gen. y 2 sp. nov.

Válido

Golding y huerto en Golding

Pérmico ( Guadalupiense a Lopingiense )

Formación Horsefeed de piedra caliza Copley

 Canadá
( Columbia Británica ) China ? 
 

Miembro de la familia Sweetognathidae . La especie tipo es P. monticola ; el género también incluye a P. vigilans .

Quadralella (Quadralella) postica [104]

noviembre esp.

Válido

Zhang y otros.

Triásico Tardío ( Carniano )

 Porcelana

Quadralella robusta [104]

noviembre esp.

Válido

Zhang y otros.

Triásico Tardío ( Carniano )

 Porcelana

Quadralella wignalli [104]

noviembre esp.

Válido

Zhang y otros.

Triásico Tardío ( Carniano )

 Porcelana

Quadralella yongningensis [104]

noviembre esp.

Válido

Zhang y otros.

Triásico Tardío ( Carniano )

 Porcelana

Scandodus choii [105]

noviembre esp.

Válido

Sotavento

Ordovícico ( Darriwiliano )

 Corea del Sur

Dúplex de Sweetognathus [106]

noviembre esp.

Válido

Leer y Nestell

Pérmico ( Sakmariano )

Caliza de manantial Riepe

 Estados Unidos
( Nevada ) 

Flor de amapola de Sweetognathus wardlawi [106]

noviembre esp.

Válido

Leer y Nestell

Pérmico ( Sakmariano )

Caliza de manantial Riepe

 Estados Unidos
( Nevada ) 

Tortodus sparlingi [107]

noviembre esp.

Válido

Aboussalam y Becker en Brett et al.

Devónico ( Givetiano )

 Polonia España Estados Unidos ( Kentucky Ohio )
 
 
 
 

Walliserognathus [108]

Gen. y comb. nov.

Válido

Corradini y Corriga

Silúrico ( Ludlow )

Formación Henryhouse
Formación de las montañas Roberts

 Austria China Hungría Italia España Suecia Estados Unidos ( Nevada Oklahoma )
 
 
 
 
 
 
 
 

Un miembro de la familia Spathognathodontidae ; un nuevo género para Spathognathodus inclinatus posthamatus Walliser (1964), elevado al rango de especie Walliserognathus posthamatus .

Pez

Anfibios

Reptiles

Sinápsidos

Sinápsidos no mamíferos

Investigación

  • Romano, Brocklehurst y Fröbisch (2018) publican una descripción del material postcraneal correspondiente a la especie de caseido Ennatosaurus tecton . [109]
  • Brocklehurst y Fröbisch (2018) publican un estudio sobre la anatomía y las relaciones filogenéticas de Milosaurus mccordi . [110]
  • Kruger, Rubidge y Abdala (2018) describen un cráneo de un espécimen juvenil de Anteosaurus magnificus de la Formación Pérmico Abrahamskraal ( Sudáfrica ). [111]
  • Benoit et al. (2018) publican un estudio sobre la evolución de la inervación del nervio trigémino en anomodontos . [112]
  • Rey et al. (2018) publican un estudio sobre las composiciones de isótopos estables de oxígeno y carbono de la apatita dentinaria en los dientes de veintiocho especímenes de Diictodon feliceps y sobre sus implicaciones para inferir el papel potencial del clima en la extinción masiva de tetrápodos terrestres a finales del Capitaniano . [113 ]
  • Olroyd, Sidor y Angielczyk (2018) publican la descripción de la anatomía de seis nuevos cráneos del dicinodonte Abajudon kaayai de la Formación Mudstone Madumabisa inferior del Pérmico ( Guadalupiense ) ( Zambia ) y un estudio sobre las relaciones filogenéticas de la especie. [114]
  • Araújo et al. (2018) publican un estudio sobre la anatomía del laberinto óseo de los especímenes del género dicinodonte Endothiodon recolectados de la Formación Pérmica K5 ( Mozambique ), comparándolo con el género estrechamente relacionado Niassodon . [115]
  • Un estudio sobre la historia tafonómica de un yacimiento óseo monotípico compuesto por varios individuos atribuible al dicinodonte Dinodontosaurus recolectado en una localidad clásica del Triásico Medio en Brasil , y sobre sus implicaciones para inferir un posible comportamiento gregario en Dinodontosaurus , es publicado en línea por Ugalde et al. (2018). [116]
  • Angielczyk, Hancox y Nabavizadeh (2018) publican una redescripción del género de dicinodontes Sangusaurus y un estudio sobre su sistema de alimentación y relaciones filogenéticas. [117]
  • Kammerer, Angielczyk y Nesbitt (2018) describen una extremidad posterior parcial de un dicinodonte cercano al tamaño de Stahleckeria potens del Miembro Lifua Triásico de los Lechos Manda ( Tanzania ) , lo que representa el elemento postcraneal de dicinodonte más grande de los Lechos Manda informado hasta el momento. [118]
  • La descripción de restos vegetales y palinomorfos preservados en los coprolitos producidos por grandes dicinodontes de la Formación Chañares del Triásico ( Argentina ), y un estudio sobre sus implicancias para inferir la dieta de los dicinodontes, es publicado por Pérez Loinaze et al. (2018). [119]
  • Citton et al. (2018) describen huellas de tetrápodos, probablemente producidas por dicinodontes, de la Formación Vera del Triásico Superior del Grupo Los Menucos (Argentina). [120]
  • Racki y Lucas (2018) publican en línea un estudio sobre la edad del supuesto dicinodonte rético de Lipie Śląskie ( Polonia ) , quienes consideran más probable que este dicinodonte fuera de la edad noriana . [121]
  • Bendel et al. (2018) publicaron un estudio sobre la anatomía del cráneo de Cynariops robustus . [122]
  • O'Meara, Dirks y Martinelli (2018) publicaron un estudio sobre las tasas de desarrollo del esmalte en una variedad de especies de cinodontes no mamíferos , inferidas a partir de marcas incrementales. [123]
  • La descripción de la morfología del cráneo de Cynosaurus suppostus y un estudio sobre las relaciones filogenéticas de la especie fueron publicados por van den Brandt y Abdala (2018). [124]
  • Wynd et al. (2018) describen por primera vez fósiles de Cynognathus crateronotus de la Formación Ntawere ( Zambia ) y los yacimientos Manda ( Tanzania ) del Triásico. [125]
  • Gaetano, Mocke y Abdala (2018) publican un estudio sobre la anatomía postcraneal de un espécimen de Diademodon tetragonus recuperado de la Formación Superior Omingonde ( Namibia ). [126]
  • Sidor y Hopson (2018) describen un cráneo parcial y un esqueleto postcraneal de un miembro de la especie Cricodon metabolus de la Formación Ntawere del Triásico ( Zambia ), y también estudian las relaciones filogenéticas de los miembros de la familia Trirachodontidae . [127]
  • Lai, Biewener y Pierce (2018) publicaron un estudio sobre la musculatura, la postura y el rango de movimiento de la extremidad anterior de Massetognathus pascuali . [128]
  • Un nuevo ejemplar de Trucidocynodon riograndensis , casi un 20% más grande que el ejemplar holotipo , fue descrito en la secuencia Carniana de Candelária (sur de Brasil ) por Stefanello et al. (2018). [129]
  • Pacheco et al. (2018) describen el dentario derecho con dientes de Prozostrodon brasiliensis del Triásico Tardío de Brasil , lo que representa el segundo espécimen conocido de esta especie. [130]
  • La descripción de la anatomía del esqueleto postcraneal de Prozostrodon brasiliensis fue publicada por Guignard, Martinelli y Soares (2018). [131]
  • Botha-Brink, Bento Soares y Martinelli (2018) publican un estudio sobre la histología de los huesos de las extremidades y las historias de vida de Prozostrodon brasiliensis , Irajatherium hernandezi , Brasilodon quadrangularis y Brasilitherium riograndensis . [132]
  • Bonaparte y Crompton (2018) publican un estudio sobre el origen y las relaciones de los cinodontos ictidosaurios , es decir, los triteledóntidos y los terioherpétidos . [133]
  • Hoffman y Rowe (2018) describen una nidada grande (que comprende al menos 38 individuos) de perinatos bien conservados de Kayentatherium wellesi , encontrados con un presunto esqueleto materno, a partir de sedimentos del Jurásico Inferior de la Formación Kayenta (encontrada en tierras de la Nación Navajo ); [134] a la luz de este hallazgo, Benoit (2019) propone una nueva interpretación de registros anteriores de asociaciones entre cinodontos adultos y juveniles. [135]
  • Marsola et al. (2018) describen dientes de cinodonte (que representan un brasilodonto y una forma similar a Riograndia ) encontrados en la localidad Triásica de Brasil, que también produjo los fósiles de Sacisaurus agudoensis . [136]
  • Lautenschlager et al. (2018) publicaron un estudio sobre la evolución de la mandíbula de los mamíferos y no encontraron evidencia de una reducción simultánea del estrés en la articulación de la mandíbula y un aumento de la fuerza de mordida en taxones clave no mamíferos en la transición cinodonte-mamífero. [137]
  • Fiorelli et al. (2018) describen madrigueras de tetrápodos , probablemente producidas por pequeños eucinodontes , en la Formación Chañares del Triásico ( Argentina ). [138]
  • Jones et al. (2018) publicaron un estudio sobre la diversidad morfológica de las regiones vertebrales en sinápsidos no mamíferos y sobre su implicación para dilucidar la evolución de regiones anatómicamente distintas de las espinas de los mamíferos. [139]
  • LeBlanc et al. (2018) publicaron un estudio sobre la ontogenia de los dientes en una amplia gama de linajes de sinápsidos extintos , e interpretaron sus hallazgos como una indicación de que el sistema de unión de los dientes ligamentosos no es exclusivo de los mamíferos de la corona dentro de los sinápsidos. [140]

Nuevos taxones

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Ascendonano [141]

Gen. y sp. nov.

Válido

Spindler y otros.

Pérmico ( transición sakmariana - artinskiana )

Bosque petrificado de Chemnitz
( Formación Leukersdorf )

 Alemania

Miembro de la familia Varanopidae . El género incluye la nueva especie A. nestleri .

Gordodón [142]

Gen. y sp. nov.

Válido

Lucas , Rinehart y Celeskey

Pérmico temprano (Wolfcampiano temprano)

Formación Bursum

 Estados Unidos
( Nuevo México ) 

Miembro de la familia Edaphosauridae . La especie tipo es G. kraineri .

Gorynychus [143]

Gen. y sp. nov.

Válido

Kammerer y Masyutin

Pérmico

Camas rojas de Kotelnich

 Rusia
( Óblast de Kirov ) 

Un terocéfalo . La especie tipo es G. masyutinae .

Leucocefalia [144]

Gen. y sp. nov.

Válido

Día y otros.

Pérmico (principios del Wuchiapingiano )

Zona de ensamblaje de Tropidostoma de la cuenca principal del Karoo

 Sudáfrica

Biarmosuquio perteneciente a la familia Burnetiidae . La especie tipo es L. wewersi .

Lisowicia [145]

Gen. y sp. nov.

Sulej y Niedźwiedzki

Triásico tardío ( Noriano tardío - Rético temprano )

 Polonia

Un dicinodonte gigantesco que alcanza una masa corporal estimada de 9 toneladas. La especie tipo es L. bojani . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2019.

Microvaranops [141]

Gen. y sp. nov.

Válido

Spindler y otros.

Pérmico ( Guadalupiano )

Formación Abrahamskraal

 Sudáfrica

Miembro de la familia Varanopidae . El género incluye la nueva especie M. parentis .

Nochnitsa [146]

Gen. y sp. nov.

Válido

Kammerer y Masyutin

Pérmico

Camas rojas de Kotelnich

 Rusia
( Óblast de Kirov ) 

Un gorgonopsiano . La especie tipo es N. geminidens .

Pentasaurio [147]

Gen. y sp. nov.

Válido

Cámara

Triásico tardío

Formación Elliot

 Sudáfrica

Dicinodonte de la familia Stahleckeriidae . La especie tipo es P. goggai .

Polonodonte [148]

Gen. y sp. nov.

Válido

Sulej y otros.

Triásico Tardío ( Carniano )

 Polonia

Eucinodonte no mamífero . El género incluye la nueva especie P. woznikiensis . Anunciado en 2018; la versión final del artículo que lo nombra se publicó en 2020.

Siriusgnathus [149]

Gen. y sp. nov.

Válido

Pavanatto y otros.

Triásico tardío ( Carniano o Noriense [150] )

Supersecuencia de Santa María

 Brasil

Un cinodonte traversodóntido . El género incluye la nueva especie S. niemeyerorum .

Mamíferos

Otros animales

Investigación

Nuevos taxones

NombreNovedadEstadoAutoresEdadLocalidad tipoPaísNotas

Acanthodesia variegata [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Membraniporidae .

Acoscinopleura albaruthenica [209]

noviembre esp.

Válido

Koromyslova, Martha y Pakhnevich

Cretácico tardío ( Campaniano tardío )

 Bielorrusia

Un briozoo perteneciente al grupo Flustrina y a la familia Coscinopleuridae.

Acoscinopleura crassa [209]

noviembre esp.

Válido

Koromyslova, Martha y Pakhnevich

Cretácico tardío ( Maastrichtiano )

 Alemania

Un briozoo perteneciente al grupo Flustrina y a la familia Coscinopleuridae.

Acoscinopleura dualis [209]

noviembre esp.

Válido

Koromyslova, Martha y Pakhnevich

Cretácico tardío ( Maastrichtiano )

 Alemania

Un briozoo perteneciente al grupo Flustrina y a la familia Coscinopleuridae.

Acoscinopleura oculta [209]

noviembre esp.

Válido

Koromyslova, Martha y Pakhnevich

Cretácico tardío ( Maastrichtiano )

 Alemania

Un briozoo perteneciente al grupo Flustrina y a la familia Coscinopleuridae.

'Aechmella' viskovae [210]

noviembre esp.

Válido

Koromyslova, Baraboshkin y Martha

Cretácico tardío

 Kazajstán

Un briozoo .

Echmellina [211]

Gen. y comb. nov.

Válido

Taylor, Martha y Gordon

Cretácico ( Cenomaniano ) al Paleoceno ( Daniense ).

 Dinamarca Francia Alemania Reino Unido Estados Unidos
 
 
 
 

Briozoo perteneciente al grupo Flustrina y a la familia Onychocellidae . La especie tipo es "Aechmella" falcifera Voigt (1949); El género también incluye "Homalostega" anglica Brydone (1909), "Aechmella" bassleri Voigt (1924), "Homalostega" biconvexa Brydone (1909), "Cellepora" hippocrepis Goldfuss (1826), "Aechmella" indefessa Taylor & McKinney (2006), "Aechmella" latistoma Berthelsen (1962), "Aechmella" linearis Voigt (1924), "Aechmella" parvilabris Voigt (1924), "Aechmella" pindborgi Berthelsen (1962), "Semieschara" proteus Brydone (1912), " Monoporella " seriata Levinsen (1925), "Aechmella" stenostoma Voigt (1930), "Reptescharinella" transversa d'Orbigny (1852) y "Aechmella" ventricosa Voigt (1924).

Alacaris [212]

Gen. y sp. nov.

Válido

Yang y otros.

Etapa 3 del Cámbrico

Formación Hongjingshao

 Porcelana

Artrópodo primitivo emparentado con Chengjiangocaris . La especie tipo es A. mirabilis .

Allonnia desnuda [213]

noviembre esp.

Válido

Cong y otros.

Etapa 3 del Cámbrico

Ciudad de almacenamiento de Chengjiang

 Porcelana

Un canciller .

Allonnia tenuis [214]

noviembre esp.

Válido

Zhao, Li y Selden

Cámbrico temprano

 Porcelana

Un canciller .

Arnaopora [215]

Gen. y sp. nov.

Válido

Suárez Andrés & Wyse Jackson

devoniano

Formación Moniello

 España

Briozoo perteneciente al grupo Fenestrata . El género incluye la nueva especie A. sotoi .

Aspidostoma armatum [216]

noviembre esp.

Válido

Pérez, López-Gappa & Griffin

Mioceno temprano

Formación Monte León

 Argentina

Un briozoo queilostomado perteneciente a la familia Aspidostomatidae .

Aspidostoma roveretoi [216]

noviembre esp.

Válido

Pérez, López-Gappa & Griffin

Mioceno tardío

Formación Puerto Madryn

 Argentina

Un briozoo queilostomado perteneciente a la familia Aspidostomatidae .

Aspidostoma tehuelche [216]

noviembre esp.

Válido

Pérez, López-Gappa & Griffin

Mioceno temprano a medio

Formación Chenque

 Argentina

Un briozoo queilostomado perteneciente a la familia Aspidostomatidae .

Austroscolex sinensis [217]

noviembre esp.

Válido

Liu y otros.

Cámbrico ( Paibiano )

 Porcelana

Un paleoscolecido .

Axilosoecia [218]

Gen. y 2 sp. nov.

Válido

Taylor y Brezina

Paleoceno ( Daniense ) a principios del Mioceno

Formación Roca

 Argentina Nueva Zelanda
 

Briozoo perteneciente al grupo Tubuliporina y a la familia Oncousoeciidae . La especie tipo es A. giselae ; el género también incluye a A. mediorubiensis .

Burocracia [219]

Gen. y sp. nov.

Wachtler y Ghidoni

Triásico temprano - medio

 Italia

Un poliqueto . La especie tipo es B. kraxentrougeri .

Catenagrafto [220]

Gen. y sp. nov.

Válido

Vandenberg

Ordovícico ( Floiano tardío )

 Australia

Graptolito perteneciente al grupo Sinograptina y a la familia Sigmagraptidae . La especie tipo es C. communalis .

Characodoma wesselinghi [35]

noviembre esp.

Válido

Di Martino y Taylor

Holoceno

 Indonesia

Un briozoo perteneciente al grupo Cheilostomata y a la familia Cleidochasmatidae .

Cheethamia aktolagayensis [210]

noviembre esp.

Válido

Koromyslova, Baraboshkin y Martha

Cretácico tardío

 Kazajstán

Un briozoo .

Codositubulus [221]

Gen. y sp. nov.

Válido

Gámez Vintaned et al.

cambriano

 España

Animal tubícola de ubicación filogenética incierta. La especie tipo es C. grioensis .

Colospongia lenis [222]

noviembre esp.

Válido

Malysheva

Pérmico tardío

 Rusia
( Krai de Primorie ) 

Una esponja .

Cornulites gondwanensis [223]

noviembre esp.

Válido

Gutiérrez-Marco & Vinn

Ordovícico ( Hirnantiense )

 Marruecos

Un miembro de Cornulitida .

Cupitheca convexa [224]

noviembre esp.

Válido

Sol y otros.

cambriano

Formación Manto

 Porcelana

Un miembro de Hyolitha .

Cistomesón [225]

Gen. y sp. nov.

Válido

Ernst, Krainer y Lucas

Carbonífero ( Misisipiense )

Formación del valle del lago

 Estados Unidos
( Nuevo México ) 

Briozoo perteneciente al grupo Cystoporata . El género incluye la nueva especie C. sierraensis .

Decoritheca?hageni [226]

noviembre esp.

Válido

Peel y Willman

Serie cámbrica 2

Buena Formación

 Tierra Verde

Un miembro de Hyolitha .

Demirastrites campograptoides [227]

noviembre esp.

Válido

Štorch y melchin

Silúrico ( Aeroniano )

 República Checa

Un graptolito perteneciente a la familia Monograptidae .

Dictyocyathus aranosensis [228]

noviembre esp.

Válido

Perejón et al.

Cámbrico temprano

 Namibia

Un miembro de Archaeocyatha .

Didymograptellus kremastus [229]

noviembre esp.

Válido

Vandenberg

Ordovícico ( Floiano )

 Australia Nueva Zelanda Noruega Estados Unidos
 
 
 

Un graptolito perteneciente al grupo Dichograptina y a la familia Pterograptidae .

Erismacoscinus ganigobisensis [228]

noviembre esp.

Válido

Perejón et al.

Cámbrico temprano

 Namibia

Un miembro de Archaeocyatha .

'Escharoides' charbonnieri [230]

noviembre esp.

Válido

Di Martino, Martha y Taylor

Cretácico tardío ( Maastrichtiano )

 Madagascar

Un briozoo .

Fehiborypora [230]

Gen. y comb. nov.

Válido

Di Martino, Martha y Taylor

Cretácico tardío ( Maastrichtiano )

 Madagascar

Un briozoo ; un nuevo género para "Cribilina" labiatula Canu (1922).

Gibbavasis [231]

Gen. y sp. nov.

Vaziri, Majidifard y Laflamme

Ediacárico

Serie Kushk

 Irán

Organismo con forma de vaso de ubicación filogenética incierta, posiblemente un animal de grado porífero. La especie tipo es G. kushkii .

Homoctenus katzerii [232]

noviembre esp.

Válido

Comniskey y Ghilardi

Devónico ( Pragiense tardío o Emsiense tardío )

Formación Ponta Grossa

 Brasil

Un miembro de Tentaculitoidea perteneciente al orden Homoctenida y a la familia Homoctenidae.

Calalitia [226]

Gen. y sp. nov.

Válido

Peel y Willman

Serie cámbrica 2

Buena Formación

 Tierra Verde

Miembro de Hyolitha . El género incluye la nueva especie K. myliuserichseni .

Kamilocela [211]

Gen. y comb. nov.

Válido

Taylor, Martha y Gordon

Cretácico tardío ( Cenomaniano ) al Campaniano .

 República Checa Francia Alemania
 
 

Briozoo perteneciente al grupo Flustrina y a la familia Onychocellidae . La especie tipo es "Eschara" latilabris Reuss (1872); el género también incluye " Eschara" acis d'Orbigny (1851), "Onychocella" barbata Martha, Niebuhr & Scholz (2017), "Eschara" cenomana d'Orbigny (1851) y "Eschara" labiata Počta (1892).

Kenocharixa [233]

Gen. y sp. y comb. nov.

Válido

Dick, Sakamoto y Komatsu

Cretácico al Eoceno

 Japón Nueva Zelanda
 

Un briozoo queilostoma . El género incluye nuevas especies , K. kashimaensis , así como " Charixa goshouraensis" Dick, Komatsu, Takashima y Ostrovsky (2013) y " Conopeum " stamenocelloides Gordon y Taylor (2015).

Mínimos de Khmeria [234]

noviembre esp.

Válido

Wendt

Triásico Tardío ( Carniano )

 Italia

Una ascidia perteneciente al nuevo orden Khmeriamorpha .

Khmeria stolonifera [234]

noviembre esp.

Válido

Wendt

Pérmico tardío , posiblemente también Carbonífero

 Camboya Tailandia Vietnam
 
 

Una ascidia perteneciente al nuevo orden Khmeriamorpha .

Kimberella persii [231]

noviembre esp.

Vaziri, Majidifard y Laflamme

Ediacárico

Serie Kushk

 Irán

Un molusco de tallo bilateral .

Escólex de Kootenay [235]

Gen. y sp. nov.

Válido

Nanglu y Caron

cambriano

Esquisto de Burgess

 Canadá
( Columbia Británica ) 

Un poliqueto . El género incluye la nueva especie K. barbarensis .

Láminacaris [236]

Gen. y sp. nov.

Válido

Guo y otros.

Etapa 3 del Cámbrico

 China Estados Unidos ? [237]
 

Miembro de Radiodonta . El género incluye la nueva especie L. chimera .

Lenisambuladora [238]

Gen. y sp. nov.

Válido

Ou y Mayer

Etapa 3 del Cámbrico

Formación Heilinpu

 Porcelana

Un lobopodio . La especie tipo es L. humboldti .

Lunulites marambionis [239]

noviembre esp.

Válido

Hara y otros.

Eoceno

Formación La Meseta

Antártida
( Isla Seymour )

Un briozoo perteneciente al grupo Cheilostomata y a la familia Lunulitidae.

Marginaria prolixa [233]

noviembre esp.

Válido

Dick, Sakamoto y Komatsu

Cretácico tardío ( Campaniano )

Grupo Himenoura

 Japón

Un briozoo queilostoma .

Mateolaspongia [240]

Gen. y sp. nov.

Válido

Botting, Zhang y Muir

Ordovícico ( Hirnantiense )

Formación Wenchang

 Porcelana

Esponja , posiblemente un rosélido de tallo . La especie tipo es M. hemiglobosa .

Melychocella biperforata [216]

noviembre esp.

Válido

Pérez, López-Gappa & Griffin

Mioceno temprano

Formación Chenque
Formación Monte León

 Argentina

Un briozoo queilostomado perteneciente a la familia Aspidostomatidae .

Micrascidites gótico [241]

noviembre esp.

Válido

Sagular, Yümün y Meriç

Cuaternario

 Pavo

Una ascidia didemnida .

Micropora nordenskjoeldi [239]

noviembre esp.

Válido

Hara y otros.

Eoceno

Formación La Meseta

Antártida
( Isla Seymour )

Un briozoo perteneciente al grupo Cheilostomata y a la familia Microporidae .

Minitaspongia [242]

Gen. y sp. nov.

Válido

Carrera y col.

Carbonífero ( Tournaisiano )

Formación Agua de Lucho

 Argentina

Esponja hexactinellida perteneciente a la familia Dictyospongiidae. La especie tipo es M. parvis .

Monniotia minutula [241]

noviembre esp.

Válido

Sagular, Yümün y Meriç

Cuaternario

 Pavo

Una ascidia didemnida .

Nasaaraqia [226]

Gen. y sp. nov.

Válido

Peel y Willman

Serie cámbrica 2

Buena Formación

 Tierra Verde

Miembro de Hyolitha . El género incluye la nueva especie N. hyptiotheciformis .

Neotrematopora lyaoilensis [243]

noviembre esp.

Válido

Tolokonnikova y Ponomarenko

Devónico ( Frasniano )

Formación de liaiol

 Rusia

Un briozoo .

Nevadotheca boerglumensis [226]

noviembre esp.

Válido

Peel y Willman

Serie cámbrica 2

Buena Formación

 Tierra Verde

Un miembro de Hyolitha .

Nidelric gaoloufangensis [214]

noviembre esp.

Válido

Zhao, Li y Selden

Cámbrico temprano

 Porcelana

Un animal con espinas de un solo elemento.

Nogrobs moroccensis [244]

noviembre esp.

Válido

Schlögl y col.

Jurásico medio ( Bajociense )

 Marruecos

Un poliqueto serpúlido .

Onuphionella corusca [245]

noviembre esp.

Válido

Muir y otros.

Ordovícico ( Sandia )

Primer grupo de bani

 Marruecos

Tubos aglutinados producidos por un animal desconocido. Publicado en línea en 2018; la versión final del artículo que lo nombra se publicó en 2022.

Otionellina antarctica [239]

noviembre esp.

Válido

Hara y otros.

Eoceno

Formación La Meseta

Antártida
( Isla Seymour )

Un briozoo perteneciente al grupo Cheilostomata y a la familia Otionellidae .

Otionellina eocenica [239]

noviembre esp.

Válido

Hara y otros.

Eoceno

Formación La Meseta

Antártida
( Isla Seymour )

Un briozoo perteneciente al grupo Cheilostomata y a la familia Otionellidae .

Pedunculoteca [246]

Gen. y sp. nov.

Válido

Sun, Zhao y Zhu en Sun et al.

Etapa 3 del Cámbrico

Formación Yu'anshan

 Porcelana

Miembro de Hyolitha perteneciente al grupo Orthothecida . El género incluye la nueva especie P. diania .

'Plagioecia' antanihodiensis [230]

noviembre esp.

Válido

Di Martino, Martha y Taylor

Cretácico tardío ( Maastrichtiano )

 Madagascar

Un briozoo .

Platychelyna secunda [247]

noviembre esp.

Válido

López-Gappa, Pérez & Griffin

Mioceno temprano

Formación Monte León

 Argentina

Un briozoo .

Pleurocodonellina javanensis[35]

Sp. nov

Valid

Di Martino & Taylor

Early Pleistocene

Pucangan Formation

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Smittinidae.

Protohertzina compressa[248]

Sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

 Estonia

A member of the total group of Chaetognatha.

Qinscolex[249]

Gen. et sp. nov

Valid

Liu et al.

Cambrian (Fortunian)

 China

A cycloneuralian tentatively assigned to total-group Scalidophora. Genus includes new species Q. spinosus.

Ramskoeldia[250]

Gen. et 2 sp. nov

Valid

Cong et al.

Cambrian

Maotianshan Shales

 China

A member of Radiodonta related to Amplectobelua. Genus includes new species R. platyacantha and R. consimilis.

Reptomultisparsa stratosa[251]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

 Russia

A bryozoan.

Rhagasostoma aralense[252]

Sp. nov

Valid

Koromyslova et al.

Late Cretaceous (Campanian)

 Uzbekistan

A bryozoan belonging to the group Flustrina and the family Onychocellidae.

Rhagasostoma brydonei[252]

Sp. nov

Valid

Koromyslova et al.

Late Cretaceous (Turonian and Coniacian)

 United Kingdom

A bryozoan belonging to the group Flustrina and the family Onychocellidae.

Rhagasostoma operculatum[252]

Sp. nov

Valid

Koromyslova et al.

Late Cretaceous (Campanian)

 Turkmenistan

A bryozoan belonging to the group Flustrina and the family Onychocellidae.

Schistodictyon webbyi[253]

Sp. nov

Valid

Zhen

Late Silurian

 Australia

A sponge belonging to the class Stromatoporoidea, order Clathrodictyida and the family Anostylostromatidae.

Seqineqia[254]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is S. bottingi.

"Serpula" calannai[255]

Sp. nov

Valid

Sanfilippo et al.

Permian

 Italy.

A serpulid polychaete.

"Serpula" prisca[255]

Sp. nov

Valid

Sanfilippo et al.

Permian

 Italy.

A serpulid polychaete.

Shaanxiscolex[256]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 4

 China

A palaeoscolecid. The type species is S. xixiangensis.

Shanscolex[249]

Gen. et sp. nov

Valid

Liu et al.

Cambrian (Fortunian)

 China

A cycloneuralian tentatively assigned to total-group Scalidophora. Genus includes new species S. decorus.

Sisamatispongia[254]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is S. erecta.

Sonarina[257]

Gen. et sp. nov

Valid

Taylor & Di Martino

Late Cretaceous (late Campanian or early Maastrichtian)

Kallankurichchi Formation

 India

A cheilostome bryozoan belonging to the family Onychocellidae. Genus includes new species S. tamilensis.

Stanleycaris[186]

Gen. et sp. nov

Valid

Pates, Daley & Ortega-Hernández

Cambrian

Stephen Formation
Wheeler Formation

 Canada
( British Columbia)
 United States
( Utah)

A member of Radiodonta belonging to the group Hurdiidae. The type species is S. hirpex. The original description of the taxon appeared in an online supplement to the article published by Caron et al. (2010),[258] making in invalid until it was validated by Pates, Daley & Ortega-Hernández (2018).[185][186]

Styliolina langenii[232]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (middle to late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Dacryoconarida and the family Styliolinidae.

Sullulika[226]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A selkirkiid stem-priapulid. Genus includes new species S. broenlundi.

Tallitaniqa[254]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is T. petalliformis.

Tarimspira artemi[259]

Sp. nov

Valid

Peel

Cambrian Stage 4

Henson Gletscher Formation

 Greenland

An animal of uncertain phylogenetic placement described on the basis of fossil sclerites, possibly representing a stage in paraconodont evolution prior to the development of a basal cavity.

Tentaculites kozlowskii[232]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Tentaculitidae.

Tentaculites paranaensis[232]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Tentaculitidae.

Thanahita[260]

Gen. et sp. nov

Siveter et al.

Silurian (Wenlock)

Herefordshire Lagerstätte

 United Kingdom.

A relative of Hallucigenia. The type species is T. distos.

Trapezovitus malinkyi[226]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A member of Hyolitha.

Turbicellepora yasuharai[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Celleporidae.

Uniconus ciguelii[232]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Uniconidae.

Zardinisoma[234]

Gen. et 5 sp. nov

Valid

Wendt

Permian (Wordian) to Triassic (Carnian)

San Cassiano Formation

 Italy
 Japan

An ascidian belonging to the new order Khmeriamorpha. The type species is Z. cassianum; genus also includes Z. japonicum, Z. pauciplacophorum, Z. pyriforme and Z. polyplacophorum.

Zhijinites tumourifomis[261]

Sp. nov

Valid

Pan, Feng & Chang

Cambrian (Terreneuvian)

Yanjiahe Formation

 China

A small shelly fossil.

Foraminifera

Research

  • A study on the effects of differential ocean acidification at the Cretaceous-Paleocene transition on the planktonic foraminiferal assemblages from the Farafra Oasis (Egypt) is published by Orabi et al. (2018).[262]
  • A wide variety of morphological abnormalities in planktic foraminiferal tests from the earliest Danian, mainly from Tunisian sections, is described by Arenillas, Arz & Gilabert (2018).[263]
  • A study on the impact of the climatic and environmental perturbation on the morphology of foraminifera living during the Paleocene–Eocene Thermal Maximum is published by Schmidt et al. (2018).[264]
  • Taxonomic compilation and partial revision of early Eocene deep-sea benthic Foraminifera is presented by Arreguín-Rodríguez et al. (2018).[265]
  • A study on the responses of two species of foraminifera (extant Truncorotalia crassaformis and extinct Globoconella puncticulata) to climate change during the late Pliocene to earliest Pleistocene intensification of Northern Hemisphere glaciation (3.6–2.4 million years ago) is published by Brombacher et al. (2018).[266]

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotes

Alabamina heyae[267]

Sp. nov

Valid

Fox et al.

Oligocene

 Germany

A member of Rotaliida belonging to the family Alabaminidae.

Alicantina[268]

Gen. et comb. nov

Valid

Soldan, Petrizzo & Silva

Eocene

Dunghan Formation
Langley Formation
Lizard Springs Formation
Navet Formation
Richmond Formation
Shaheed Ghat Formation
Thebes Formation
Universidad Formation

 Cuba
 Egypt
 Italy
 Jamaica
 Pakistan
 Spain
 Syria
 Trinidad and Tobago
 Tunisia
Atlantic Ocean
Indian Ocean
(Kerguelen Plateau)
Pacific Ocean
(Caroline Abyssal Plain
Shatsky Rise)

A member of the family Globigerinidae. The type species is "Globigerina" lozanoi Colom (1954); genus also includes "Globigerina" prolata Bolli (1957).

Ammobaculites deflectus[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

Ammobaculites knorringensis[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

Ammobaculoides dhrumaensis[270]

Sp. nov

Valid

Kaminski, Malik & Setoyama

Middle Jurassic (Bajocian)

Dhruma Formation

 Saudi Arabia

A member of Lituolida belonging to the family Spiroplectamminidae.

Asterigerinella jonesi[271]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

 India

Brizalina keralensis[271]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

 India

Chiloguembelina adriatica[272]

Sp. nov

Valid

Premec Fucek, Hernitz Kucenjak & Huber

Eocene and Oligocene

Cipero Formation

 Cuba
 Syria
 Trinidad and Tobago
Adriatic Sea
Gulf of Mexico
Pacific Ocean
(Ontong Java Plateau)

A member of Guembelitrioidea belonging to the family Chiloguembelinidae.

Chiloguembelina andreae[272]

Sp. nov

Valid

Premec Fucek, Hernitz Kucenjak & Huber

Late Eocene and early Oligocene

 France
 Syria
 United States
( New Jersey)

A member of Guembelitrioidea belonging to the family Chiloguembelinidae.

Ciperoella[273]

Gen. et comb. nov

Valid

Olsson & Hemleben in Olsson et al.

Late Eocene to early Miocene

Cipero Formation
Tingnaro Formation

 Australia
 Austria
 Belgium
 Colombia
 Cuba
 France
 Italy
 Malta
 Romania
 Spain
 Tanzania
 Trinidad and Tobago
 United States
( Mississippi)
 Venezuela
Atlantic Ocean
Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae. The type species is "Globigerina" ciperoensis Bolli (1954); genus also includes "Globigerina" anguliofficinalis Blow (1969), "Globigerina ciperoensis" angulisuturalis Bolli (1957) (raised to the rank of the species Ciperoella angulisuturalis) and "Globigerina" fariasi Bermúdez (1961).

Colominella piriniae[274]

Sp. nov

Valid

Mancin & Kaminski

Pliocene

 Italy

A member of Textulariida.

Cyclammina saidovae[275]

Nom. nov

Valid

Hanagata

Neogene

 Japan

A species of Cyclammina; a replacement name for Cyclammina pseudopusilla Hanagata (2003).

Dentoglobigerina eotripartita[276]

Sp. nov

Valid

Pearson, Wade & Olsson in Wade et al.

Eocene and Oligocene

Navet Formation

 Indonesia
 Tanzania
 Trinidad and Tobago
 United States
( Mississippi)
Adriatic Sea

A member of Globigerinoidea belonging to the family Globigerinidae.

Douglassites[277]

Gen. et sp. nov

Valid

Read & Nestell

Carboniferous (late Pennsylvanian)

Riepe Spring Limestone

 United States
( Nevada)

A member of Fusulinida belonging to the family Schubertellidae. Genus includes new species D. sprucensis.

Elazigina siderea[278]

Sp. nov

Valid

Consorti & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran
 Oman
 Turkey

A member of the group Rotaliida belonging to the family Rotaliidae.

Globigerina archaeobulloides[279]

Sp. nov

Valid

Hemleben & Olsson in Spezzaferri et al.

Oligocene

Shubuta Formation

 United States
( Alabama)

A species of Globigerina.

Globigerinella roeglina[279]

Sp. nov

Valid

Spezzaferri & Coxall in Spezzaferri et al.

Oligocene, possibly Miocene

 Romania
Gulf of Mexico
Indian Ocean

A member of Globigerinoidea belonging to the family Globigerinidae.

Globigerinoides joli[280]

Sp. nov

Valid

Spezzaferri in Spezzaferri, Olsson & Hemleben

Miocene

Caribbean Sea
Gulf of Mexico
South Atlantic Ocean
Indian Ocean
(Kerguelen Plateau)

A species of Globigerinoides.

Globigerinoides neoparawoodi[280]

Sp. nov

Valid

Spezzaferri in Spezzaferri, Olsson & Hemleben

Miocene

North-western Pacific Ocean

A species of Globigerinoides.

Globoconella pseudospinosa[281]

Sp. nov

Valid

Crundwell

Early Pliocene

Southwest Pacific Ocean

Globorotaloides atlanticus[282]

Sp. nov

Valid

Spezzaferri & Coxall

Oligocene and Miocene

Atlantic Ocean
Indian Ocean
Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae.

Globoturborotalita eolabiacrassata[283]

Sp. nov

Valid

Spezzaferri & Coxall in Spezzaferri et al.

Eocene to Miocene

 Belgium
 France
 Romania
 Tanzania
 United States
( New Jersey)
Atlantic Ocean
Indian Ocean
(Kerguelen Plateau)
Pacific Ocean
(Nazca Plate)

A member of Globigerinoidea belonging to the family Globigerinidae.

Globoturborotalita paracancellata[283]

Sp. nov

Valid

Olsson & Hemleben in Spezzaferri et al.

Eocene and Oligocene

Western Atlantic Ocean
Gulf Coast of the United States

A member of Globigerinoidea belonging to the family Globigerinidae.

Globoturborotalita pseudopraebulloides[283]

Sp. nov

Valid

Olsson & Hemleben in Spezzaferri et al.

Oligocene and Miocene

 Australia
 Austria
 Tanzania
 Trinidad and Tobago
Gulf of Mexico
South Atlantic Ocean
Western equatorial Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae.

Haplophragmoides perlobatus[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

Hemisphaerammina apta[284]

Sp. nov

Valid

McNeil & Neville

Early Eocene

Beaufort Sea

A member of the order Astrorhizida and the suborder Hemisphaeramminineae.

Ichnusella senerae[285]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–early Aptian)

 Austria
 France
 Italy
 Romania
 Turkey
 Croatia?
 Serbia?
 Ukraine?

A member of the group Spirillinida belonging to the family Spirillinidae.

Labrospira lenticulata[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

Lenticulina stewarti[267]

Sp. nov

Valid

Fox et al.

Oligocene (Rupelian)

 Germany

A member of the group Nodosariacea belonging to the family Vaginulinidae.

Moulladella[286]

Gen. et sp. nov

Valid

Bucur & Schlagintweit

Early Cretaceous (Valanginian-Barremian)

 Austria
 Bulgaria
 France
 Romania
 Serbia
 Spain

A member of Loftusiida belonging to the family Pfenderinidae. The type species is "Meyendorffina (Paracoskinolina)" jourdanensis Foury & Moullade (1966).

Neodubrovnikella[287]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

Genus includes new species N. maastrichtiana.

Neonavarella[288]

Gen. et sp. nov

Valid

Giusberti, Kaminski & Mancin

Paleocene (Thanetian)

Scaglia Rossa Formation

 Italy

A member of Lituolida belonging to the family Ammobaculinidae. The type species is N. sudalpina.

Neotrocholina theodori[285]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–early Aptian)

 Austria
 France
 Iran
 Poland
 Romania
 Turkey

A member of the group Spirillinida belonging to the family Spirillinidae.

Nonion cepa[267]

Sp. nov

Valid

Fox et al.

Late Oligocene to early Miocene

Central North Sea basin
 Netherlands

A member of the group Rotaliida belonging to the family Nonionidae.

Nummulites fayumensis[289]

Sp. nov

Valid

Al Menoufy & Boukhary

Eocene (Lutetian)

 Egypt

A nummulite.

Nummulites tenuissimus[289]

Sp. nov

Valid

Al Menoufy & Boukhary

Eocene (Lutetian)

 Egypt

A nummulite.

Omphalocyclus macroporus ellipsoides[290]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

 Iraq

Omphalocyclus macroporus maukabensis[290]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

 Iraq

Palaeoelphidium[291]

Gen. et comb. nov

Valid

Consorti, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

 Iran
 Iraq
 Qatar

A member of the family Elphidiellidae; a new genus for "Elphidiella" multiscissurata Smout (1955).

Paralachlanella[271]

Gen. et sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

 India

Genus includes new species P. pilleri.

Pseudomassilina quilonensis[271]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

 India

Pseudopeneroplis[292]

Gen. et sp. nov

Valid

Consorti in Consorti et al.

Late Cretaceous (late Cenomanian)

 Peru

A member of the superfamily Soritoidea and the family Praerhapydioninidae. Genus includes new species P. oyonensis.

Quiltyella[279]

Gen. et comb. nov

Valid

Coxall & Spezzaferri in Spezzaferri et al.

Oligocene and Miocene

 Austria
 Romania
East Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae. The type species is "Clavigerinella" nazcaensis Quilty (1976); genus also includes "Hastigerinella" clavacella Rögl (1969).

Ranikothalia daviesi[293]

Sp. nov

Valid

Sirel & Deveciler

Early Eocene

 Turkey

A member of the group Rotaliida belonging to the family Nummulitidae.

Reophax pyriloculus[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

Schubertella luisorum[294]

Sp. nov

Valid

Villa in Villa, Merino-Tomé & Martín Llaneza

Carboniferous (Moscovian)

La Nueva Limestone
Meruxalín Limestone
Sutu Limestone

 Spain

A member of Fusulinida.

Streptochilus tasmanensis[295]

Sp. nov

Valid

Smart & Thomas

Oligocene

South Tasman Rise

A member of Bolivinoidea belonging to the family Bolivinidae.

Subbotina projecta[296]

Sp. nov

Valid

Olsson, Pearson & Wade in Wade et al.

Late Eocene and Oligocene

Yazoo Formation

 Tanzania
 United States
( Alabama
 Mississippi)
Atlantic Ocean
Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae.

Textularia pernana[269]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic - Early Cretaceous

Agardhfjellet Formation

 Norway

A species of Textularia.

Trilobatus altospiralis[280]

Sp. nov

Valid

Spezzaferri in Spezzaferri, Olsson & Hemleben

Miocene

South Pacific Ocean

A member of Globigerinoidea belonging to the family Globigerinidae.

Trochammina jakovlevae[297]

Sp. nov

Valid

Glinskikh & Nikitenko

Middle Jurassic (late Bajocian-early Bathonian)

Churkino Formation

 Russia

A member of the family Trochamminidae.

Uvigerina kingi[267]

Sp. nov

Valid

Fox et al.

Middle Miocene

 Netherlands
Southern and central North Sea

A member of the group Rotaliida belonging to the family Uvigerinidae.

Other organisms

Research

  • A study on putative stromatolites described from the 3,700-Myr-old rocks from the Isua supracrustal belt (Greenland) by Nutman et al. (2016)[298] is published by Allwood et al. (2018), who interpret these putative stromatolites as more likely to be structures of non-biological origin.[299]
  • Carbon isotope analyses of 11 microbial fossils from the ~3,465-million-year-old Apex chert (Australia) are published by Schopf et al. (2018), who interpret two of the five studied species as primitive photosynthesizers, one as an Archaeal methane producer, and two as methane consumers.[300]
  • The oldest well-preserved microbial mats fabrics are described from the ≈3,472-million-year-old Middle Marker horizon, Barberton Greenstone Belt (South Africa) by Hickman-Lewis et al. (2018).[301]
  • Direct fossil evidence for life on land 3,220 million years ago in the form of terrestrial microbial mats is reported from the Moodies Group (South Africa) by Homann et al. (2018).[302]
  • Microfossils representing 18 morphotypes are reported from the c. 2.4 billion years old Turee Creek Group (Western Australia) by Barlow & Van Kranendonk (2018).[303]
  • Ten representative types of exceptionally well-preserved mat-related structures, interpreted as likely to be of biological origin and including putative microbial mats and discoidal microbial colonies, are reported from the 2.1-billion-year-old Francevillian series in Gabon by Aubineau et al. (2018).[304]
  • A study on the chemical, isotopic and molecular structural characteristics of the putative multicellular eukaryote fossils from carbonaceous compressions in the 1.63 billion years old Tuanshanzi Formation (China) is published by Qu et al. (2018).[305]
  • Intact porphyrins, the molecular fossils of chlorophylls, are described from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania) by Gueneli et al. (2018), who also study the nitrogen isotopic values of the fossil pigments, and interpret their findings as indicating that the oceans of that time were dominated by cyanobacteria, while larger planktonic algae were scarce.[306]
  • A study on the evolutionary history of bacteria is published by Louca et al. (2018), who interpret their findings as indicating that most bacterial lineages ever to have inhabited Earth are extinct.[307]
  • Bobrovskiy et al. (2018) report molecular fossils from organically preserved specimens of Beltanelliformis, and interpret the fossils as representing large spherical colonies of cyanobacteria.[308]
  • Discoid imprints sampled from the Precambrian terranes of central Dobruja (Romania) are described and assigned to the species Beltanelliformis brunsae by Saint Martin & Saint Martin (2018).[309]
  • A study on the age of the fossil red alga Bangiomorpha pubescens is published by Gibson et al. (2018).[310]
  • A reassessment of the anatomy and taxonomy of Orbisiana, based on a restudy of the rediscovered original type material of O. simplex, is published by Kolesnikov et al. (2018).[311]
  • A study on the positions of fossil specimens in the assemblages of Ediacaran fossils from Mistaken Point (Canada), as well as on their implications for inferring the interactions and associations between the Ediacaran organisms, is published by Mitchell & Butterfield (2018).[312]
  • A study on the height of Ediacaran organisms from Mistaken Point, evaluating the link between the increase of height and resource competition or greater offspring dispersal, is published by Mitchell & Kenchington (2018).[313]
  • Evidence of a radiation of the Ediacaran biota that witnessed the emergence and widespread implementation of novel, animal-style ecologies is presented by Tarhan et al. (2018), who argue that this transition was linked to the expansion of Ediacaran taxa into dynamic, shallow marine environments characterized by episodic disturbance and complex and diverse organically-bound substrates, and propose that younger, second-wave Ediacaran communities resulting from said radiation were part of an ecological and evolutionary continuum with Phanerozoic ecosystems.[314]
  • A study on the size range, ontogeny and palaeoenvironment of Rugoconites is published by Hall, Droser & Gehling (2018).[315]
  • Elliptical body fossils are described from the Ediacaran–Fortunian deposits of central Brittany (France) by Néraudeau et al. (2018), representing the first body fossils described from these deposits.[316]
  • A study on the sandstone- and limestone-hosted occurrences of Palaeopascichnus linearis (including material from a new locality in Arctic Siberia), indicative of a greater range of taxonomic and taphonomic variation, is published by Kolesnikov et al. (2018).[317]
  • A study on the organic-walled microfossils from the Cambrian strata in the stratotype section of the Precambrian–Cambrian boundary in the Burin Peninsula (Canada) is published by Palacios et al. (2018).[318]
  • Fossils interpreted as threads of filamentous cyanobacteria are described from the Cambrian (Guzhangian) Alum Shale Formation (Sweden) by Castellani et al. (2018).[319]
  • Enigmatic Devonian taxon Protonympha is interpreted as a possible post-Ediacaran vendobiont by Retallack (2018).[320]
  • Description of fossils of nonmarine diatoms belonging to the genus Actinocyclus from the Lower to Middle Miocene lacustrine deposits in Japan and a study on the possible causal links between the evolution of nonmarine planktonic diatoms and the climatic and environmental changes that occurred during the Miocene is published by Hayashi et al. (2018).[321]
  • A study on the cell-size frequency distributions across calcareous nanoplankton communities through the Paleocene–Eocene Thermal Maximum, on their population biomass and on the impact of climate change on their cellular characteristics is published by Gibbs et al. (2018).[322]

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotes

Alievium mangalensiense[323]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae.

Angochitina plicata[324]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

A chitinozoan.

Anhuithrix[325]

Gen. et comb. nov

Pang et al.

Tonian

Liulaobei Formation

 China

A member of Cyanobacteria; a new genus for "Omalophyma" magna Steiner (1994).

Attenborites[326]

Gen. et sp. nov

Valid

Droser et al.

Ediacaran

Rawnsley Quartzite

 Australia

An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae. Announced in 2018; the final version of the article naming it was published in 2020.

Cyclotella cassandrae[327]

Sp. nov

Valid

Paillès et al.

Pleistocene

 Guatemala

A diatom.

Cyclotella petenensis[327]

Sp. nov

Valid

Paillès et al.

Pleistocene

 Guatemala

A diatom.

Doulia[328]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A possible planktonic alga of uncertain phylogenetic placement. Genus includes new species D. rara.

Eolaminaria simigladiola[328]

Sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement.

Epistacheoides bozorgniai[329]

Sp. nov

Valid

Falahatgar, Vachard & Sarfi

Carboniferous (Viséan)

 Iran

An alga of uncertain phylogenetic placement.

Girvanella lianiformis[330]

Sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of Cyanobacteria belonging to the family Cyanophyceae.

Girvanella pituutaq[330]

Sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of Cyanobacteria belonging to the family Cyanophyceae.

Gorgonisphaeridium impexus[324]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

An acritarch.

Hylaecullulus[331]

Gen. et sp. nov

Valid

Kenchington, Dunn & Wilby

Ediacaran

 United Kingdom

A rangeomorph. The type species is H. fordi.

Leiosphaeridia gorda[332]

Sp. nov

Valid

Loron & Moczydłowska

Tonian

Visingsö Group
Wynniatt Formation

 Canada
 Sweden

A unicellular microorganism of algal affinities.

Lontohystrichosphaera[248]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation

 Estonia

A large ornamented acritarch of unresolved biological affinity, probably an ontogenetically and metabolically active eukaryotic organism rather than a dormant protistan cyst. Genus includes new species L. grandis.

Mallomonas aperturae[333]

Sp. nov

Valid

Siver

Middle Eocene

Giraffe Pipe locality

 Canada

A synurid, a species of Mallomonas.

Mallomonas bakeri[334]

Sp. nov

Valid

Siver

Middle Eocene

Giraffe Pipe locality

 Canada

A synurid, a species of Mallomonas.

Mallomonas skogstadii[334]

Sp. nov

Valid

Siver

Middle Eocene

Giraffe Pipe locality

 Canada

A synurid, a species of Mallomonas.

Mispertonia[335]

Gen. et sp. nov

Valid

McLean et al.

Carboniferous (Mississippian) to Late Permian or Early Triassic

 India
 United Kingdom

An organic-walled microfossil of uncertain phylogenetic placement. Genus includes new species M. desiccata.

Obamus[336]

Gen. et sp. nov

Valid

Dzaugis et al.

Ediacaran

Rawnsley Quartzite

 Australia

A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus. Announced in 2018; the final version of the article naming it was published in 2020.

Orpikania[330]

Gen. et sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of the family Epiphytaceae (a group of organisms of uncertain phylogenetic placement). Genus includes new species O. freucheni.

Pakupaku[337]

Gen. et sp. nov

Valid

Riedman, Porter & Calver

Tonian

Black River Dolomite

 Australia

A vase-shaped microfossil. Genus includes new species P. kabin.

Pierceites deccanensis[338]

Sp. nov

Valid

Prasad et al.

Late Cretaceous (Maastrichtian)

 India

A dinoflagellate belonging to the family Peridiniaceae.

Pseudoalievium[323]

Gen. et 2 sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae. Genus includes new species P. parekklisiense and P. inflatum.

Pseudoaulophacus decoratus[323]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae.

Retiranus[248]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

 Estonia
 Lithuania

A sheet-like or funnel-shaped organism of unresolved biological affinity. Genus includes new species R. balticus.

Rugophyca[328]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement. Genus includes new species R. longa.

Saarinomorpha[339]

Gen. et sp. nov

Valid

Kolosov & Sofroneeva

Vendian

 Russia

A tubiform organic-walled segmented microfossil, resembling Saarina juliae but smaller by one–two orders of magnitude. Genus includes new species S. infundibularis.

Singulariphyca[328]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement. Genus includes new species S. ramosa.

Stellarossica[340]

Gen. et comb. nov

Valid

Vorob'eva & Sergeev

Precambrian

Ura Formation

 Russia

A large acanthomorph acritarch. Genus includes new species S. ampla.

Synsphaeridium parahioense[341]

Sp. nov

Valid

Yin et al.

Cambrian Series 3

 India

An acritarch.

Tristratothallus[342]

Gen. et sp. nov

Valid

Edwards et al.

Silurian (Ludfordian)

Downton Castle Sandstone Formation

 United Kingdom

A nematophyte belonging to the family Nematothallaceae. Genus includes new species T. ludfordensis.

Vendotaenia pavimentpes[343]

Sp. nov

Valid

Yang & Qin in Yang et al.

Ediacaran

Dengying Formation

 China

An alga.

Vendotaenia sixiense[343]

Sp. nov

Valid

Yang & Qin in Yang et al.

Ediacaran

Dengying Formation

 China

An alga.

History of life in general

Research related to paleontology that concerns multiple groups of the organisms listed above.

  • A study on the history of life on Earth is published by McMahon & Parnell (2018), who argue that the subsurface "deep biosphere" outweighed the surface biosphere by about one order of magnitude for at least half of the history of life.[344]
  • A timescale of life on Earth, based on a reappraisal of the fossil material and new molecular clock analyses, is presented by Betts et al. (2018).[345]
  • A study on functional shifts in modern phototrophic microbial mats across redox gradients, and on its implications for inferring the metabolic transitions experienced during the Great Oxygenation Event, is published by Gutiérrez-Preciado et al. (2018).[346]
  • A study on living cyanobacteria, testing the hypothesis that planktonic single-celled cyanobacteria could drive the export of organic carbon from the surface to deep ocean in the Paleoproterozoic, is published by Kamennaya et al. (2018).[347]
  • A study on the abundance of bio-essential trace elements during the period in Earth's history known as the "Boring Billion" is published by Mukherjee et al. (2018), who interpret their findings as indicating that key biological innovations in eukaryote evolution (the appearance of first eukaryotes, the acquisition of certain cell organelles, the origin of multicellularity and the origin of sexual reproduction) probably occurred during the period of a scarcity of trace elements, followed by a broad-scale diversification of eukaryotes during the period of a relative abundance of trace elements.[348]
  • A study on the eukaryotic species richness during Tonian and Cryogenian is published by Riedman & Sadler (2018).[349]
  • A study on the Ediacaran ecosystem complexity is published by Darroch, Laflamme & Wagner (2018), who report evidence of the Ediacara biota forming complex-type communities throughout much of their stratigraphic range, and thus likely comprising species that competed for different resources and/or created niche for others.[350]
  • A study evaluating how temperature can govern oxygen supply to animals at oceanographic scales, as well as how temperature dynamically affects the absolute tolerance of partial pressure of oxygen in marine ectotherms, and re-examining bathymetric patterns within the Ediacaran fossil record in an ecophysiological context, is published by Boag et al. (2018).[351]
  • A study investigating possible water column redox controls on the distribution and growth of the oldest animal communities, based on data from the Ediacaran Nama Group (Namibia), is published by Wood et al. (2018).[352]
  • A study on the duration of the faunal transition from Ediacaran to Cambrian biota, as indicated by data from a composite section in Namibia, is published online by Linnemann et al. (2018).[353]
  • A study on the evolution of the diversity of animal body plans, based on data from extant and Cambrian animals, is published by Deline et al. (2018).[354]
  • A review of the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is published by Bicknell & Paterson (2018).[355]
  • A study on the timing and process of ocean oxygenation in the early Cambrian and its impact on the diversification of early Cambrian animals, based on data from the Cambrian Niutitang Formation (China), is published by Zhao et al. (2018).[356]
  • A study on the evolution of marine animal communities over the Phanerozoic, evaluating the ecological changes caused by major radiations and mass extinctions, is published by Muscente et al. (2018).[357]
  • A study evaluating whether rapid warming preferentially increased the extinction risk of tropical marine fossil taxa throughout the Phanerozoic is published online by Reddin, Kocsis & Kiessling (2018).[358]
  • A study on the impact of mass extinctions on the global biogeographical structure, as indicated by data on time-traceable bioregions for benthic marine species across the Phanerozoic, is published by Kocsis, Reddin & Kiessling (2018).[359]
  • A study on the nektic and eunektic diversity and occurrences throughout the Paleozoic is published by Whalen & Briggs (2018).[360]
  • A study analyzing the link between net latitudinal range shifts of marine invertebrates and seawater temperature over the (post-Cambrian) Phanerozoic Eon is published by Reddin, Kocsis & Kiessling (2018).[361]
  • A study on within-habitat, between-habitat, and overall diversity of benthic marine invertebrates (gastropods, bivalves, trilobites, brachiopods and echinoderms) from Phanerozoic geological formations is published online by Hofmann, Tietje & Aberhan (2018).[362]
  • A study evaluating the link between macroevolutionary success (evolving many species) and macroecological success (the occupation of an unusually high number of areas by a species or clade) in fossil echinoid, cephalopod, bivalve, gastropod, brachiopod and trilobite species is published by Wagner, Plotnick & Lyons (2018).[363]
  • A study comparing the extinction events which occurred at the end of the Ordovician and at the end of the Capitanian (middle Permian) is published by Isozaki & Servais (2018).[364]
  • Filamentous microorganisms associated with annelid tubeworms are described from the Ordovician to early Silurian Yaman Kasy volcanic-hosted massive sulfide deposit (Ural Mountains, Russia) by Georgieva et al. (2018).[365]
  • Vertebrate fossil fauna from the Tournaisian-age Ballagan Formation exposed on the beach at Burnmouth (Scotland) is described by Otoo et al. (2018).[366]
  • A study on the early tetrapod diversity and biogeography in the Carboniferous and early Permian, evaluating the impact of the Carboniferous rainforest collapse on early tetrapod communities, is published by Dunne et al. (2018).[367]
  • A study on the patterns of dispersal and vicariance of tetrapods across Pangaea during the Carboniferous and Permian is published by Brocklehurst et al. (2018).[368]
  • O'Connor et al. (2018) reconstruct the most likely karyotype of the diapsid common ancestor based on data from extant reptiles and birds, and argue that most features of a typical 'avian-like' karyotype were in place before the divergence of birds and turtles ≈255 million years ago.[369]
  • A study evaluating whether the fossil record supports the reality of the Permian Olson's Extinction, based on an analysis of the tetrapod species richness in the tetrapod-bearing formations of Texas preserving fossils from the time of the extinction, is published by Brocklehurst (2018).[370]
  • A study on the patterns of species richness, origination rates and extinction rates of the mid-Permian tetrapods from South Africa is published by Day et al. (2018).[371]
  • A study on the changes of distribution of terrestrial tetrapods from the Permian (Guadalupian) to the Middle Triassic and on the impact of the Permian–Triassic extinction event on the palaeobiogeography of terrestrial tetrapods is published by Bernardi, Petti & Benton (2018).[372]
  • A study on the causes of biotic extinction during the Guadalupian-Lopingian transition is published online by Huang et al. (2018).[373]
  • A study on the composition and biotic interactions in terrestrial paleocommunities from the Karoo Basin (South Africa) spanning the Permian-Triassic mass extinction is published online by Roopnarine et al. (2018), who propose a new hypothesis to explain the persistence of biotic assemblages and their reorganization or destruction.[374]
  • A study on the biogeographic patterns and severity of extinction of marine taxa during the Permian–Triassic extinction event, evaluating whether global warming and ocean oxygen loss can mechanistically account for the marine mass extinction, is published by Penn et al. (2018).[375]
  • A study on changes in the structure of phytoplankton communities in South China during the Permian-Triassic transition is published online by Lei et al. (2018).[376]
  • A study on the recovery of benthic invertebrates following the Permian–Triassic extinction event, based on analysis of changes in the species richness, functional richness, evenness, composition, and ecological complexity of benthic marine communities from the Lower Triassic Servino Formation (Italy), is published by Foster et al. (2018).[377]
  • Description of an Early Triassic marine fauna from the Ad Daffah conglomerate in eastern Oman, and on its implications for inferring the ecology and diversity during the early aftermath of the Permian–Triassic extinction event, is published online by Brosse et al. (2018).[378]
  • A study on microbial mounds from the Lower Triassic Feixianguan Formation (China), and their implications for inferring the course of biotic recovery after the Permian–Triassic extinction event, is published by Duan et al. (2018).[379]
  • A study on the timing and pattern of ecosystem succession during and after the Permian–Triassic extinction event for the duration of the entire Triassic, as indicated by the changing diversity among non-motile, motile and nektonic animals, is published by Song, Wignall & Dunhill (2018).[380]
  • Marine faunas characterized by unusually high levels of both benthic and nektonic taxonomic richness are described from two Early Triassic sections from South China by Dai et al. (2018).[381]
  • A study on the historical shifts in geographical ranges and climatic niches of terrestrial vertebrates (both endotherms and ectotherms) based on data from extant and fossil vertebrates is published by Rolland et al. (2018).[382]
  • A study on the stratigraphic distribution of the marine vertebrate fossils of the Xingyi Fauna from the Middle Triassic Falang Formation (China) is published by Lu et al. (2018), who interpret their findings as indicating that the Xingyi Fauna comprises two distinct vertebrate assemblages, resulting from a major faunal change, which was probably caused by a turnover of their ecological setting from nearshore to offshore.[383]
  • A study on the patterns of diversity change and extinction selectivity in marine ecosystems during the TriassicJurassic interval, especially in relation to the Triassic–Jurassic extinction event, is published by Dunhill et al. (2018).[384]
  • A study on the extinction selectivity of marine organisms through the Late Triassic and Early Jurassic, evaluating whether there are any substantial differences between the hyperthermal events during the Triassic–Jurassic extinction event and Toarcian turnover and the periods of normal background extinction, is published by Dunhill et al. (2018).[385]
  • A study on the impact of changes in ocean chemistry beginning in the Mesozoic on the nutritional quality of planktonic algal biomass compared to earlier phytoplankton is published by Giordano et al. (2018).[386]
  • A study on the morphological, ecological and behavioural traits linked to the evolution of tail weaponization in extant and fossil amniotes is published by Arbour & Zanno (2018).[387]
  • A study on the factors which led to the colonization of marine environments in the evolution of amniotes is published by Vermeij & Motani (2018).[388]
  • A review of marine reptile (plesiosaur, ichthyosaur and thalattosuchian) fossils from the Oxfordian sedimentary rocks in Great Britain (United Kingdom), focusing on the Corallian Group, is published by Foffa, Young & Brusatte (2018), who report evidence of a severe reduction in observed marine reptile diversity during the Oxfordian.[389]
  • A study evaluating how the structure of marine reptile ecosystems and their ecologies changed over the roughly 18-million-year history of the Jurassic Sub-Boreal Seaway of the United Kingdom, as indicated by data from fossil teeth, is published by Foffa et al. (2018).[390]
  • A diverse and ecologically informative faunal assemblage is described from the Lower Cretaceous Arundel Clay facies (Maryland, United States) by Frederickson, Lipka & Cifelli (2018).[391]
  • Description of an assemblage of Early Cretaceous (Barremian) coprolites from the Las Hoyas Konservat-Lagerstätte (Spain) and a study on their biological and environmental affinities is published by Barrios-de Pedro et al. (2018).[392]
  • A study on the taphonomic properties of the inclusions contained in the Las Hoyas coprolites, and their implications for inferring the patterns of digestive processes of the producers of these coprolites, is published by Barrios-de Pedro & Buscalioni (2018).[393]
  • Description of isocrinid crinoids belonging to the genus Isocrinus from the Cretaceous amber from Myanmar is published by Mao et al. (2018), who also report coral columnals and oysters from the amber from Myanmar, and evaluate the age of this amber.[394]
  • A study on the taxonomic composition of the early Late Cretaceous fauna from the Cliffs of Insanity microvertebrate locality (Mussentuchit Member, Cedar Mountain Formation; Utah, United States) is published by Avrahami et al. (2018).[395]
  • Fossil assemblage including plant and vertebrate remains is described from the Turonian Ferron Sandstone Member of the Mancos Shale Formation (Utah, United States) by Jud et al. (2018), who report turtle and crocodilian remains and an ornithopod sacrum, as well as a large silicified log assigned to the genus Paraphyllanthoxylon, representing the largest known pre-Campanian flowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[396]
  • A study comparing the ecological similarity of Cretaceous cold seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages is published online by Laird & Belanger (2018).[397]
  • A record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200,000 years of the Paleocene, is presented by Lowery et al. (2018), who report evidence indicating that life reappeared in the basin just years after the Chicxulub impact and a high-productivity ecosystem was established within 30,000 years.[398]
  • Vertebrate pathogens found associated with fossil hematophagous arthropods in Dominican, Mexican, Baltic, Canadian and Burmese amber are reported by Poinar (2018).[399]
  • Grimaldi et al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from the Paleogene Chickaloon Formation of Alaska, representing the northernmost deposit of fossiliferous amber from the Cenozoic.[400]
  • A synthesis of studies on the evolution of the cold-water coastal North Pacific biota over the last 36 million years, its origins and its influences on other temperate regions, is presented by Vermeij et al. (2018).[401]
  • A review of NeogeneQuaternary terrestrial vertebrate sites from the Middle Kura Basin (eastern Georgia and western Azerbaijan) is published by Bukhsianidze & Koiava (2018).[402]
  • A study on the reptile and amphibian fossils from the early Pleistocene site of the Russel-Tiglia-Egypte pit near Tegelen (Netherlands) is published by Villa et al. (2018).[403]
  • A study on the structure of the animal community known from the Okote Member of the Koobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions of Homo erectus with environment and associated faunas from this site, is published by Roach et al. (2018).[404]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and the Early Stone Age/Middle Stone Age technological turnover, is published online by Smith et al. (2018).[405]
  • Evidence of bird and carnivore exploitation by Neanderthals (cut-marks in golden eagle, raven, wolf and lynx remains) is reported from the Axlor site (Spain) by Gómez-Olivencia et al. (2018).[406]
  • A study on the compositions of the faunal and stone artifact assemblages at Liang Bua (Flores, Indonesia), aiming to determine the last appearance dates of Stegodon, giant marabou stork, Old World vulture belonging to the genus Trigonoceps, and Komodo dragon at the Liang Bua site, and to determine what raw materials were preferred by hominins from this site ~50,000–13,000 years ago and whether these are preferences were similar to those seen in the stone artifact assemblages attributed to Homo floresiensis or to those attributed to modern humans, is published by Sutikna et al. (2018).[407]
  • A study on the fossil Sporormiella, pollen and microscopic particles of charcoal recovered from sediments of Lake Mares and Lake Olhos d'Agua (Brazil) which spanned the time of megafaunal extinction and human arrival in southeastern Brazil, and on their implications for inferring the timing of the decline of local megafauna and its ecological implications, is published by Raczka, Bush & De Oliveira (2018).[408]
  • A study evaluating whether the occurrence and decline of spores of Sporormiella in sediments is a good proxy for the occurrence and extinction of megaherbivores, as indicated by data from Cuddie Springs in south-eastern Australia, is published by Dodson & Field (2018).[409]
  • A study evaluating how mega-herbivore animal species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Great Britain and Ireland, is published by Jeffers et al. (2018).[410]
  • A study on the impact of the late Quaternary extinction of megafauna on the megafauna-deprived ecosystems is published by Galetti et al. (2018).[411]
  • A study on the possible impact of the end of the millennial-scale climate fluctuations characteristic of the ice age (and the beginning of the more stable climate regime of the Holocene approximately 11,700 years ago) on the Late Quaternary megafaunal extinctions is published online by Mann et al. (2018).[412]
  • A study on the past biodiversity, population dynamics, extinction processes, and the impact of subsistence practices on the vertebrate fauna of New Zealand, based on analysis of bone fragments from archaeological and paleontological sites covering the last 20,000 years of New Zealand's past, is published by Seersholm et al. (2018).[413]
  • A study on changes in plant pathogen communities (fungi and oomycetes) in response to changing climate during late Quaternary, as indicated by data from solidified deposits of rodent coprolites and nesting material from the central Atacama Desert spanning the last ca. 49,000 years, is published by Wood et al. (2018).[414]
  • A study on the parsimony and Bayesian-derived phylogenies of fossil tetrapods, evaluating which of them are in closer agreement with stratigraphic range data, is published by Sansom et al. (2018).[415]
  • A study aiming to infer the causes of differences between estimates of speciation and extinction rates based on molecular phylogenies and those based on fossil record is published by Silvestro et al. (2018), who provide simple mathematical formulae linking the diversification rates inferred from fossils and phylogenies.[416]
  • A review of extinction theory and the fossil record of terrestrial diversity crises, comparing past diversity crises of terrestrial vertebrate faunas with the ongoing Holocene extinction, is published by Padian (2018).[417]
  • A new metric, which can be used to quantify the term "living fossil" and determine which organisms can be reasonably referred to as such, is proposed by Bennett, Sutton & Turvey (2018).[418]
  • A novel non-invasive and label-free tomographic approach to reconstruct the three-dimensional architecture of microfossils based on stimulated Raman scattering is presented by Golreihan et al. (2018).[419]
  • Mürer et al. (2018) report on the results of the use of a combination of X-ray diffraction and computed tomography to gain insight into the microstructure of fossil bones of Eusthenopteron foordi and Discosauriscus austriacus.[420]
  • A study on melanosomes preserved in the integument and internal organs of extant and fossil frog specimens, evaluating their implications for inferring colours of extinct animals on the basis of melanosomes preserved in fossil specimens, is published by McNamara et al. (2018).[421]
  • A study on fossil vertebrate tissues and experimentally matured modern samples, aiming to the mechanism of soft tissue preservation and the environments that favor it, is published by Wiemann et al. (2018).[422]
  • A mechanistic model that simulates the history of life on the South American continent, driven by modeled climates of the past 800,000 years, is presented by Rangel et al. (2018).[423]
  • A study on temporal trends in biogeography and body size evolution of Australian vertebrates is published by Brennan & Keogh (2018), who interpret their findings as indicating that gradual Miocene cooling and aridification of Australia correlated with the restricted phenotypic diversification of multiple ecologically diverse vertebrate groups.[424]
  • A study evaluating how faithfully stratigraphic ranges of extant Adriatic molluscs are recorded in a series of cores drilled through alluvial, coastal and shallow-marine strata of the Po Plain (Italy) is published by Nawrot et al. (2018), who also evaluate the implications of their study for interpretations of the timing, duration and ecological selectivity of mass extinction events in general.[425]
  • A study on the evolution of morphological disparity (i.e. diversity of anatomical types), as indicated by data from 257 published character matrices of fossil taxa, is published by Wagner (2018).[426]
  • A study on the evolution of functional and ecological innovations in temperate marine multicellular organisms inhabiting North Pacific during and after the Late Eocene is published by Vermeij (2018).[427]
  • A method for dividing a paleontological dataset into bioregions is proposed by Brocklehurst & Fröbisch (2018), who apply the proposed method to a study of beta diversity of Paleozoic tetrapods.[428]
  • A study aiming to estimate the magnitude and potential significance of palaeontological data from specimens housed in museum collections but not described in published literature is published by Marshall et al. (2018).[429]
  • Sallan et al. (2018) traced the cradle of evolutionary origins and diversification of fish from the mid-Paleozoic era in nearshore environments.[430]
  • Gómez-Olivencia et al. (2018) studied Kebara 2 Neanderthal thorax, aiming to understand how this ancient human species moved and breathed, based on a 3-D virtual reconstruction.[431]
  • Smith et al. (2018) examined the teeth of Neanderthal children who lived 250,000 years ago in France, in order to comprehend their nursing duration, and the effect of lead exposure and severe winters on them.[432]
  • Wiemann et al. (2018) studied dinosaur's egg colour evolution, in order to unravel whether modern birds inherited egg colour from their non-avian dinosaur ancestors.[433]

Trace fossils

Other research

Other research related to paleontology, including research related to geology, palaeogeography, paleoceanography and paleoclimatology.

  • A study testing the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of nitrous oxide from Proterozoic seas, leading to nitrous oxide becoming an important constituent of Earth's atmosphere during Proterozoic and possibly life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, is published by Stanton et al. (2018).[437]
  • A study on the iron mineralogy of the 1.1-billion-year-old Paleolake Nonesuch (Nonesuch Formation), and on its implications for inferring whether the waters of this lake were oxygenated, is published by Slotznick, Swanson-Hysell & Sperling (2018).[438]
  • A study on the Earth's atmosphere and the productivity of global biosphere 1.4 billion years ago, based on triple oxygen isotope measurements sedimentary sulfates from the Sibley basin (Ontario, Canada), is published by Crockford et al. (2018).[439]
  • A study on the isotopically enriched chromium in Mesoproterozoic-aged shales from the Shennongjia Group (China) dating back to 1.35 billion years ago is published by Canfield et al. (2018), who interpret their findings as document elevated atmospheric oxygen levels through most of Mesoproterozoic Era, likely sufficient for early crown group animal respiration, but attained over 400 million years before they evolved.[440]
  • A study on the rate of biotic oxygen production and the attendant large-scale biogeochemistry of the mid-Proterozoic Earth system is published online by Ozaki, Reinhard & Tajika (2018).[441]
  • A study on the paleomagnetism of the Precambrian Bunger Hills dykes of the Mawson Craton (East Antarctica), and on its tectonic implications, is published by Liu et al. (2018).[442]
  • A study on the causes of formation and on global extent of the Great Unconformity is published online by Keller et al. (2018), who interpret their findings as indicating that this unconformity may record rapid erosion during Neoproterozoic "Snowball Earth" glaciations, and that environmental and geochemical changes which led to the diversification of multicellular animals may be a direct consequence of Neoproterozoic glaciation.[443]
  • A study on the environments and food sources that sustained the Ediacaran biota is published by Pehr et al. (2018), who present the lipid biomarker and nitrogen and carbon isotopic data obtained from late Ediacaran (<560 million years old) strata from seven drill cores and three outcrops spanning Baltica.[444]
  • Gougeon et al. (2018) report evidence from the Lower Cambrian Chapel Island Formation (Canada) indicating that a mixed layer of sediment, of similar structure to that of modern marine sediments (which results from bioturbation by epifaunal and shallow infaunal organisms), was well established in shallow marine settings by the early Cambrian.[445]
  • A study on the effects of the rise of bioturbation on global elemental cycles during the Cambrian is published by van de Velde et al. (2018).[446]
  • A review of the history of the definition of the Great Ordovician Biodiversification Event, aiming to clarify its concept and duration, is published by Servais & Harper (2018).[447]
  • A study on the phytoplankton community structure and export production at the end of the Ordovician, as indicated by data from the Vinini Formation (Nevada, United States), and on their impact on the global carbon cycle and possible relation to the onset of the Late Ordovician glaciation, is published by Shen et al. (2018).[448]
  • Evidence of multiple mercury enrichments in the two-step late Frasnian crisis interval from paleogeographically distant successions in Morocco, Germany and northern Russia is presented by Racki et al. (2018), who interpret their findings as indicating that the Late Devonian extinction was caused by rapid climatic perturbations promoted in turn by volcanic cataclysm.[449]
  • A study on the sedimentary facies, oxygen isotopes and the generic conodont composition in two continuous Devonian (late Frasnian to the end-Famennian) outcrops in the Montagne Noire (Col des Tribes section, France, part of the Armorica microcontinent in the Devonian) and in the Buschteich section (Germany, part of the Saxo-Thuringian microplate in the Devonian), assessing the water depth, approximate position relative to the shore and paleotemperatures in the Late Devonian, and evaluating whether environmental changes affected both areas similarly and at the same pace in the Late Devonian, is published online by Girard et al. (2018).[450]
  • A study on the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale is published online by Martinez et al. (2018).[451]
  • A study on the age of a bentonite layer from Bed 36 in the Frasnian–Famennian succession at the abandoned Steinbruch Schmidt Quarry (Germany), aiming to determine the precise age of the Frasnian–Famennian boundary and the precise timing of the Late Devonian extinction, is published by Percival et al. (2018).[452]
  • A study on the environmental changes and faunal turnover in the Karoo Basin (South Africa) during the late Permian is published by Viglietti, Smith & Rubidge (2018).[453]
  • A study on carbonate microfacies and foraminifer abundances in three Upper Permian sections from isolated carbonate platforms of the Nanpanjiang Basin (China), indicative of a marine environmental instability up to 60,000 years preceding Permian–Triassic extinction event, is published online by Tian et al. (2018).[454]
  • A study on the halogen compositions of Siberian rocks emplaced before and after the eruption of the Siberian flood basalts during the Permian–Triassic extinction event, and on its implications for inferring the source and nature of volatiles in the Siberian large igneous province, is published by Broadley et al. (2018).[455]
  • Evidence of enhanced continental chemical weathering at the Permian–Triassic boundary is reported from bulk rock samples from the Meishan section in South China by Sun et al. (2018), who also evaluate the potential impact of this enhanced weathering on global climate changes when the end-Permian extinction occurred.[456]
  • A study on the U-Pb geochronology, biostratigraphy and chemostratigraphy of a highly expanded section at Penglaitan (Guangxi, China) is published online by Shen et al. (2018), who interpret their findings as indicative of a sudden end-Permian mass extinction that occurred at 251.939 ± 0.031 million years ago.[457]
  • A study on the age of the dinosaur-bearing Triassic Santa Maria Formation and Caturrita Formation (Brazil) is published by Langer, Ramezani & Da Rosa (2018).[458]
  • Paleomagnetic and geochronologic study on the Chinle Formation (Petrified Forest National Park, Arizona, United States) is published by Kent et al. (2018), who report evidence indicating that a 405,000-year orbital eccentricity cycle linked to gravitational interactions with Jupiter and Venus was already influencing Earth's climate in the Late Triassic.[459]
  • Evidence of sill intrusions which were likely cause of the Triassic–Jurassic extinction event is reported from the Amazonas and Solimões Basins (Brazil) by Heimdal et al. (2018).[460]
  • A study on the palaeoenvironmental conditions that existed during the time the Upper Cretaceous Winton Formation (Australia) was deposited is published by Fletcher, Moss & Salisbury (2018).[461]
  • A study on the age of the Namba Member of the Galula Formation (Tanzania), yielding fossils of Pakasuchus, Rukwasuchus, Rukwatitan and Shingopana, is published by Widlansky et al. (2018).[462]
  • A study on the geology, age and palaeoenvironment of the main fossil-bearing beds of the Cretaceous Griman Creek Formation (New South Wales, Australia) is published online by Bell et al. (2018).[463]
  • A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of dinosaurs over these landscapes, is published online by Crystal et al. (2018).[464]
  • A study on the rainfall seasonality and freshwater discharge on the Indian subcontinent in the Late Cretaceous (Maastrichtian), based on data from specimens of the mollusc species Phygraea (Phygraea) vesicularis from the Kallankuruchchi Formation (India), is published by Ghosh et al. (2018).[465]
  • Evidence of increased crustal production at mid-ocean ridges at the Cretaceous-Paleogene boundary, indicative of magmatism triggered by Chicxulub impact, is presented by Byrnes & Karlstrom (2018).[466]
  • A study on the oxygen isotopic composition of fish debris from the Global Boundary Stratotype Section and Point for the Cretaceous/Paleogene boundary at El Kef (Tunisia), indicative of a greenhouse warming in the aftermath of the Chicxulub impact, is published by MacLeod et al. (2018).[467]
  • A study on the environmental changes during the global warming following the brief impact winter at the Cretaceous-Paleogene boundary, based on geochemical, micropaleontological and palynological data from Cretaceous-Paleogene boundary sections in Texas, Denmark and Spain, is published by Vellekoop et al. (2018).[468]
  • A study on the Paleocene intermediate- and deep-water neodymium-isotope records from the North and South Atlantic Ocean, and on their implications for inferring the impact of changes in overturning circulation caused by the opening of the Atlantic Ocean on climate changes culminating in the greenhouse conditions of the Eocene, is published by Batenburg et al. (2018).[469]
  • A study on the magnetofossil concentrations preserved within sediments corresponding to the Paleocene–Eocene Thermal Maximum, as well as on the implications of magnetofossil abundance and morphology signatures for tracing palaeo-environmental conditions during the Paleocene–Eocene Thermal Maximum, is published by Chang et al. (2018).[470]
  • A study on the impact of greenhouse gas forcing and orbital forcing on changes in the seasonal hydrological cycle during the Paleocene–Eocene Thermal Maximum (for regions where proxy data is available) is published by Kiehl et al. (2018).[471]
  • A continuous Eocene equatorial sea surface temperature record is presented by Cramwinckel et al. (2018), who also construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution.[472]
  • A study on the continental silicate weathering response to the inferred CO2 rise and warming during the Middle Eocene Climatic Optimum is published by van der Ploeg et al. (2018).[473]
  • Su et al. (2018) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[474]
  • Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published online by Ai et al. (2018).[475]
  • A study on the relationship between the Rovno and Baltic amber deposits, based on stable carbon and hydrogen isotope analyses, is published by Mänd et al. (2018), who interpret their findings as indicative of distinct origin of Rovno and Baltic amber deposits.[476]
  • A study aiming to establish an accurate and precise age model for the eruption of the Columbia River Basalt Group, and to use it to test the hypothesis that there is a temporal relationship between the eruption of the Columbia River Basalt Group and the mid-Miocene climate optimum, is published by Kasbohm & Schoene (2018).[477]
  • A study on the age of the Ashfall Fossil Beds fossil site (Nebraska, United States) is published by Smith et al. (2018).[478]
  • A study on the causes of changes of environmental conditions in the Paratethys Sea of Central Europe during the middle Miocene is published online by Simon et al. (2018).[479]
  • A study on plant fossils spanning 14–4 million years ago from sites in Europe, Asia and East Africa, aiming to test the hypothesis of a single cohesive biome in the Miocene that extended from Mongolia to East Africa and at its peak covered much of the Old World, is published by Denk et al. (2018), who interpret data from plant fossil record as disproving the existence of a cohesive savannah biome from eastern Asia to northeast Africa, formerly inferred from mammal fossil record.[480]
  • A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published online by De Miguel, Azanza & Morales (2018).[481]
  • Faith (2018) evaluates the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[482][483][484]
  • A study evaluating when the island of Sulawesi (Indonesia) gained its modern shape and size, and determining the timings of diversification of the three largest endemic mammals on the island (the babirusa, the Celebes warty pig and the anoa) is published by Frantz et al. (2018).[485]
  • A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation is published online by Stewart & Rufolo (2018).[486]
  • Evidence indicating that reduced nutrient upwelling in the Bering Sea and expansion of North Pacific Intermediate Water coincided with the Mid-Pleistocene Transition cooling is presented by Kender et al. (2018), who assess the potential links between cooling, sea ice expansion, closure of the Bering Strait, North Pacific Intermediate Water production, reduced high latitude CO2 and nutrient upwelling, and development of the Mid-Pleistocene Transition.[487]
  • Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[488]
  • Description of new mammal and fish remains from the Olduvai Gorge site (Tanzania), comparing the mammal assemblage from this site to the present mammal community of Serengeti, and a study on their implications for reconstructing the paleoecology of this site at ~1.7–1.4 million years ago, is published by Bibi et al. (2018).[489]
  • A study on the environment in the interior of the Arabian Peninsula in the Pleistocene, as indicated by data from stable carbon and oxygen isotope analysis of fossil mammal tooth enamel from the middle Pleistocene locality of Ti's al Ghadah (Saudi Arabia), is published by Roberts et al. (2018).[490]
  • A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[491]
  • A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[492]
  • A study on the proxy evidence for environmental changes during past 116,000 years in lake sediment cores from the Chew Bahir basin, south Ethiopia (close to the key hominin site of Omo Kibish), and on its implications for inferring the environmental context for dispersal of anatomically modern humans from northeastern Africa, is published by Viehberg et al. (2018).[493]
  • A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the eruption causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[494]
  • A study on the environmental conditions in the area of present-day Basque Country (Spain) across the Middle to Upper Paleolithic transition, based on stable isotope data from red deer and horse bones, is published by Jones et al. (2018).[495]
  • The first reconstructions of terrestrial temperature and hydrologic changes in the south-central margin of the Bering land bridge from the Last Glacial Maximum to the present are presented by Wooller et al. (2018).[496]
  • A study on the fossil-bound nitrogen isotope records from the Southern Ocean is published by Studer et al. (2018), who interpret their findings as indicative of an acceleration of nitrate supply to the Southern Ocean surface from underlying deep water during the Holocene, possibly contributing to the Holocene atmospheric CO2 rise.[497]
  • A study on the causes of replacement of mature rainforests by a forest–savannah mosaic in Western Central Africa between 3,000 y ago and 2,000 years ago, based on a continuous record of 10,500 years of vegetation and hydrological changes from Lake Barombi Mbo (Cameroon) inferred from changes in carbon and hydrogen isotope compositions of plant waxes, is published by Garcin et al. (2018), who interpret their findings as indicating that humans triggered the rainforest fragmentation 2,600 years ago.[498][499][500][501][502]
  • A study on the vegetational and climatic changes since the last glacial period, based on data from 594 sites worldwide, and aiming to estimate the extent of future ecosystem changes under alternative scenarios of global warming, is published by Nolan et al. (2018).[503]
  • A study on the changing ecology of woodland vegetation of southern mainland Greece during the late Pleistocene and the early-mid Holocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from the Franchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[504]
  • A large impact crater found beneath Hiawatha Glacier (Greenland), most likely formed during the Pleistocene, is reported by Kjær et al. (2018).[505]

Paleoceanography

  • A study on the nitrogen isotope ratios, selenium abundances, and selenium isotope ratios from the ~2.66 billion years old Jeerinah Formation (Australia), providing evidence of transient surface ocean oxygenation ~260 million years before the Great Oxygenation Event, is published by Koehler et al. (2018).[506]
  • A study on the ocean chemistry at the start of the Mesoproterozoic as indicated by rare earth element, iron-speciation and inorganic carbon isotope data from the 1,600–1,550 million years old Yanliao Basin, North China Craton is published by Zhang et al. (2018), who report evidence of a progressive oxygenation event starting at ≈1,570 million years ago, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin.[507]
  • Evidence of euxinia occurring in the photic zone of the ocean in the Mesoproterozoic, based on measurements of mercury isotope compositions in late Mesoproterozoic (~1.1 billion years old) shales from the Atar Group and the El Mreiti Group (Tauodeni Basin, Mauritania), is presented by Zheng et al. (2018).[508]
  • A study on abundant pyrite concretions from the topmost Nantuo Formation (China), deposited during the terminal Cryogenian Marinoan glaciation, is published by Lang et al. (2018), who interpret these concretions as evidence of a transient but widespread presence of marine euxinia in the aftermath of the Marinoan glaciation.[509]
  • A study on wave ripples and tidal laminae in the Elatina Formation (Australia), interpreted as evidence of rapid sea level rise in the aftermath of the Marinoan glaciation, is published by Myrow, Lamb & Ewing (2018).[510]
  • A study on the global ocean redox conditions at a time when the Ediacaran biota began to decline, based on analysis of uranium isotopes in carbonates from the Dengying Formation (China), is published by Zhang et al. (2018), who interpret their findings as indicative of an episode of extensive oceanic anoxia at the end of the Ediacaran.[511]
  • New uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions, indicative of short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Stage 2, is presented by Wei et al. (2018), who argue that the Cambrian explosion might have been triggered by marine redox fluctuations rather than progressive oxygenation.[512]
  • New δ15N data from late Ediacaran to Cambrian strata from South China is presented by Wang et al. (2018), who interpret their findings as indicating that ocean redox dynamics were closely coupled with key evolutionary events during the Ediacaran–Cambrian transition.[513]
  • A study on the isotopic composition and surface temperatures of early Cambrian seas, based on stable oxygen isotope data from the small shelly fossils from the Comley limestones (United Kingdom), is published by Hearing et al. (2018).[514]
  • High-resolution geochemical, sedimentological and biodiversity data from the Cambrian Sirius Passet Lagerstätte (Greenland is presented by Hammarlund et al. (2018), who aim to assess the chemical conditions in the shelf sea inhabited by the Sirius Passet fauna.[515]
  • A study on the impact of the disruption of sediments caused by Fortunian bioturbation on the ocean chemistry, as indicated by data from the Chapel Island Formation (Canada), is published by Hantsoo et al. (2018).[516]
  • A study on the timing of the Sauk transgression in the Grand Canyon region is published by Karlstrom et al. (2018).[517]
  • A study on the oxygen isotope composition of seawater throughout the Phanerozoic is published by Ryb & Eiler (2018).[518]
  • Jin, Zhan & Wu (2018) present paleontological, sedimentological, and geochemical data to test a hypothesis that a cold surface current became established by the late Middle Ordovician in the equatorial peri-Gondwana oceans, similar to the eastern equatorial Pacific cold tongue today.[519]
  • Evidence from uranium isotopes from Upper Ordovician–lower Silurian marine limestones of Anticosti Island (Canada), indicative of an abrupt global-ocean anoxic event coincident with the Late Ordovician mass extinction, is presented by Bartlett et al. (2018).[520]
  • A study on the ocean redox conditions and climate change across a Late Ordovician to Early Silurian on the Yangtze Shelf Sea (China) and their implications for inferring the causes of the Late Ordovician mass extinction is published by Zou et al. (2018).[521]
  • Evidence of multiple episodes of oceanic anoxia in the Early Triassic, based on U-isotope data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran), is presented by Zhang et al. (2018).[522]
  • A study on changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event, based on thallium isotope records from two ocean basins, is published by Them et al. (2018), who report evidence of global marine deoxygenation of ocean water some 600,000 years before the classically defined Toarcian Oceanic Anoxic Event.[523]
  • A study on the palaeoenvironmental conditions of the seas at high latitudes (60°) of southern South America during the Early Cretaceous is published online by Gómez Dacal et al. (2018).[524]
  • A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, published by Bernard et al. (2017)[525] is criticized by Evans et al. (2018).[526][527]
  • Evidence from sulfur-isotope data indicative of a large-scale ocean deoxygenation during the Paleocene–Eocene Thermal Maximum is presented by Yao, Paytan & Wortmann (2018).[528]
  • Nitrogen isotope data from deposits from the northeast margin of the Tethys Ocean, spanning the Paleocene–Eocene Thermal Maximum, is presented by Junium, Dickson & Uveges (2018), who interpret their findings as indicating that dramatic change in the nitrogen cycle occurred during the Paleocene–Eocene Thermal Maximum.[529]
  • A study aiming to evaluate the global extent of surface ocean acidification during the Paleocene–Eocene Thermal Maximum is published by Babila et al. (2018).[530]
  • A study on the tropical sea-surface temperatures in the Eocene is published by Evans et al. (2018).[531]
  • A 25-million-year-long alkenone-based record of surface temperature change in the Paleogene from the North Atlantic Ocean is presented by Liu et al. (2018).[532]
  • A study on the likely magnitude of the sea-level drawdown during the Messinian salinity crisis, based on the analysis of the late Neogene faunas of the Balearic Islands, is published by Mas et al. (2018).[533]
  • An extensive, buried sedimentary body deposited by the passage of a megaflood from the western to the eastern Mediterranean Sea in the Pliocene (Zanclean), at the end of the Messinian salinity crisis, is identified in the western Ionian Basin by Micallef et al. (2018).[534]
  • A study on the impact of major, abrupt environmental changes over the past 30,000 years on the Great Barrier Reef is published by Webster et al. (2018).[535]
  • Evidence of sea level drop relative to the modern level at the shelf edge of the Great Barrier Reef between 21,900 and 20,500 years ago, followed by period of sea level rise lasting around 4,000 years, is presented by Yokoyama et al. (2018).[536]

Paleoclimatology

  • A study on the geologic record of Milankovitch climate cycles, extending their analysis into the Proterozoic and aiming to reconstruct the history of solar system characteristics, is published by Meyers & Malinverno (2018).[537]
  • A study on the effect of different forms of primitive photosynthesis on Earth's early atmospheric chemistry and climate is published by Ozaki et al. (2018).[538]
  • A quantitative estimate of Paleoproterozoic atmospheric oxygen levels is presented by Bellefroid et al. (2018).[539]
  • A study on the timing of the onset of the Sturtian glaciation, based on new stratigraphic and geochronological data from the upper Tambien Group (Ethiopia), is published by Scott MacLennan et al. (2018).[540]
  • A study on changes in the atmospheric concentration of carbon dioxide throughout the Phanerozoic, as indicated by data from a product of chlorophyllphytane from marine sediments and oils, is published by Witkowski et al. (2018).[541]
  • A revised model and a new high-resolution reconstruction of the oxygenation of the Paleozoic atmosphere is presented by Krause et al. (2018).[542]
  • A study on the Early Ordovician climate, as indicated by new high-resolution phosphate oxygen isotope record of conodont assemblages from the Lange Ranch section of central Texas, is published by Quinton et al. (2018), who interpret their findings as consistent with very warm temperatures during the Early Ordovician.[543]
  • A study on the climate changes during the period of the Late Devonian extinction (and possibly causing it), inferred from a high-resolution oxygen isotope record based on conodont apatite from the FrasnianFamennian transition in South China, is published by Huang, Joachimski & Gong (2018).[544]
  • A study on the atmospheric oxygen levels through the Phanerozoic, evaluating whether Romer's gap and the concurrent gap in the fossil record of insects were caused by low oxygen levels, is published by Schachat et al. (2018).[545]
  • A study on the impact of sulfur and carbon outgassing from the Siberian Traps flood basalt magmatism on the climate changes at the end of the Permian is published by Black et al. (2018).[546]
  • A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[547]
  • A study on the terrestrial climate in northern China at the Cretaceous-Paleogene boundary, indicating the occurrence of a warming caused by the onset of Deccan Traps volcanism and the occurrence of extinctions prior to the Chicxulub impact, is published by Zhang et al. (2018).[548]
  • A study on the sources of secondary CO2 inputs after the initial rapid onset of the Paleocene–Eocene Thermal Maximum, contributing to the prolongation of this event, is published online by Lyons et al. (2018).[549]
  • Estimates of mean annual terrestrial temperatures in the mid-latitudes during the early Paleogene are presented by Naafs et al. (2018).[550]
  • A study on the early stages of development of Asian inland aridity and its underlying mechanisms, based on data from red clay sequence from the Cenozoic Xorkol Basin (Altyn-Tagh, northeastern Tibetan Plateau), is published by Li et al. (2018), who interpret their findings as indicating that enhanced Eocene Asian inland aridity was mainly driven by global palaeoclimatic changes rather than being a direct response to the plateau uplift.[551]
  • New mid-latitude terrestrial climate proxy record for southeastern Australia from the middle Eocene to the middle Miocene, indicative of a widespread cooling in the Gippsland Basin beginning in the middle Eocene, is presented by Korasidis et al. (2018).[552]
  • A study on CO2 concentrations during the early Miocene, as indicated by stomatal characteristics of fossil leaves from a late early Miocene assemblage from Panama and a leaf gas-exchange model, is published by Londoño et al. (2018).[553]
  • A study on the climate in the areas of the Iberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, is published online by Altolaguirre et al. (2018).[554]
  • A study on the hydrological changes in the Limpopo River catchment and in sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caley et al. (2018).[555]
  • A study evaluating whether changes of vegetation and diet of East African herbivorous mammals were linked to climatic fluctuations 1.7 million years ago, based on data from mammal teeth from the Olduvai Gorge site, as well as evaluating whether crocodile teeth from this site may be used as paleoclimatic indicators, is published by Ascari et al. (2018).[556]
  • Evidence for progressive aridification in East Africa since about 575,000 years before present, based on data from sediments from Lake Magadi (Kenya), is presented by Owen et al. (2018), who also evaluate the influence of the increasing Middle- to Late-Pleistocene aridification and environmental variability on the physical and cultural evolution of Homo sapiens in East Africa.[557]
  • A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[558]
  • A high-resolution palaeoclimate reconstruction for the Eemian from northern Finland, based on pollen and plant macrofossil record, is presented by Salonen et al. (2018).[559]
  • A study on the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (129–116 thousand years ago), as indicated by data from joint pollen and ocean proxy analyses in a deep-sea core on the Portuguese Margin (Atlantic Ocean) and speleothem record from Antro del Corchia cave system (Italy), is published by Tzedakis et al. (2018).[560]
  • A study on the timing and duration of periods of climate deterioration in the interior of the Iberian Peninsula in the late Pleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories by Neanderthals 42,000 years ago, is published by Wolf et al. (2018).[561]
  • A study on the climate changes in Europe during the Middle–Upper Paleolithic transition (based on speleothem records from the Ascunsă Cave and from the Tăușoare Cave, Romania), and on their implications for the replacement of Neanderthals by modern humans in Europe, is published by Fernández et al. (2018).[562]
  • A study on the timing of the latest Pleistocene glaciation in southeastern Alaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesnek et al. (2018).[563]
  • Quantitative estimates of climate in western North America over the past 50,000 years, based on data from plant community composition of more than 600 individual paleomiddens, are presented by Harbert & Nixon (2018).[564]
  • A study assessing the similarity of future projected climate states to the climate during the Early Eocene, the Mid-Pliocene, the Last Interglacial (129–116 ka), the Mid-Holocene (6 ka), preindustrial (c. 1850 CE), and the 20th century is published by Burke et al. (2018).[565]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Jouko Rikkinen; S. Kristin L. Meinke; Heinrich Grabenhorst; Carsten Gröhn; Max Kobbert; Jörg Wunderlich; Alexander R. Schmidt (2018). "Calicioid lichens and fungi in amber – Tracing extant lineages back to the Paleogene". Geobios. 51 (5): 469–479. Bibcode:2018Geobi..51..469R. doi:10.1016/j.geobios.2018.08.009. hdl:10138/308761. S2CID 135125977.
  3. ^ Andrey O. Frolov; Irina M. Mashchuk (2018). Jurassic flora and vegetation of the Irkutsk Coal Basin. V.B. Sochava Institute of Geography SB RAS Publishers. pp. 1–541. ISBN 978-5-94797-328-0.
  4. ^ George Poinar (2020). "A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber". Historical Biology: An International Journal of Paleobiology. 32 (2): 234–237. Bibcode:2020HBio...32..234P. doi:10.1080/08912963.2018.1481836. S2CID 89977016.
  5. ^ George O. Poinar Jr.; Fernando E.Vega (2018). "A mid-Cretaceous ambrosia fungus, Paleoambrosia entomophila gen. nov. et sp. nov. (Ascomycota: Ophiostomatales) in Burmese (Myanmar) amber, and evidence for a femoral mycangium". Fungal Biology. 122 (12): 1159–1162. Bibcode:2018FunB..122.1159P. doi:10.1016/j.funbio.2018.08.002. PMID 30449353. S2CID 53950691.
  6. ^ Michael Krings; Carla J. Harper; Edith L. Taylor (2018). "Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov.†". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160500. doi:10.1098/rstb.2016.0500. PMC 5745336. PMID 29254965.
  7. ^ Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (2–3): 321–331. doi:10.1017/S175569101700010X. hdl:10138/234078. S2CID 134335842.
  8. ^ Christine Strullu-Derrien; Alan R. T. Spencer; Tomasz Goral; Jaclyn Dee; Rosmarie Honegger; Paul Kenrick; Joyce E. Longcore; Mary L. Berbee (2018). "New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160502. doi:10.1098/rstb.2016.0502. PMC 5745337. PMID 29254966.
  9. ^ Mahasin Ali Khan; Meghma Bera; Subir Bera (2018). "Vizellopsidites siwalika, a new fossil epiphyllous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya". Nova Hedwigia. 107 (3–4): 543–555. doi:10.1127/nova_hedwigia/2018/0491. S2CID 90753098.
  10. ^ Michael Krings; Carla J. Harper (2018). "Additional observations on the fungal reproductive unit Windipila spinifera from the Windyfield chert, and description of a similar form, Windipila pumila nov. sp., from the nearby Rhynie chert (Lower Devonian, Scotland)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (3): 235–242. doi:10.1127/njgpa/2018/0736. S2CID 134885794.
  11. ^ Tiequan Shao; Yunhuan Liu; Baichuan Duan; Huaqiao Zhang; Hu Zhang; Qi Wang; Yanan Zhang; Jiachen Qin (2018). "The Fortunian (lowermost Cambrian) Qinscyphus necopinus (Cnidaria, Scyphozoa, Coronatae) underwent direct development". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 149–159. doi:10.1127/njgpa/2018/0755. S2CID 134628513.
  12. ^ Jian Han; Guoxiang Li; Xing Wang; Xiaoguang Yang; Junfeng Guo; Osamu Sasaki; Tsuyoshi Komiya (2018). "Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)". Journal of Paleontology. 92 (1): 3–13. Bibcode:2018JPal...92....3H. doi:10.1017/jpa.2017.10. S2CID 134119760.
  13. ^ Rosemarie Christine Baron-Szabo (2018). "Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages". Zootaxa. 4383 (1): 1–98. doi:10.11646/zootaxa.4383.1.1. PMID 29689916.
  14. ^ A.A. Berezovsky; T. J. Satanovska (2018). "РОД Acropora (Scleractinia) В СРЕДНЕМ ЭОЦЕНЕ КРИВБАССА". Сучасна геологічна наука і практика в дослідженнях студентів і молодих фахівців: Матеріали XIV Всеукраїнської науково-практичної конференції. pp. 18–20.
  15. ^ a b c Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2020). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. 32 (1): 1–17. Bibcode:2020HBio...32....1G. doi:10.1080/08912963.2018.1461217. S2CID 90300789.
  16. ^ a b Xiangdong Wang; Mohammad N. Gorgij; Le Yao (2018). "A Cathaysian rugose coral fauna from the upper Carboniferous of central Iran". Journal of Paleontology. 93 (3): 399–415. doi:10.1017/jpa.2018.89. S2CID 134434930.
  17. ^ a b c d e f g h i j k l Hannes Löser; Matthias Heinrich (2018). "New coral genera and species from the Rußbach and Gosau area (Upper Cretaceous; Austria)". Palaeodiversity. 11 (1): 127–149. doi:10.18476/pale.11.a7. S2CID 135281044.
  18. ^ a b Cristiano Ricci; Bernard Lathuilière; Giovanni Rusciadelli (2018). "Coral communities, zonation and paleoecology of an Upper Jurassic reef complex (Ellipsactinia Limestones, central Apennines, Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 124 (3): 433–508. doi:10.13130/2039-4942/10608 (inactive 2024-09-18).{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  19. ^ a b c Jan J. Król; Mikołaj K. Zapalski; Błażej Berkowski (2018). "Emsian tabulate corals of Hamar Laghdad (Morocco): taxonomy and ecological interpretation". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 290 (1–3): 75–102. doi:10.1127/njgpa/2018/0773. S2CID 134534666.
  20. ^ a b c d e Ross A. McLean (2018). "Fasciphyllid and spongophyllid rugose corals from the Middle Devonian of western Canada". Palaeontographica Canadiana. 37: 1–117. ISBN 978-1-897095-85-0.
  21. ^ Shan Chang; Sébastien Clausen; Lei Zhang; Qinglai Feng; Michael Steiner; David J. Bottjer; Yan Zhang; Min Shi (2018). "New probable cnidarian fossils from the lower Cambrian of the Three Gorges area, South China, and their ecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 150–166. Bibcode:2018PPP...505..150C. doi:10.1016/j.palaeo.2018.05.039. S2CID 135344120.
  22. ^ a b Shuji Niko (2018). "Miocene scleractinian corals from the Bihoku Group in the Shobara area, Hiroshima Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 53: 7–16.
  23. ^ a b c Kun Liang; Robert J. Elias; Dong-Jin Lee (2018). "The early record of halysitid tabulate corals, and morphometrics of Catenipora from the Ordovician of north-central China". Papers in Palaeontology. 4 (3): 363–379. Bibcode:2018PPal....4..363L. doi:10.1002/spp2.1111. S2CID 134241894.
  24. ^ Kun Liang; Wenkun Qie; Luozhong Pan; Baoan Yin (2018). "Morphometrics and palaeoecology of syringoporoid tabulate corals from the upper Famennian (Devonian) Etoucun Formation, Huilong, South China". Palaeobiodiversity and Palaeoenvironments. 99 (1): 101–115. doi:10.1007/s12549-018-0363-y. S2CID 133849052.
  25. ^ a b c Hannes Löser; Thomas Steuber; Christian Löser (2018). "Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous)". Carnets de Géologie. 18 (3): 23–121. doi:10.4267/2042/66094.
  26. ^ A.A. Berezovsky; T. J. Satanovska (2018). "РОД Lithophyllon (Scleractinia) В ВЕРХНЕМ ЭОЦЕНЕ ДНЕПРА". Міжнародна науково-технічна конференція "Розвиток промисловості та суспільства". Секція 5. Геологія і прикладна мінералогія. 23-25 травня 2018 р. Матеріали конференції. pp. 14–19.
  27. ^ Sergio Rodríguez; Hans Peter Schönlaub; Herbert Kabon (2018). "Lonsdaleia carnica n. sp., a new colonial coral from the late Mississippian Kirchbach Formation of the Carnic Alps (Austria)" (PDF). Jahrbuch der Geologischen Bundesanstalt. 158 (1–4): 49–57.
  28. ^ Guang-Xu Wang; Xin-Yi He; Lan Tang; Ian G. Percival (2018). "Silurian amplexoid rugose coral genera Pilophyllia Ge and Yu, 1974 and Neopilophyllia new genus from South China". Journal of Paleontology. 92 (6): 982–1004. Bibcode:2018JPal...92..982W. doi:10.1017/jpa.2018.29. S2CID 134817990.
  29. ^ A.A. Berezovsky; T. J. Satanovska (2018). "ОБ ОДНОМ ВИДЕ КОРАЛЛОВ СЕМЕЙСТВА Oculinidae (Scleractinia) ИЗ ВЕРХНЕГО ЭОЦЕНА г. ДНЕПРА". Сучасна геологічна наука і практика в дослідженнях студентів і молодих фахівців: Матеріали XIV Всеукраїнської науково-практичної конференції. pp. 47–52.
  30. ^ Elżbieta Morycowa (2018). "Supplemental data on Triassic (Anisian) corals from Upper Silesia (Poland)". Annales Societatis Geologorum Poloniae. 88 (1): 37–45. doi:10.14241/asgp.2018.001 (inactive 2024-10-21).{{cite journal}}: CS1 maint: DOI inactive as of October 2024 (link)
  31. ^ Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2018). "Stylophora kibiensis, a new Miocene species of scleractinian coral from the Katsuta Group in the Misaki area, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 53: 17–21.
  32. ^ Shuji Niko; Mahdi Badpa; Abbas Ghaderi; Mohammad Reza Ataei (2018). "Early Permian tabulate corals from the Jamal Formation, East-Central Iran" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 44: 19–29. Archived (PDF) from the original on 2018-12-22. Retrieved 2018-12-21.
  33. ^ Błażej Berkowski (2018). "New genus and species Wendticyathus nudus (Rugosa) and a short review of Emsian rugose corals from Hamar Laghdad, Morocco". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 290 (1–3): 117–125. doi:10.1127/njgpa/2018/0770. S2CID 134592835.
  34. ^ Chang-Min Yu (2018). "Restudy of the Early Devonian rugose coral Xystriphylloides from South China". Palaeoworld. 27 (2): 159–169. doi:10.1016/j.palwor.2017.06.001. S2CID 134820856.
  35. ^ a b c d e f g h i Emanuela Di Martino; Paul D. Taylor (2018). "Early Pleistocene and Holocene bryozoans from Indonesia". Zootaxa. 4419 (1): 1–70. doi:10.11646/zootaxa.4419.1.1. PMID 30313550.
  36. ^ Ernst, Andrej; Krainer, Karl; Lucas, Spencer (2018). "Bryozoan fauna of the Lake Valley Formation (Mississippian), New Mexico". Journal of Paleontology. 92 (4): 577–595. Bibcode:2018JPal...92..577E. doi:10.1017/jpa.2017.146. S2CID 135266996.
  37. ^ Zhiliang Zhang; Leonid E. Popov; Lars E. Holmer; Zhifei Zhang (2018). "Earliest ontogeny of early Cambrian acrotretoid brachiopods — first evidence for metamorphosis and its implications". BMC Evolutionary Biology. 18 (1): 42. Bibcode:2018BMCEE..18...42Z. doi:10.1186/s12862-018-1165-6. PMC 5880059. PMID 29609541.
  38. ^ Zhiliang Zhang; Zhifei Zhang; Lars E. Holmer; Feiyang Chen (2018). "Post-metamorphic allometry in the earliest acrotretoid brachiopods from the lower Cambrian (Series 2) of South China, and its implications". Palaeontology. 61 (2): 183–207. Bibcode:2018Palgy..61..183Z. doi:10.1111/pala.12333. S2CID 3199997.
  39. ^ Judith A. Sclafani; Curtis R. Congreve; Andrew Z. Krug; Mark E. Patzkowsky (2018). "Effects of mass extinction and recovery dynamics on long-term evolutionary trends: a morphological study of Strophomenida (Brachiopoda) across the Late Ordovician mass extinction". Paleobiology. 44 (4): 603–619. Bibcode:2018Pbio...44..603S. doi:10.1017/pab.2018.24. S2CID 92364910.
  40. ^ Fernando García Joral; José Francisco Baeza-Carratalá; Antonio Goy (2018). "Changes in brachiopod body size prior to the Early Toarcian (Jurassic) Mass Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 242–249. Bibcode:2018PPP...506..242G. doi:10.1016/j.palaeo.2018.06.045. hdl:10045/77781. S2CID 135368506.
  41. ^ Fernando Julián Lavié (2018). "Linguliformean brachiopods from the Las Plantas Formation (Ordovician, Sandbian), Argentine Precordillera". Ameghiniana. 55 (5): 600–606. doi:10.5710/AMGH.22.06.2018.3187. hdl:11336/88327. S2CID 134007925.
  42. ^ Maurizio Gaetani; Marco Balini; Alda Nicora; Martino Giorgioni; Giulio Pavia (2018). "The Himalayan connection of the Middle Triassic brachiopod fauna from Socotra (Yemen)". Bulletin of Geosciences. 93 (2): 247–268. doi:10.3140/bull.geosci.1665. S2CID 134157425.
  43. ^ a b Juan L. Benedetto (2018). "The strophomenide brachiopod Ahtiella Öpik in the Ordovician of Gondwana and the early history of the plectambonitoids". Journal of Paleontology. 92 (5): 768–793. Bibcode:2018JPal...92..768B. doi:10.1017/jpa.2018.9. hdl:11336/129659. S2CID 135270782.
  44. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb John Bruce Waterhouse (2018). Late Carboniferous and Early Permian Brachiopoda and Mollusca from the lower Jungle Creek and upper Ettrain Formations of the Yukon Territory, Canada (PDF). Earthwise. Vol. 15. pp. 1–514.
  45. ^ José Francisco Baeza-Carratalá; Alfréd Dulai; José Sandoval (2018). "First evidence of brachiopod diversification after the end-Triassic extinction from the pre-Pliensbachian Internal Subbetic platform (South-Iberian Paleomargin)". Geobios. 51 (5): 367–384. Bibcode:2018Geobi..51..367B. doi:10.1016/j.geobios.2018.08.010. hdl:10045/81989. S2CID 134589701.
  46. ^ a b c d Valeryi V. Baranov; Robert B. Blodgett (2018). "Stringocephalid brachiopods in the upper Givetian (late Middle Devonian) of southeastern Alaska (Coronados Islands) and their paleobiogeographical significance". New Mexico Museum of Natural History and Science Bulletin. 79: 17–30.
  47. ^ Colin D. Sproat; Renbin Zhan (2018). "Altaethyrella (Brachiopoda) from the Late Ordovician of the Tarim Basin, Northwest China, and its significance". Journal of Paleontology. 92 (6): 1005–1017. Bibcode:2018JPal...92.1005S. doi:10.1017/jpa.2018.31. S2CID 133780466.
  48. ^ Meiqiong Zhang; Xueping Ma (2018). "Origination and diversification of Devonian ambocoelioid brachiopods in South China". Palaeobiodiversity and Palaeoenvironments. 99 (1): 63–90. doi:10.1007/s12549-018-0333-4. S2CID 134525323.
  49. ^ a b c d e f g h i j k l m n o p q r s R. E. Alekseeva; G. A. Afanasjeva; I. A. Grechishnikova; N. V. Oleneva; A. V. Pakhnevich (2018). "Devonian and Carboniferous brachiopods and biostratigraphy of Transcaucasia". Paleontological Journal. 52 (8): 829–967. Bibcode:2018PalJ...52..829A. doi:10.1134/S0031030118080014. S2CID 195319311.
  50. ^ a b c d e f g h i j k l m n o p q r s R. E. Alekseeva; G. A. Afanasjeva; I. A. Grechishnikova; N. V. Oleneva; A. V. Pakhnevich (2018). "Devonian and Carboniferous brachiopods and biostratigraphy of Transcaucasia (ending)". Paleontological Journal. 52 (9): 969–1085. Bibcode:2018PalJ...52..969A. doi:10.1134/S0031030118090010. S2CID 92497411.
  51. ^ a b Jenaro L. García-Alcalde (2018). "Rare Middle and Upper Devonian dalmanelloid (Orthida) of the Cantabrian Mountains, N Spain" (PDF). Spanish Journal of Palaeontology. 33 (1): 57–82. doi:10.7203/sjp.33.1.13242. S2CID 134824836.
  52. ^ Juan L. Benedetto; Fernando J. Lavie; Diego F. Muñoz (2018). "Broeggeria Walcott and other upper Cambrian and Tremadocian linguloid brachiopods from NW Argentina". Geological Journal. 53 (1): 102–119. Bibcode:2018GeolJ..53..102B. doi:10.1002/gj.2880. hdl:11336/44744. S2CID 132483546.
  53. ^ a b c d e f g John Bruce Waterhouse (2018). "Brachiopods from the Blackie Formation at Peel River". Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory (PDF). Earthwise. Vol. 16. pp. 69–145.
  54. ^ a b c d Michal Mergl (2018). "The late Emsian association of weakly plicate brachiopods from Hamar Laghdad (Tafilalt, Morocco) and their ecology". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 290 (1–3): 153–182. doi:10.1127/njgpa/2018/0775. S2CID 134399249.
  55. ^ a b c d John Bruce Waterhouse (2018). "Brachiopods from the upper Blackie Formation and Wahoo Formation, Lisburne Group". Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory (PDF). Earthwise. Vol. 16. pp. 146–184.
  56. ^ Pu Zong; Xue-Ping Ma (2018). "Spiriferide brachiopods from the Famennian (Late Devonian) Hongguleleng Formation of western Junggar, Xinjiang, northwestern China". Palaeoworld. 27 (1): 66–89. doi:10.1016/j.palwor.2017.07.002.
  57. ^ a b c V.V. Baranov (2018). "New atrypids (Brachiopoda) from the Lower Devonian of Northeast Russia". Paleontological Journal. 52 (3): 255–264. Bibcode:2018PalJ...52..255B. doi:10.1134/S0031030118030024. S2CID 90343320.
  58. ^ Stanisław Skompski; Andrzej Baliński; Michał Szulczewski; Inga Zawadzka (2018). "Middle/Upper Devonian brachiopod shell concentrations from the intra-shelf basinal carbonates of the Holy Cross Mountains (central Poland)". Acta Geologica Polonica. 68 (4): 607–633. doi:10.1515/agp-2018-0034 (inactive 2024-09-18). Archived from the original on 18 August 2022. Retrieved 4 March 2020.{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  59. ^ a b c d e Desmond L. Strusz; Ian G. Percival (2018). "Silurian (Wenlock) brachiopods from the Quidong district, Southeastern New South Wales, Australia". Australasian Palaeontological Memoirs. 51: 81–129. ISSN 2205-8877. Archived from the original on 2019-04-07. Retrieved 2019-04-07.
  60. ^ Adam T. Halamski; Andrzej Baliński (2018). "Eressella, a new uncinuloid brachiopod genus from the Middle Devonian of Europe and Africa". Annales Societatis Geologorum Poloniae. 88 (1): 21–35. doi:10.14241/asgp.2018.003 (inactive 2024-10-21).{{cite journal}}: CS1 maint: DOI inactive as of October 2024 (link)
  61. ^ a b c d John Bruce Waterhouse (2018). "Brachiopods from the Hart River Formation". Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory (PDF). Earthwise. Vol. 16. pp. 8–68.
  62. ^ Eric Simon; Bernard Mottequin (2018). "Extreme reduction of morphological characters: a type of brachidial development found in several Late Cretaceous and Recent brachiopod species—new relationships between taxa previously listed as incertae sedis". Zootaxa. 4444 (1): 1–24. doi:10.11646/zootaxa.4444.1.1. PMID 30313939. S2CID 52973949.
  63. ^ Huiting Wu; Weihong He; G.R. Shi; Kexin Zhang; Tinglu Yang; Yang Zhang; Yifan Xiao; Bing Chen; Shunbao Wu (2018). "A new Permian–Triassic boundary brachiopod fauna from the Xinmin section, southwestern Guizhou, south China and its extinction patterns". Alcheringa: An Australasian Journal of Palaeontology. 42 (3): 339–372. Bibcode:2018Alch...42..339W. doi:10.1080/03115518.2018.1462400. S2CID 134984830.
  64. ^ Miguel A. Torres-Martínez; Francisco Sour-Tovar; Ricardo Barragán (2018). "Kukulkanus, a new genus of buxtoniin brachiopod from the Artinskian–Kungurian (Early Permian) of Mexico". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 268–275. Bibcode:2018Alch...42..268T. doi:10.1080/03115518.2017.1395073. S2CID 135354115.
  65. ^ a b Jun-ichi Tazawa (2018). "Early Carboniferous (Mississippian) brachiopods from the Hikoroichi Formation, South Kitakami Belt, Japan" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 17: 27–87.
  66. ^ G. A. Afanasjeva; Tazawa Jun-Ichi; Miyake Yukio (2018). "New brachiopod species Leurosina katasumiensis (Chonetida) from the Kungurian Katasumi Limestone of the Kusu Area, central Japan". Paleontological Journal. 52 (4): 389–393. Bibcode:2018PalJ...52..389A. doi:10.1134/S0031030118040020. S2CID 91371431.
  67. ^ Miguel A. Torres-Martínez; Francisco Sour-Tovar (2018). "Productidinid brachiopods (Strophomenata, Productida), including Martinezchaconia luisae, new genus and new species of Linoproductidae, from the Carboniferous of Santiago Ixtaltepec region, Oaxaca, Southeast México" (PDF). Spanish Journal of Palaeontology. 33 (1): 205–214. doi:10.7203/sjp.33.1.13250. S2CID 135123646. Archived (PDF) from the original on 2018-10-03. Retrieved 2018-10-02.
  68. ^ José Francisco Baeza-Carratalá; Fernando Pérez-Valera; Juan Alberto Pérez-Valera (2018). "The oldest post-Paleozoic (Ladinian, Triassic) brachiopods from the Betic Range, SE Spain". Acta Palaeontologica Polonica. 63 (1): 71–85. doi:10.4202/app.00415.2017. hdl:10045/73440.
  69. ^ Jun-ichi Tazawa; Hideo Araki (2018). "Middle Permian (Wordian) brachiopod fauna from Matsukawa, South Kitakami Belt, Japan, Part 2". Science Reports of Niigata University. (Geology). 33: 9–24. hdl:10191/50554.
  70. ^ a b Michal Mergl; Jiří Frýda; Michal Kubajko (2018). "Response of organophosphatic brachiopods to the mid-Ludfordian (late Silurian) carbon isotope excursion and associated extinction events in the Prague Basin (Czech Republic)". Bulletin of Geosciences. 93 (3): 347–368. doi:10.3140/bull.geosci.1710. S2CID 55521218.
  71. ^ Valeryi V. Baranov; Mostafa Falahatgar; Robert B. Blodgett; Mojtaba Javidan; Tahereh Parvizi (2018). "Brachiopods from the Famennian (Khoshyeilagh Formation) of Damghan, northern Iran". New Mexico Museum of Natural History and Science Bulletin. 79: 37–49.
  72. ^ Rebecca L. Freeman; James F. Miller; Benjamin F. Dattilo (2018). "Linguliform brachiopods across a Cambrian–Ordovician (Furongian, Early Ordovician) biomere boundary: the Sunwaptan–Skullrockian North American Stage boundary in the Wilberns and Tanyard formations of central Texas". Journal of Paleontology. 92 (5): 751–767. Bibcode:2018JPal...92..751F. doi:10.1017/jpa.2018.8. S2CID 134012657.
  73. ^ a b Adam T. Halamski; Andrzej Baliński (2018). "Early Dalejan (Emsian) brachiopods from Hamar Laghdad (eastern Anti-Atlas, Morocco)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 290 (1–3): 127–152. doi:10.1127/njgpa/2018/0774. S2CID 134939119.
  74. ^ a b A. V. Pakhnevich (2018). "New Upper Devonian rhynchonellids (Brachiopoda) from Transcaucasia". Paleontological Journal. 52 (2): 131–136. Bibcode:2018PalJ...52..131P. doi:10.1134/S0031030118020077. S2CID 90027289.
  75. ^ Bryan Shirley; Madleen Grohganz; Michel Bestmann; Emilia Jarochowska (2018). "Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging". Proceedings of the Royal Society B: Biological Sciences. 285 (1886): 20181614. doi:10.1098/rspb.2018.1614. PMC 6158523. PMID 30185642.
  76. ^ D. F. Terrill; C. M. Henderson; J. S. Anderson (2018). "New applications of spectroscopy techniques reveal phylogenetically significant soft tissue residue in Paleozoic conodonts". Journal of Analytical Atomic Spectrometry. 33 (6): 992–1002. doi:10.1039/C7JA00386B. S2CID 104041915.
  77. ^ James R. Wheeley; Phillip E. Jardine; Robert J. Raine; Ian Boomer; M. Paul Smith (2018). "Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species". Geology. 46 (5): 467–470. Bibcode:2018Geo....46..467W. doi:10.1130/G40145.1. S2CID 84177978.
  78. ^ Thomas J. Suttner; Erika Kido (2018). "Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species: COMMENT". Geology. 46 (9): e451. Bibcode:2018Geo....46E.451S. doi:10.1130/G45241C.1. S2CID 134969840.
  79. ^ James R. Wheeley; M. Paul Smith (2018). "Paleoecologic and palaeoceanographic interpretation of δ18O variability in Lower Ordovician conodont species: REPLY". Geology. 46 (9): e452. Bibcode:2018Geo....46E.452W. doi:10.1130/G45433Y.1. S2CID 134346101.
  80. ^ Z. T. Zhang; Y. D. Sun; P. B. Wignall; J. L. Fu; H. X. Li; M. Y. Wang; X. L. Lai (2018). "Conodont size reduction and diversity losses during the Carnian (Late Triassic) Humid Episode in SW China" (PDF). Journal of the Geological Society. 175 (6): 1027–1031. doi:10.1144/jgs2018-002. S2CID 134077252.
  81. ^ M.L. Golding (2018). "Heterogeneity of conodont faunas in the Cache Creek Terrane, Canada; significance for tectonic reconstructions of the North American Cordillera". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 208–216. Bibcode:2018PPP...506..208G. doi:10.1016/j.palaeo.2018.06.038. S2CID 134681051.
  82. ^ Martyn Lee Golding (2018). "Reconstruction of the multielement apparatus of Neogondolella ex gr. regalis Mosher, 1970 (Conodonta) from the Anisian (Middle Triassic) in British Columbia, Canada". Journal of Micropalaeontology. 37 (1): 21–24. Bibcode:2018JMicP..37...21G. doi:10.5194/jm-37-21-2018.
  83. ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. Bibcode:2017Palgy..60..595Z. doi:10.1111/pala.12305. hdl:2381/40480. S2CID 37171920.
  84. ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. 61 (5): 785–792. Bibcode:2018Palgy..61..785A. doi:10.1111/pala.12372. S2CID 134014368.
  85. ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al.". Palaeontology. 61 (5): 793–796. Bibcode:2018Palgy..61..793P. doi:10.1111/pala.12387. hdl:2381/42406. S2CID 134511692.
  86. ^ Thomas J. Suttner; Erika Kido; Antonino Briguglio (2018). "A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae". Journal of Systematic Palaeontology. 16 (11): 909–926. Bibcode:2018JSPal..16..909S. doi:10.1080/14772019.2017.1354090. PMC 6023268. PMID 29997454.
  87. ^ Alexander N. Zimmerman; Claudia C. Johnson; P. David Polly (2018). "Taxonomic and evolutionary pattern revisions resulting from geometric morphometric analysis of Pennsylvanian Neognathodus conodonts, Illinois Basin". Paleobiology. 44 (4): 660–683. Bibcode:2018Pbio...44..660Z. doi:10.1017/pab.2018.28. S2CID 91654089.
  88. ^ a b c d e f Michael J. Orchard (2018). "The Lower-Middle Norian (Upper Triassic) boundary: New conodont taxa and a refined biozonation" (PDF). Bulletins of American Paleontology. 395–396 (395–396): 165–193. doi:10.32857/bap.2018.395.12. S2CID 134425258. Archived from the original (PDF) on 2018-12-15. Retrieved 2018-12-15.
  89. ^ Josefina Carlorosi; Graciela Sarmiento; Susana Heredia (2018). "Selected Middle Ordovician key conodont species from the Santa Gertrudis Formation (Salta, Argentina): an approach to its biostratigraphical significance". Geological Magazine. 155 (4): 878–892. Bibcode:2018GeoM..155..878C. doi:10.1017/S0016756816001035. hdl:11336/61916. S2CID 133541958.
  90. ^ a b Keyi Hu; Yuping Qi; Tamara I. Nemyrovska (2018). "Mid-Carboniferous conodonts and their evolution: new evidence from Guizhou, South China". Journal of Systematic Palaeontology. 17 (6): 451–489. doi:10.1080/14772019.2018.1440255. S2CID 90661288.
  91. ^ a b c Ali Murat Kılıç; Pablo Plasencia; Fuat Önder (2018). "Debate on skeletal elements of the Triassic conodont Cornudina Hirschmann". Acta Geologica Polonica. 68 (2): 147–159. doi:10.1515/agp-2017-0034 (inactive 2024-09-18). Archived from the original on 19 September 2021. Retrieved 4 March 2020.{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  92. ^ Javier Sanz-López; Silvia Blanco-Ferrera (2018). "Conodonts with high potential for correlation in the upper Tournasian to middle Viséan (Mississippian) of the Cantabrian Mountains, Spain" (PDF). Bulletins of American Paleontology. 395–396 (395–396): 71–87. doi:10.32857/bap.2018.395.07. S2CID 133971566. Archived from the original (PDF) on 2018-12-15. Retrieved 2018-12-15.
  93. ^ a b c Nicholas J. Hogancamp; James E. Barrick (2018). "Morphometric analysis and taxonomic revision of North American species of the Idiognathodus eudoraensis Barrick, Heckel, & Boardman, 2008 group (Missourian, Upper Pennsylvanian Conodonts)" (PDF). Bulletins of American Paleontology. 395–396 (395–396): 35–69. doi:10.32857/bap.2018.395.06. S2CID 135415448. Archived from the original (PDF) on 2018-12-15. Retrieved 2018-12-15.
  94. ^ James E. Barrick; Nicholas J. Hogancamp; Steven J. Rosscoe (2022). "Evolutionary patterns in Late Pennsylvanian conodonts". In S.G. Lucas; W.A. DiMichele; S. Opluštil; X. Wang (eds.). Ice Ages, Climate Dynamics and Biotic Events: the Late Pennsylvanian World. Geological Society, London, Special Publications. Vol. 535. The Geological Society of London. pp. 383–408. doi:10.1144/SP535-2022-139. S2CID 253194718.
  95. ^ Phil Frederick; James E. Barrick (2018). "A new species of Idiognathoides (conodont) in the Lower Pennsylvanian Ladrones Limestone of the Alexander terrane, southeast Alaska, and its paleogeographic significance". Micropaleontology. 64 (4): 269–283. Bibcode:2018MiPal..64..269F. doi:10.47894/mpal.64.4.02. S2CID 248309750. Archived from the original on 2018-11-18. Retrieved 2018-11-18.
  96. ^ Martyn L. Golding; Michael J. Orchard (2018). "Magnigondolella, a new conodont genus from the Triassic of North America". Journal of Paleontology. 92 (2): 207–220. Bibcode:2018JPal...92..207G. doi:10.1017/jpa.2017.123. S2CID 133681181.
  97. ^ Dong-Xun Yuan; Yi-Chun Zhang; Shu-Zhong Shen (2018). "Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China". Global and Planetary Change. 161: 194–210. Bibcode:2018GPC...161..194Y. doi:10.1016/j.gloplacha.2017.12.024.
  98. ^ a b Sven Hartenfels; Ralph Thomas Becker (2018). "Age and correlation of the transgressive Gonioclymenia Limestone (Famennian, Tafilalt, eastern Anti-Atlas, Morocco)". Geological Magazine. 155 (3): 586–629. Bibcode:2018GeoM..155..586H. doi:10.1017/S0016756816000893. S2CID 133466476.
  99. ^ a b c Takumi Maekawa; Toshifumi Komatsu; Toshio Koike (2018). "Early Triassic conodonts from the Tahogawa Member of the Taho Formation, Ehime Prefecture, southwest Japan". Paleontological Research. 22 (s1): 1–62. doi:10.2517/2018PR001. S2CID 134005889.
  100. ^ a b c Jianfeng Lu; José Ignacio Valenzuela-Ríos; Chengyuan Wang; Jau-Chyn Liao; Yi Wang (2018). "Emsian (Lower Devonian) conodonts from the Lufengshan section (Guangxi, South China)". Palaeobiodiversity and Palaeoenvironments. 99 (1): 45–62. doi:10.1007/s12549-018-0325-4. S2CID 134950864.
  101. ^ a b c d Katarzyna Narkiewicz; Peter Königshof (2018). "New Middle Devonian conodont data from the Dong Van area, NE Vietnam (South China Terrane)". PalZ. 92 (4): 633–650. Bibcode:2018PalZ...92..633N. doi:10.1007/s12542-018-0408-6. S2CID 134577197.
  102. ^ Javier Sanz-López; Silvia Blanco-Ferrera; C. Giles Miller (2018). "Morphologic variation in the P1 element of Mississippian species of the conodont genus Pseudognathodus" (PDF). Spanish Journal of Palaeontology. 33 (1): 185–204. doi:10.7203/sjp.33.1.13248. S2CID 134522337. Archived (PDF) from the original on 2018-10-02. Retrieved 2018-10-02.
  103. ^ Martyn L. Golding (2018). "The multielement apparatuses of Guadalupian to Lopingian (Middle-Upper Permian) sweetognathids from North America, and their significance for the phylogeny of Late Paleozoic conodonts" (PDF). Bulletins of American Paleontology. 395–396 (395–396): 115–125. doi:10.32857/bap.2018.395.09. S2CID 134404882. Archived from the original (PDF) on 2018-12-15. Retrieved 2018-12-15.
  104. ^ a b c d Zaitian Zhang; Yadong Sun; Xulong Lai; Paul B. Wignall (2018). "Carnian (Late Triassic) conodont faunas from south-western China and their implications" (PDF). Papers in Palaeontology. 4 (4): 513–535. Bibcode:2018PPal....4..513Z. doi:10.1002/spp2.1116. S2CID 135356888.
  105. ^ Byung-Su Lee (2018). "Recognition and significance of the Aurilobodus serratus Conodont Zone (Darriwilian) in lower Paleozoic sequence of the Jeongseon–Pyeongchang area, Korea". Geosciences Journal. 22 (5): 683–696. Bibcode:2018GescJ..22..683L. doi:10.1007/s12303-018-0032-1. S2CID 135184429.
  106. ^ a b Michael T. Read; Merlynd K. Nestell (2018). "Cisuralian (Early Permian) sweetognathid conodonts from the upper part of the Riepe Spring Limestone, North Spruce Mountain Ridge, Elko County, Nevada" (PDF). Bulletins of American Paleontology. 395–396 (395–396): 89–113. doi:10.32857/bap.2018.395.08. S2CID 134650297. Archived from the original (PDF) on 2018-12-15. Retrieved 2018-12-15.
  107. ^ Carlton E. Brett; James J. Zambito IV; Gordon C. Baird; Z. Sarah Aboussalam; R. Thomas Becker; Alexander J. Bartholomew (2018). "Litho-, bio-, and sequence stratigraphy of the Boyle-Portwood Succession (Middle Devonian, Central Kentucky, USA)". Palaeobiodiversity and Palaeoenvironments. 98 (2): 331–368. Bibcode:2018PdPe...98..331B. doi:10.1007/s12549-018-0323-6. S2CID 134132371.
  108. ^ Carlo Corradini; Maria G. Corriga (2018). "The new genus Walliserognathus and the origin of Polygnathoides siluricus (Conodonta, Silurian)". Estonian Journal of Earth Sciences. 67 (2): 113–121. doi:10.3176/earth.2018.08. hdl:11368/2950576.
  109. ^ Marco Romano; Neil Brocklehurst; Jörg Fröbisch (2018). "The postcranial skeleton of Ennatosaurus tecton (Synapsida, Caseidae)". Journal of Systematic Palaeontology. 16 (13): 1097–1122. Bibcode:2018JSPal..16.1097R. doi:10.1080/14772019.2017.1367729. S2CID 89922565.
  110. ^ Neil Brocklehurst; Jörg Fröbisch (2018). "A reexamination of Milosaurus mccordi, and the evolution of large body size in Carboniferous synapsids". Journal of Vertebrate Paleontology. 38 (5): e1508026. Bibcode:2018JVPal..38E8026B. doi:10.1080/02724634.2018.1508026. S2CID 91487577.
  111. ^ Ashley Kruger; Bruce S. Rubidge; Fernando Abdala (2018). "A juvenile specimen of Anteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny". Journal of Systematic Palaeontology. 16 (2): 139–158. Bibcode:2018JSPal..16..139K. doi:10.1080/14772019.2016.1276106. S2CID 90346300.
  112. ^ Julien Benoit; Kenneth D. Angielczyk; Juri A. Miyamae; Paul Manger; Vincent Fernandez; Bruce Rubidge (2018). "Evolution of facial innervation in anomodont therapsids (Synapsida): Insights from X-ray computerized microtomography". Journal of Morphology. 279 (5): 673–701. doi:10.1002/jmor.20804. PMID 29464761. S2CID 3428692.
  113. ^ Kévin Rey; Michael O. Day; Romain Amiot; Jean Goedert; Christophe Lécuyer; Judith Sealy; Bruce S. Rubidge (2018). "Stable isotope record implicates aridification without warming during the late Capitanian mass extinction". Gondwana Research. 59: 1–8. Bibcode:2018GondR..59....1R. doi:10.1016/j.gr.2018.02.017. S2CID 135404039.
  114. ^ Savannah L. Olroyd; Christian A. Sidor; Kenneth D. Angielczyk (2018). "New materials of the enigmatic dicynodont Abajudon kaayai (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian of Zambia". Journal of Vertebrate Paleontology. 37 (6): e1403442. doi:10.1080/02724634.2017.1403442. S2CID 89986797.
  115. ^ Ricardo Araújo; Vincent Fernandez; Richard D. Rabbitt; Eric G. Ekdale; Miguel T. Antunes; Rui Castanhinha; Jörg Fröbisch; Rui M. S. Martins (2018). "Endothiodon cf. bathystoma (Synapsida: Dicynodontia) bony labyrinth anatomy, variation and body mass estimates". PLOS ONE. 13 (3): e0189883. Bibcode:2018PLoSO..1389883A. doi:10.1371/journal.pone.0189883. PMC 5851538. PMID 29538421.
  116. ^ Gianfrancis D. Ugalde; Rodrigo T. Müller; Hermínio Ismael de Araújo-Júnior; Sérgio Dias-da-Silva; Felipe L. Pinheiro (2018). "A peculiar bonebed reinforces gregarious behaviour for the Triassic dicynodont Dinodontosaurus". Historical Biology: An International Journal of Paleobiology. 32 (6): 764–772. doi:10.1080/08912963.2018.1533960. S2CID 92735247.
  117. ^ Kenneth D. Angielczyk; P. John Hancox; Ali Nabavizadeh (2018). "A redescription of the Triassic kannemeyeriiform dicynodont Sangusaurus (Therapsida, Anomodontia), with an analysis of its feeding system". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 189–227. doi:10.1080/02724634.2017.1395885. S2CID 90116315.
  118. ^ Christian F. Kammerer; Kenneth D. Angielczyk; Sterling J. Nesbitt (2018). "Novel hind limb morphology in a kannemeyeriiform dicynodont from the Manda Beds (Songea Group, Ruhuhu Basin) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 178–188. doi:10.1080/02724634.2017.1309422. S2CID 89750474.
  119. ^ Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 502: 31–51. Bibcode:2018PPP...502...31P. doi:10.1016/j.palaeo.2018.04.003. hdl:11336/81031. S2CID 134075049.
  120. ^ Paolo Citton; Ignacio Díaz-Martínez; Silvina de Valais; Carlos Cónsole-Gonella (2018). "Triassic pentadactyl tracks from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible constraints on the autopodial posture of Gondwanan trackmakers". PeerJ. 6: e5358. doi:10.7717/peerj.5358. PMC 6086091. PMID 30123702.
  121. ^ Grzegorz Racki; Spencer G. Lucas (2018). "Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction". Historical Biology: An International Journal of Paleobiology. 32 (4): 452–461. doi:10.1080/08912963.2018.1499734. S2CID 91926999.
  122. ^ Eva-Maria Bendel; Christian F. Kammerer; Nikolay Kardjilov; Vincent Fernandez; Jörg Fröbisch (2018). "Cranial anatomy of the gorgonopsian Cynariops robustus based on CT-reconstruction". PLOS ONE. 13 (11): e0207367. Bibcode:2018PLoSO..1307367B. doi:10.1371/journal.pone.0207367. PMC 6261584. PMID 30485338.
  123. ^ Rachel N. O'Meara; Wendy Dirks; Agustín G. Martinelli (2018). "Enamel formation and growth in non-mammalian cynodonts". Royal Society Open Science. 5 (5): 172293. Bibcode:2018RSOS....572293O. doi:10.1098/rsos.172293. PMC 5990740. PMID 29892415.
  124. ^ Marc van den Brandt; Fernando Abdala (2018). "Cranial morphology and phylogenetic analysis of Cynosaurus suppostus (Therapsida, Cynodontia) from the upper Permian of the Karoo Basin, South Africa". Palaeontologia Africana. 52: 201–221. hdl:10539/24254.
  125. ^ Brenen M. Wynd; Brandon R. Peecook; Megan R. Whitney; Christian A. Sidor (2018). "The first occurrence of Cynognathus crateronotus (Cynodontia: Cynognathia) in Tanzania and Zambia, with implications for the age and biostratigraphic correlation of Triassic strata in southern Pangea". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 228–239. doi:10.1080/02724634.2017.1421548. S2CID 89972431.
  126. ^ Leandro C. Gaetano; Helke Mocke; Fernando Abdala (2018). "The postcranial anatomy of Diademodon tetragonus (Cynodontia, Cynognathia)". Journal of Vertebrate Paleontology. 38 (3): e1451872. Bibcode:2018JVPal..38E1872G. doi:10.1080/02724634.2018.1451872. hdl:11336/84457. S2CID 90344418.
  127. ^ Christian A. Sidor; James A. Hopson (2018). "Cricodon metabolus (Cynodontia: Gomphodontia) from the Triassic Ntawere Formation of northeastern Zambia: patterns of tooth replacement and a systematic review of the Trirachodontidae". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 39–64. doi:10.1080/02724634.2017.1410485. S2CID 89932366.
  128. ^ Phil H. Lai; Andrew A. Biewener; Stephanie E. Pierce (2018). "Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967)". Journal of Anatomy. 232 (3): 383–406. doi:10.1111/joa.12766. PMC 5807948. PMID 29392730.
  129. ^ Micheli Stefanello; Rodrigo Temp Müller; Leonardo Kerber; Ricardo N. Martínez; Sérgio Dias-da-Silva (2018). "Skull anatomy and phylogenetic assessment of a large specimen of Ecteniniidae (Eucynodontia: Probainognathia) from the Upper Triassic of southern Brazil". Zootaxa. 4457 (3): 351–378. doi:10.11646/zootaxa.4457.3.1. PMID 30314154. S2CID 52977449.
  130. ^ Cristian P. Pacheco; Agustín G. Martinelli; Ane E. B. Pavanatto; Marina B. Soares; Sérgio Dias-da-Silva (2018). "Prozostrodon brasiliensis, a probainognathian cynodont from the Late Triassic of Brazil: second record and improvements on its dental anatomy". Historical Biology: An International Journal of Paleobiology. 30 (4): 475–485. Bibcode:2018HBio...30..475P. doi:10.1080/08912963.2017.1292423. S2CID 90730154.
  131. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2018). "Reassessment of the postcranial anatomy of Prozostrodon brasiliensis and implications for postural evolution of non-mammaliaform cynodonts". Journal of Vertebrate Paleontology. 38 (5): e1511570. Bibcode:2018JVPal..38E1570G. doi:10.1080/02724634.2018.1511570. hdl:11336/93954. S2CID 92028529.
  132. ^ Jennifer Botha-Brink; Marina Bento Soares; Agustín G. Martinelli (2018). "Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil". PeerJ. 6: e5029. doi:10.7717/peerj.5029. PMC 6026457. PMID 29967724.
  133. ^ José F. Bonaparte; A. W. Crompton (2018). "Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 174–182. Bibcode:2018HBio...30..174B. doi:10.1080/08912963.2017.1329911. S2CID 39187081.
  134. ^ Eva A. Hoffman; Timothy B. Rowe (2018). "Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth". Nature. 561 (7721): 104–108. Bibcode:2018Natur.561..104H. doi:10.1038/s41586-018-0441-3. PMID 30158701. S2CID 205570021.
  135. ^ Julien Benoit (2019). "Parental care or opportunism in South African Triassic cynodonts?". South African Journal of Science. 115 (3/4): Art. #5589. doi:10.17159/sajs.2019/5589. S2CID 109676327.
  136. ^ Júlio C.A. Marsola; Jonathas S. Bittencourt; Átila A.S. Da Rosa; Agustín G. Martinelli; Ana Maria Ribeiro; Jorge Ferigolo; Max C. Langer (2018). "New sauropodomorph and cynodont remains from the Late Triassic Sacisaurus site in southern Brazil and its stratigraphic position in the Norian Caturrita Formation". Acta Palaeontologica Polonica. 63 (4): 653–669. doi:10.4202/app.00492.2018. hdl:1843/39551. S2CID 56233925.
  137. ^ Stephan Lautenschlager; Pamela G. Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2018). "The role of miniaturization in the evolution of the mammalian jaw and middle ear". Nature. 561 (7724): 533–537. Bibcode:2018Natur.561..533L. doi:10.1038/s41586-018-0521-4. PMID 30224748. S2CID 52284325.
  138. ^ Lucas E. Fiorelli; Sebastián Rocher; Agustín G. Martinelli; Martín D. Ezcurra; E. Martín Hechenleitner; Miguel Ezpeleta (2018). "Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 85–102. Bibcode:2018PPP...496...85F. doi:10.1016/j.palaeo.2018.01.026. hdl:11336/81008.
  139. ^ K. E. Jones; K. D. Angielczyk; P. D. Polly; J. J. Head; V. Fernandez; J. K. Lungmus; S. Tulga; S. E. Pierce (2018). "Fossils reveal the complex evolutionary history of the mammalian regionalized spine" (PDF). Science. 361 (6408): 1249–1252. Bibcode:2018Sci...361.1249J. doi:10.1126/science.aar3126. PMID 30237356. S2CID 52310287.
  140. ^ Aaron R. H. LeBlanc; Kirstin S. Brink; Megan R. Whitney; Fernando Abdala; Robert R. Reisz (2018). "Dental ontogeny in extinct synapsids reveals a complex evolutionary history of the mammalian tooth attachment system". Proceedings of the Royal Society B: Biological Sciences. 285 (1890): 20181792. doi:10.1098/rspb.2018.1792. PMC 6235047. PMID 30404877.
  141. ^ a b Frederik Spindler; Ralf Werneburg; Joerg W. Schneider; Ludwig Luthardt; Volker Annacker; Ronny Rößler (2018). "First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny". PalZ. 92 (2): 315–364. Bibcode:2018PalZ...92..315S. doi:10.1007/s12542-018-0405-9. S2CID 133846070.
  142. ^ Spencer G. Lucas; Larry F. Rinehart; Matthew D. Celeskey (2018). "The oldest specialized tetrapod herbivore: A new eupelycosaur from the Permian of New Mexico, USA". Palaeontologia Electronica. 21 (3): Article number 21.3.39. doi:10.26879/899.
  143. ^ Christian F. Kammerer; Vladimir Masyutin (2018). "A new therocephalian (Gorynychus masyutinae gen. et sp. nov.) from the Permian Kotelnich locality, Kirov Region, Russia". PeerJ. 6: e4933. doi:10.7717/peerj.4933. PMC 5995100. PMID 29900076.
  144. ^ Michael O. Day; Roger M. H. Smith; Julien Benoit; Vincent Fernandez; Bruce S. Rubidge (2018). "A new species of burnetiid (Therapsida, Burnetiamorpha) from the early Wuchiapingian of South Africa and implications for the evolutionary ecology of the family Burnetiidae". Papers in Palaeontology. 4 (3): 453–475. Bibcode:2018PPal....4..453D. doi:10.1002/spp2.1114. S2CID 90992821.
  145. ^ Tomasz Sulej; Grzegorz Niedźwiedzki (2019). "An elephant-sized Late Triassic synapsid with erect limbs". Science. 363 (6422): 78–80. Bibcode:2019Sci...363...78S. doi:10.1126/science.aal4853. PMID 30467179. S2CID 53716186. Archived from the original on 2023-04-26. Retrieved 2021-09-03.
  146. ^ Christian F. Kammerer; Vladimir Masyutin (2018). "Gorgonopsian therapsids (Nochnitsa gen. nov. and Viatkogorgon) from the Permian Kotelnich locality of Russia". PeerJ. 6: e4954. doi:10.7717/peerj.4954. PMC 5995105. PMID 29900078.
  147. ^ Christian F. Kammerer (2018). "The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa". Palaeontologia Africana. 52: 102–128. hdl:10539/24148.
  148. ^ Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2020). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. 32 (1): 80–92. Bibcode:2020HBio...32...80S. doi:10.1080/08912963.2018.1471477. S2CID 90448333.
  149. ^ Ane Elise Branco Pavanatto; Flávio Augusto Pretto; Leonardo Kerber; Rodrigo Temp Müller; Átila Augusto Stock Da-Rosa; Sérgio Dias-da-Silva (2018). "A new Upper Triassic cynodont-bearing fossiliferous site from southern Brazil, with taphonomic remarks and description of a new traversodontid taxon". Journal of South American Earth Sciences. 88: 179–196. Bibcode:2018JSAES..88..179P. doi:10.1016/j.jsames.2018.08.016. S2CID 135131520.
  150. ^ Lívia Roese Miron; Ane Elise Branco Pavanatto; Flávio Augusto Pretto; Rodrigo Temp Müller; Sérgio Dias-da-Silva; Leonardo Kerber (2020). "Siriusgnathus niemeyerorum (Eucynodontia: Gomphodontia): The youngest South American traversodontid?". Journal of South American Earth Sciences. 97: Article 102394. Bibcode:2020JSAES..9702394M. doi:10.1016/j.jsames.2019.102394. S2CID 210628164.
  151. ^ Erik A. Sperling; Richard G. Stockey (2018). "The temporal and environmental context of early animal evolution: considering all the ingredients of an 'explosion'". Integrative and Comparative Biology. 58 (4): 605–622. doi:10.1093/icb/icy088. PMID 30295813.
  152. ^ Frances S. Dunn; Alexander G. Liu; Philip C. J. Donoghue (2018). "Ediacaran developmental biology". Biological Reviews. 93 (2): 914–932. doi:10.1111/brv.12379. PMC 5947158. PMID 29105292.
  153. ^ Thomas Alexander Dececchi; Carolyn Greentree; Marc Laflamme; Guy M. Narbonne (2018). "Phylogenetic relationships among the Rangeomorpha: The Importance of outgroup selection and implications for their diversification". Canadian Journal of Earth Sciences. 55 (11): 1223–1239. Bibcode:2018CaJES..55.1223D. doi:10.1139/cjes-2018-0022. S2CID 133710380.
  154. ^ Lily M. Reid; Diego C. García-Bellido; James G. Gehling (2018). "An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia". Journal of Paleontology. 92 (3): 313–322. Bibcode:2018JPal...92..313R. doi:10.1017/jpa.2017.142. hdl:2440/132663. S2CID 131766139.
  155. ^ Ilya Bobrovskiy; Janet M. Hope; Andrey Ivantsov; Benjamin J. Nettersheim; Christian Hallmann; Jochen J. Brocks (2018). "Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals". Science. 361 (6408): 1246–1249. Bibcode:2018Sci...361.1246B. doi:10.1126/science.aat7228. hdl:1885/230014. PMID 30237355. S2CID 52306108.
  156. ^ Jennifer F. Hoyal Cuthill; Jian Han (2018). "Cambrian petalonamid Stromatoveris phylogenetically links Ediacaran biota to later animals" (PDF). Palaeontology. 61 (6): 813–823. Bibcode:2018Palgy..61..813H. doi:10.1111/pala.12393. S2CID 54054510. Archived (PDF) from the original on 2022-03-31. Retrieved 2019-12-05.
  157. ^ Tatsuo Oji; Stephen Q. Dornbos; Keigo Yada; Hitoshi Hasegawa; Sersmaa Gonchigdorj; Takafumi Mochizuki; Hideko Takayanagi; Yasufumi Iryu (2018). "Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution". Royal Society Open Science. 5 (2): 172250. Bibcode:2018RSOS....572250O. doi:10.1098/rsos.172250. PMC 5830798. PMID 29515908.
  158. ^ Luis A. Buatois; John Almond; M. Gabriela Mángano; Sören Jensen; Gerard J. B. Germs (2018). "Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion". Scientific Reports. 8 (1): Article number 4514. Bibcode:2018NatSR...8.4514B. doi:10.1038/s41598-018-22859-9. PMC 5852133. PMID 29540817.
  159. ^ Zhe Chen; Xiang Chen; Chuanming Zhou; Xunlai Yuan; Shuhai Xiao (2018). "Late Ediacaran trackways produced by bilaterian animals with paired appendages". Science Advances. 4 (6): eaao6691. Bibcode:2018SciA....4.6691C. doi:10.1126/sciadv.aao6691. PMC 5990303. PMID 29881773.
  160. ^ Felicity J. Coutts; Corey J.A. Bradshaw; Diego C. García-Bellido; James G. Gehling (2018). "Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations". Gondwana Research. 55: 21–29. Bibcode:2018GondR..55...21C. doi:10.1016/j.gr.2017.10.009. hdl:2328/37851.
  161. ^ Marc Laflamme; James G. Gehling; Mary L. Droser (2018). "Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia". Journal of Paleontology. 92 (3): 323–335. Bibcode:2018JPal...92..323L. doi:10.1017/jpa.2017.128. S2CID 133800784.
  162. ^ Akshay Mehra; Adam Maloof (2018). "Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2519–E2527. Bibcode:2018PNAS..115E2519M. doi:10.1073/pnas.1719911115. PMC 5856547. PMID 29483244.
  163. ^ Sara B. Pruss; Clara L. Blättler; Francis A. Macdonald; John A. Higgins (2018). "Calcium isotope evidence that the earliest metazoan biomineralizers formed aragonite shells". Geology. 46 (9): 763–766. Bibcode:2018Geo....46..763P. doi:10.1130/G45275.1. S2CID 133671917.
  164. ^ Rachel Wood; Amelia Penny (2018). "Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20171938. doi:10.1098/rspb.2017.1938. PMC 5784191. PMID 29321296.
  165. ^ David Gold (2018). "Life in changing fluids: A critical appraisal of swimming animals before the Cambrian". Integrative and Comparative Biology. 58 (4): 677–687. doi:10.1093/icb/icy015. PMID 29726896.
  166. ^ Chuan Yang; Xian-Hua Li; Maoyan Zhu; Daniel J. Condon; Junyuan Chen (2018). "Geochronological constraint on the Cambrian Chengjiang biota, South China" (PDF). Journal of the Geological Society. 175 (4): 659–666. Bibcode:2018JGSoc.175..659Y. doi:10.1144/jgs2017-103. S2CID 135091168. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-12-05.
  167. ^ Julien Kimmig; Brian R. Pratt (2018). "Coprolites in the Ravens Throat River Lagerstätte of northwestern Canada: implications for the middle Cambrian food web". PALAIOS. 33 (4): 125–140. Bibcode:2018Palai..33..125K. doi:10.2110/palo.2017.038. hdl:1808/26559. S2CID 134429364.
  168. ^ Zongjun Yin; Duoduo Zhao; Bing Pan; Fangchen Zhao; Han Zeng; Guoxiang Li; David J. Bottjer; Maoyan Zhu (2018). "Early Cambrian animal diapause embryos revealed by X-ray tomography". Geology. 46 (5): 387–390. Bibcode:2018Geo....46..387Y. doi:10.1130/G40081.1.
  169. ^ J. Alex Zumberge; Gordon D. Love; Paco Cárdenas; Erik A. Sperling; Sunithi Gunasekera; Megan Rohrssen; Emmanuelle Grosjean; John P. Grotzinger; Roger E. Summons (2018). "Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals". Nature Ecology & Evolution. 2 (11): 1709–1714. Bibcode:2018NatEE...2.1709Z. doi:10.1038/s41559-018-0676-2. PMC 6589438. PMID 30323207.
  170. ^ Joseph P. Botting; Lucy A. Muir; Wenhui Wang; Wenkun Qie; Jingqiang Tan; Linna Zhang; Yuandong Zhang (2018). "Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction". Gondwana Research. 61: 150–171. Bibcode:2018GondR..61..150B. doi:10.1016/j.gr.2018.04.014. S2CID 134827223.
  171. ^ Astrid Schuster; Sergio Vargas; Ingrid S. Knapp; Shirley A. Pomponi; Robert J. Toonen; Dirk Erpenbeck; Gert Wörheide (2018). "Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model". BMC Evolutionary Biology. 18 (1): 114. Bibcode:2018BMCEE..18..114S. doi:10.1186/s12862-018-1230-1. PMC 6052604. PMID 30021516.
  172. ^ Ben J. Slater; Sebastian Willman; Graham E. Budd; John S. Peel (2018). "Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland". Geology. 46 (2): 107–110. Bibcode:2018Geo....46..107S. doi:10.1130/G39788.1.
  173. ^ Christian B. Skovsted; Timothy P. Topper (2018). "Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans". Journal of Paleontology. 92 (1): 71–79. Bibcode:2018JPal...92...71S. doi:10.1017/jpa.2017.41. S2CID 133828207.
  174. ^ Yuanlong Zhao; Mingkun Wang; Steven T. LoDuca; Xinglian Yang; Yuning Yang; Yujuan Liu; Xin Cheng (2018). "Paleoecological significance of complex fossil associations of the eldonioid Pararotadiscus guizhouensis with other faunal members of the Kaili Biota (Stage 5, Cambrian, South China)". Journal of Paleontology. 92 (6): 972–981. Bibcode:2018JPal...92..972Z. doi:10.1017/jpa.2018.41. S2CID 133814969.
  175. ^ Leanne Chambers; Danita Brandt (2018). "Explaining gregarious behaviour in Banffia constricta from the Middle Cambrian Burgess Shale, British Columbia". Lethaia. 51 (1): 120–125. Bibcode:2018Letha..51..120C. doi:10.1111/let.12231.
  176. ^ Yujing Li; Mark Williams; Sarah E. Gabbott; Ailin Chen; Peiyun Cong; Xianguang Hou (2018). "The enigmatic metazoan Yuyuanozoon magnificissimi from the early Cambrian Chengjiang Biota, Yunnan Province, South China". Journal of Paleontology. 92 (6): 1081–1091. Bibcode:2018JPal...92.1081L. doi:10.1017/jpa.2018.18. hdl:2381/41417. S2CID 134315161.
  177. ^ Michael Foote; Roger A. Cooper; James S. Crampton; Peter M. Sadler (2018). "Diversity-dependent evolutionary rates in early Palaeozoic zooplankton". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20180122. doi:10.1098/rspb.2018.0122. PMC 5832717. PMID 29491177.
  178. ^ James S. Crampton; Stephen R. Meyers; Roger A. Cooper; Peter M. Sadler; Michael Foote; David Harte (2018). "Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles". Proceedings of the National Academy of Sciences of the United States of America. 115 (22): 5686–5691. Bibcode:2018PNAS..115.5686C. doi:10.1073/pnas.1714342115. PMC 5984487. PMID 29760070.
  179. ^ Shixue Hu; Bernd-D. Erdtmann; Michael Steiner; Yuandong Zhang; Fangchen Zhao; Zhiliang Zhang; Jian Han (2018). "Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China". Journal of Paleontology. 92 (1): 26–32. Bibcode:2018JPal...92...26H. doi:10.1017/jpa.2017.134. S2CID 134247593.
  180. ^ Khaoula Kouraiss; Khadija El Hariri; Abderrazak El Albani; Abdelfattah Azizi; Arnaud Mazurier; Jean Vannier (2018). "X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 48–58. Bibcode:2018PPP...508...48K. doi:10.1016/j.palaeo.2018.07.012. S2CID 135277318.
  181. ^ Bing Pan; Glenn A. Brock; Christian B.Skovsted; Marissa J. Betts; Timothy P. Topper; Guoxiang Li (2018). "Paterimitra pyramidalis Laurie, 1986, the first tommotiid discovered from the early Cambrian of North China". Gondwana Research. 63: 179–185. Bibcode:2018GondR..63..179P. doi:10.1016/j.gr.2018.05.014. S2CID 134139899.
  182. ^ Andrey Yu. Zhuravlev; Rachel A. Wood (2018). "The two phases of the Cambrian Explosion". Scientific Reports. 8 (1): Article number 16656. Bibcode:2018NatSR...816656Z. doi:10.1038/s41598-018-34962-y. PMC 6226464. PMID 30413739.
  183. ^ Daniel Fontana Ferreira Cardia; Reinaldo J. Bertini; Lucilene Granuzzio Camossi; Luiz Antonio Letizio (2018). "The first record of Ascaridoidea eggs discovered in Crocodyliformes hosts from the Upper Cretaceous of Brazil". Revista Brasileira de Paleontologia. 21 (3): 238–244. doi:10.4072/rbp.2018.3.04. S2CID 134803965.
  184. ^ Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. Bibcode:2017PPal....3..461P. doi:10.1002/spp2.1084. S2CID 135026011.
  185. ^ a b José A. Gámez Vintaned; Andrey Y. Zhuravlev (2018). "Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" by Stephen Pates, Allison C. Daley, and Javier Ortega-Hernández". Acta Palaeontologica Polonica. 63 (1): 103–104. doi:10.4202/app.00335.2017 (inactive 2024-09-18).{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  186. ^ a b c Stephen Pates; Allison C. Daley; Javier Ortega-Hernández (2018). "Reply to Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" with the formal description of Stanleycaris". Acta Palaeontologica Polonica. 63 (1): 105–110. doi:10.4202/app.00443.2017. S2CID 55704049.
  187. ^ Allison C. Daley; Jonathan B. Antcliffe; Harriet B. Drage; Stephen Pates (2018). "Early fossil record of Euarthropoda and the Cambrian Explosion". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): 5323–5331. Bibcode:2018PNAS..115.5323D. doi:10.1073/pnas.1719962115. PMC 6003487. PMID 29784780.
  188. ^ James F. Fleming; Reinhardt Møbjerg Kristensen; Martin Vinther Sørensen; Tae-Yoon S. Park; Kazuharu Arakawa; Mark Blaxter; Lorena Rebecchi; Roberto Guidetti; Tom A. Williams; Nicholas W. Roberts; Jakob Vinther; Davide Pisani (2018). "Molecular palaeontology illuminates the evolution of ecdysozoan vision". Proceedings of the Royal Society B: Biological Sciences. 285 (1892): 20182180. doi:10.1098/rspb.2018.2180. PMC 6283943. PMID 30518575.
  189. ^ Jianni Liu; Rudy Lerosey-Aubril; Michael Steiner; Jason A. Dunlop; Degan Shu; John R. Paterson (2018). "Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan". National Science Review. 5 (6): 863–869. doi:10.1093/nsr/nwy057.
  190. ^ K. A. Sheppard; D. E. Rival; J.-B. Caron (2018). "On the hydrodynamics of Anomalocaris tail fins". Integrative and Comparative Biology. 58 (4): 703–711. doi:10.1093/icb/icy014. hdl:1974/22737. PMID 29697774.
  191. ^ Richard A. Robison; Beverley Cobb Richards (1981). "Larger bivalve arthropods from the Middle Cambrian of Utah". The University of Kansas Paleontological Contributions. 106: 1–19. hdl:1808/3757.
  192. ^ Rudy Lerosey-Aubril; Stephen Pates (2018). "New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton". Nature Communications. 9 (1): Article number 3774. Bibcode:2018NatCo...9.3774L. doi:10.1038/s41467-018-06229-7. PMC 6138677. PMID 30218075.
  193. ^ Javier Ortega-Hernández; Dongjing Fu; Xingliang Zhang; Degan Shu (2018). "Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids". Current Biology. 28 (4): R146–R147. Bibcode:2018CBio...28.R146O. doi:10.1016/j.cub.2018.01.040. PMID 29462577. S2CID 3437933.
  194. ^ Jianni Liu; Michael Steiner; Jason A. Dunlop; Degan Shu (2018). "Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180051. doi:10.1098/rspb.2018.0051. PMC 5904315. PMID 29643211.
  195. ^ Dongjing Fu; Javier Ortega-Hernández; Allison C. Daley; Xingliang Zhang; Degan Shu (2018). "Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China". BMC Evolutionary Biology. 18 (1): 147. Bibcode:2018BMCEE..18..147F. doi:10.1186/s12862-018-1262-6. PMC 6162911. PMID 30268090.
  196. ^ Ailin Chen; Hong Chen; David A. Legg; Yu Liu; Xian-guang Hou (2018). "A redescription of Liangwangshania biloba Chen, 2005, from the Chengjiang biota (Cambrian, China), with a discussion of possible sexual dimorphism in fuxianhuiid arthropods". Arthropod Structure & Development. 47 (5): 552–561. Bibcode:2018ArtSD..47..552C. doi:10.1016/j.asd.2018.08.001. PMID 30125735. S2CID 52053402.
  197. ^ Tae-Yoon S. Park; Ji-Hoon Kihm; Jusun Woo; Changkun Park; Won Young Lee; M. Paul Smith; David A. T. Harper; Fletcher Young; Arne T. Nielsen; Jakob Vinther (2018). "Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head". Nature Communications. 9 (1): Article number 1019. Bibcode:2018NatCo...9.1019P. doi:10.1038/s41467-018-03464-w. PMC 5844904. PMID 29523785.
  198. ^ Mike B. Meyer; G. Robert Ganis; Jacalyn M. Wittmer; Jan A. Zalasiewicz; Kenneth De Baets (2018). "A Late Ordovician planktic assemblage with exceptionally preserved soft-bodied problematica from the Martinsburg Formation, Pennsylvania". PALAIOS. 33 (1): 36–46. Bibcode:2018Palai..33...36M. doi:10.2110/palo.2017.036. hdl:2381/41455. S2CID 134333149.
  199. ^ S. L. Cobain; D. M. Hodgson; J. Peakall; P. B. Wignall; M. R. D. Cobain (2018). "A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments". Scientific Reports. 8 (1): Article number 261. Bibcode:2018NatSR...8..261C. doi:10.1038/s41598-017-18481-w. PMC 5762628. PMID 29321598.
  200. ^ Zhi-liang Zhang; Christian B. Skovsted; Zhi-fei Zhang (2018). "A hyolithid without helens preserving the oldest hyolith muscle scars; palaeobiology of Paramicrocornus from the Shujingtuo Formation (Cambrian Series 2) of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 489: 1–14. Bibcode:2018PPP...489....1Z. doi:10.1016/j.palaeo.2017.07.021. S2CID 135308961.
  201. ^ Hai-Jing Sun; Fang-Chen Zhao; Rong-Qin Wen; Han Zeng; Jin Peng (2018). "Feeding strategy and locomotion of Cambrian hyolithides". Palaeoworld. 27 (3): 334–342. doi:10.1016/j.palwor.2018.03.003. S2CID 134939616.
  202. ^ Vivianne Berg-Madsen; Martin Valent; Jan Ove R. Ebbestad (2018). "An orthothecid hyolith with a digestive tract from the early Cambrian of Bornholm, Denmark". GFF. 140 (1): 25–37. Bibcode:2018GFF...140...25B. doi:10.1080/11035897.2018.1432680. S2CID 51792799.
  203. ^ Jongsun Hong; Jae-Ryong Oh; Jeong-Hyun Lee; Suk-Joo Choh; Dong-Jin Lee (2018). "The earliest evolutionary link of metazoan bioconstruction: Laminar stromatoporoid–bryozoan reefs from the Middle Ordovician of Korea". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 126–133. Bibcode:2018PPP...492..126H. doi:10.1016/j.palaeo.2017.12.018.
  204. ^ Michał Zatoń; Grzegorz Niedźwiedzki; Michał Rakociński; Henning Blom; Benjamin P. Kear (2018). "Earliest Triassic metazoan bioconstructions in East Greenland reveal a pioneering benthic community from immediately after the end-Permian mass extinction". Global and Planetary Change. 167: 87–98. doi:10.1016/j.gloplacha.2018.05.009. S2CID 134625665.
  205. ^ Raymond R. Rogers; Kristina A. Curry Rogers; Brian C. Bagley; James J. Goodin; Joseph H. Hartman; Jeffrey T. Thole; Michał Zatoń (2018). "Pushing the record of trematode parasitism of bivalves upstream and back to the Cretaceous". Geology. 46 (5): 431–434. Bibcode:2018Geo....46..431R. doi:10.1130/G40035.1.
  206. ^ Elizabeth M. Harper; J. Alistair Crame; Caroline E. Sogot (2018). ""Business as usual": Drilling predation across the K-Pg mass extinction event in Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 115–126. Bibcode:2018PPP...498..115H. doi:10.1016/j.palaeo.2018.03.009. S2CID 134360685. Archived from the original on 2020-09-11. Retrieved 2019-12-05.
  207. ^ Xueqian Feng; Zhong-Qiang Chen; David J. Bottjer; Margaret L. Fraiser; Yan Xu; Mao Luo (2018). "Additional records of ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for biotic recovery after the end-Permian mass extinction". GSA Bulletin. 130 (7–8): 1197–1215. Bibcode:2018GSAB..130.1197F. doi:10.1130/B31715.1.
  208. ^ Aaron O'Dea; Brigida De Gracia; Blanca Figuerola; Santosh Jagadeeshan (2018). "Young species of cupuladriid bryozoans occupied new Caribbean habitats faster than old species". Scientific Reports. 8 (1): Article number 12168. Bibcode:2018NatSR...812168O. doi:10.1038/s41598-018-30670-9. PMC 6093879. PMID 30111864.
  209. ^ a b c d Anna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2018). "The internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern Europe". PalZ. 92 (2): 241–266. Bibcode:2018PalZ...92..241K. doi:10.1007/s12542-017-0385-1. S2CID 135386908.
  210. ^ a b Anna V. Koromyslova; Evgeny Yu. Baraboshkin; Silviu O. Martha (2018). "Late Campanian to late Maastrichtian bryozoans encrusting on belemnite rostra from the Aktolagay Plateau in western Kazakhstan". Geobios. 51 (4): 307–333. Bibcode:2018Geobi..51..307K. doi:10.1016/j.geobios.2018.06.001. S2CID 134292905.
  211. ^ a b Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. Bibcode:2018JNatH..52.1657T. doi:10.1080/00222933.2018.1481235. S2CID 89706861.
  212. ^ Jie Yang; Javier Ortega-Hernández; David A. Legg; Tian Lan; Jin-bo Hou; Xi-guang Zhang (2018). "Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods". Nature Communications. 9 (1): Article number 470. Bibcode:2018NatCo...9..470Y. doi:10.1038/s41467-017-02754-z. PMC 5794847. PMID 29391458.
  213. ^ Pei-Yun Cong; Thomas H. P. Harvey; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; Yu-Jing Li; Fan Wei; Xian-Guang Hou (2018). "Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20180296. doi:10.1098/rspb.2018.0296. PMC 6030521. PMID 29925613.
  214. ^ a b Jun Zhao; Guo-Biao Li; Paul A. Selden (2018). "New well-preserved scleritomes of Chancelloriida from early Cambrian Guanshan Biota, eastern Yunnan, China". Journal of Paleontology. 92 (6): 955–971. Bibcode:2018JPal...92..955Z. doi:10.1017/jpa.2018.43. S2CID 119066659.
  215. ^ Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2018). "First report of a Palaeozoic fenestrate bryozoan with an articulated growth habit". Journal of Iberian Geology. 44 (2): 273–283. Bibcode:2018JIbG...44..273S. doi:10.1007/s41513-018-0054-6. S2CID 189934400.
  216. ^ a b c d Leandro M. Pérez; Juan López-Gappa; Miguel Griffin (2018). "Taxonomic status of some species of Aspidostomatidae (Bryozoa, Cheilostomata) from the Oligocene and Miocene of Patagonia (Argentina)". Journal of Paleontology. 92 (3): 432–441. Bibcode:2018JPal...92..432P. doi:10.1017/jpa.2017.143. hdl:11336/94085. S2CID 134620001.
  217. ^ Yunhuan Liu; Qi Wang; Tiequan Shao; Huaqiao Zhang; Jiachen Qin; Li Chen; Yongchun Liang; Cheng Chen; Jiaqi Xue; Xiaowen Liu (2018). "New material of three-dimensionally phosphatized and microscopic cycloneuralians from the Cambrian Paibian Stage of South China". Journal of Paleontology. 92 (1): 87–98. Bibcode:2018JPal...92...87L. doi:10.1017/jpa.2017.40. S2CID 134706282.
  218. ^ Paul D. Taylor; Soledad Brezina (2018). "A new Cenozoic cyclostome bryozoan genus from Argentina and New Zealand: strengthening the biogeographical links between South America and Australasia". Alcheringa: An Australasian Journal of Palaeontology. 42 (3): 441–446. Bibcode:2018Alch...42..441T. doi:10.1080/03115518.2018.1432073. S2CID 133874253.
  219. ^ Michael Wachtler; Chiara Ghidoni (2018). "A fossil polychaete worm from the Illyrian of the Dolomites (Northern Italy)". In Thomas Perner; Michael Wachtler (eds.). Some new and exciting Triassic Archosauria from the Dolomites (Northern Italy). pp. 17–22.
  220. ^ Alfons H.M. VandenBerg (2018). "Fragmentation as a novel propagation strategy in an Early Ordovician graptolite". Alcheringa: An Australasian Journal of Palaeontology. 42 (1): 1–9. Bibcode:2018Alch...42....1V. doi:10.1080/03115518.2017.1395074. S2CID 133787895.
  221. ^ José Antonio Gámez Vintaned; Eladio Liñán; David Navarro; Andrey Yu. Zhuravlev (2018). "The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón)". Geological Magazine. 155 (7): 1465–1474. Bibcode:2018GeoM..155.1465G. doi:10.1017/S0016756817000358. S2CID 134018462.
  222. ^ E.N. Malysheva (2018). "A new sphinctozoan species (Porifera), Colospongia lenis sp. nov., from the Upper Permian reefs of southern Primorye". Paleontological Journal. 52 (3): 231–233. Bibcode:2018PalJ...52..231M. doi:10.1134/S0031030118030085. S2CID 90545525.
  223. ^ Juan Carlos Gutiérrez-Marco; Olev Vinn (2018). "Cornulitids (tubeworms) from the Late Ordovician Hirnantia fauna of Morocco". Journal of African Earth Sciences. 137: 61–68. Bibcode:2018JAfES.137...61G. doi:10.1016/j.jafrearsci.2017.10.005.
  224. ^ Haijing Sun; John M. Malinky; Maoyan Zhu; Diying Huang (2018). "Palaeobiology of orthothecide hyoliths from the Cambrian Manto Formation of Hebei Province, North China". Acta Palaeontologica Polonica. 63 (1): 87–101. doi:10.4202/app.00413.2017. S2CID 56473799.
  225. ^ Andrej Ernst; Karl Krainer; Spencer G. Lucas (2018). "Bryozoan fauna of the Lake Valley Formation (Mississippian), New Mexico". Journal of Paleontology. 92 (4): 577–595. Bibcode:2018JPal...92..577E. doi:10.1017/jpa.2017.146. S2CID 135266996.
  226. ^ a b c d e f John S. Peel; Sebastian Willman (2018). "The Buen Formation (Cambrian Series 2) biota of North Greenland". Papers in Palaeontology. 4 (3): 381–432. Bibcode:2018PPal....4..381P. doi:10.1002/spp2.1112. S2CID 134539597.
  227. ^ Petr Štorch; Michael J. Melchin (2018). "Lower Aeronian triangulate monograptids of the genus Demirastrites Eisel, 1912: biostratigraphy, palaeobiogeography, anagenetic changes and speciation". Bulletin of Geosciences. 93 (4): 513–537. doi:10.3140/bull.geosci.1731. S2CID 73575630.
  228. ^ a b A. Perejón; M. Rodríguez-Martínez; E. Moreno-Eiris; S. Menéndez; J. Reitner (2018). "First microbial-archaeocyathan boundstone record from early Cambrian erratic cobbles in glacial diamictite deposits of Namibia (Dwyka Group, Carboniferous)". Journal of Systematic Palaeontology. 17 (11): 881–910. doi:10.1080/14772019.2018.1481151. S2CID 92032464.
  229. ^ Alfons H.M. Vandenberg (2018). "Didymograptellus kremastus n. sp., a new name for the Chewtonian (mid-Floian, Lower Ordovician) graptolite D. protobifidus sensu Benson & Keble, 1935, non Elles, 1933". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 258–267. Bibcode:2018Alch...42..258V. doi:10.1080/03115518.2017.1398347. S2CID 134425523.
  230. ^ a b c Emanuela Di Martino; Silviu O. Martha; Paul D. Taylor (2018). "The Madagascan Maastrichtian bryozoans of Ferdinand Canu – Systematic revision and scanning electron microscopic study". Annales de Paléontologie. 104 (2): 101–128. Bibcode:2018AnPal.104..101D. doi:10.1016/j.annpal.2018.04.001.
  231. ^ a b Seyed Hamid Vaziri; Mahmoud Reza Majidifard; Marc Laflamme (2018). "Diverse assemblage of Ediacaran fossils from central Iran". Scientific Reports. 8 (1): Article number 5060. Bibcode:2018NatSR...8.5060V. doi:10.1038/s41598-018-23442-y. PMC 5864923. PMID 29567986.
  232. ^ a b c d e Jeanninny Carla Comniskey; Renato Pirani Ghilardi (2018). "Devonian Tentaculitoidea of the Malvinokaffric Realm of Brazil, Paraná Basin". Palaeontologia Electronica. 21 (2): Article number 21.2.21A. doi:10.26879/712.
  233. ^ a b Matthew H. Dick; Chika Sakamoto; Toshifumi Komatsu (2018). "Cheilostome Bryozoa from the Upper Cretaceous Himenoura Group, Kyushu, Japan". Paleontological Research. 22 (3): 239–264. doi:10.2517/2017PR022. S2CID 134160944.
  234. ^ a b c Jobst Wendt (2018). "The first tunicate with a calcareous exoskeleton (Upper Triassic, northern Italy)". Palaeontology. 61 (4): 575–595. Bibcode:2018Palgy..61..575W. doi:10.1111/pala.12356. S2CID 135456629.
  235. ^ Karma Nanglu; Jean-Bernard Caron (2018). "A new Burgess Shale polychaete and the origin of the annelid head revisited". Current Biology. 28 (2): 319–326.e1. Bibcode:2018CBio...28E.319N. doi:10.1016/j.cub.2017.12.019. PMID 29374441. S2CID 2553089.
  236. ^ Jin Guo; Stephen Pates; Peiyun Cong; Allison C. Daley; Gregory D. Edgecombe; Taimin Chen; Xianguang Hou (2018). "A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota". Papers in Palaeontology. 5 (1): 99–110. doi:10.1002/spp2.1231. S2CID 134909330. Archived from the original on 2020-10-02. Retrieved 2020-08-24.
  237. ^ Stephen Pates; Allison C. Daley (2019). "The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts". Geological Magazine. 156 (7): 1233–1246. Bibcode:2019GeoM..156.1233P. doi:10.1017/S0016756818000547. S2CID 134299859.
  238. ^ Qiang Ou; Georg Mayer (2018). "A Cambrian unarmoured lobopodian, †Lenisambulatrix humboldti gen. et sp. nov., compared with new material of †Diania cactiformis". Scientific Reports. 8 (1): Article number 13667. Bibcode:2018NatSR...813667O. doi:10.1038/s41598-018-31499-y. PMC 6147921. PMID 30237414.
  239. ^ a b c d Urszula Hara; Thomas Mörs; Jonas Hagström; Marcelo A. Reguero (2018). "Eocene bryozoan assemblages from the La Meseta Formation of Seymour Island, Antarctica". Geological Quarterly. 62 (3): 705–728. doi:10.7306/gq.1432 (inactive 2024-10-21). S2CID 133717118.{{cite journal}}: CS1 maint: DOI inactive as of October 2024 (link)
  240. ^ Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2018). "A candidate stem-group rossellid (Porifera, Hexactinellida) from the latest Ordovician Anji Biota, China". Bulletin of Geosciences. 93 (3): 275–285. doi:10.3140/bull.geosci.1706. S2CID 133988966.
  241. ^ a b Enis Kemal Sagular; Zeki Ünal Yümün; Engin Meriç (2018). "New didemnid ascidian spicule records calibrated to the nannofossil data chronostratigraphically in the Quaternary marine deposits of Lake İznik (NW Turkey) and their paleoenvironmental interpretations". Quaternary International. 486: 143–155. Bibcode:2018QuInt.486..143S. doi:10.1016/j.quaint.2017.08.060. S2CID 133996845.
  242. ^ Marcelo G. Carrera; Juan Jose Rustán; N. Emilio Vaccari; Miguel Ezpeleta (2018). "A new Mississippian hexactinellid sponge from the western Gondwana: Taxonomic and paleobiogeographic implications". Acta Palaeontologica Polonica. 63 (1): 63–70. doi:10.4202/app.00403.2017. hdl:11336/88317.
  243. ^ Z. A. Tolokonnikova; E. S. Ponomarenko (2018). "The first data on bryozoans from the Lyaiol Formation (Upper Devonian, Upper Frasnian) in South Timan". Paleontological Journal. 52 (6): 593–598. Bibcode:2018PalJ...52..593T. doi:10.1134/S0031030118060114. S2CID 91826922.
  244. ^ Ján Schlögl; Tomáš Kočí; Manfred Jäger; Tomasz Segit; Jan Sklenář; Driss Sadki; Mounsif Ibnoussina; Adam Tomašových (2018). "Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco)". PalZ. 92 (2): 219–240. Bibcode:2018PalZ...92..219S. doi:10.1007/s12542-017-0381-5. S2CID 133913555.
  245. ^ Lucy A. Muir; Joseph P. Botting; Steven N. A. Walker; James D. Schiffbauer; Breandán Anraoi MacGabhann (2018). "Onuphionella corusca sp. nov.: an early Cambrian-type agglutinated tube from Upper Ordovician strata of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 297–309. doi:10.1144/SP485.7. S2CID 220277313.
  246. ^ Haijing Sun; Martin R. Smith; Han Zeng; Fangchen Zhao; Guoxiang Li; Maoyan Zhu (2018). "Hyoliths with pedicles illuminate the origin of the brachiopod body plan". Proceedings of the Royal Society B: Biological Sciences. 285 (1887): 20181780. doi:10.1098/rspb.2018.1780. PMC 6170810. PMID 30257914.
  247. ^ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2018). "First fossil occurrence of the genus Platychelyna Hayward and Thorpe (Bryozoa: Cheilostomata)". Ameghiniana. 55 (5): 607–613. doi:10.5710/AMGH.11.06.2018.3188. hdl:11336/93942. S2CID 133686687.
  248. ^ a b c Ben J. Slater; Thomas H. P. Harvey; Nicholas J. Butterfield (2018). "Small carbonaceous fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica". Palaeontology. 61 (3): 417–439. Bibcode:2018Palgy..61..417S. doi:10.1111/pala.12350. hdl:2381/41261. S2CID 55788255.
  249. ^ a b Yunhuan Liu; Jiachen Qin; Qi Wang; Andreas Maas; Baichuan Duan; Yanan Zhang; Hu Zhang; Tiequan Shao; Huaqiao Zhang (2018). "New armoured scalidophorans (Ecdysozoa, Cycloneuralia) from the Cambrian Fortunian Zhangjiagou Lagerstätte, South China". Papers in Palaeontology. 5 (2): 241–260. doi:10.1002/spp2.1239. S2CID 196672360.
  250. ^ Pei-Yun Cong; Gregory D. Edgecombe; Allison C. Daley; Jin Guo; Stephen Pates; Xian-Guang Hou (2018). "New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta". Papers in Palaeontology. 4 (4): 605–621. Bibcode:2018PPal....4..605C. doi:10.1002/spp2.1219. S2CID 90258934.
  251. ^ L. A. Viskova; A. V. Pakhnevich (2018). "Bryozoa (Stenolaemata) from the upper Callovian (Middle Jurassic) of the Moscow Region". Paleontological Journal. 52 (6): 599–609. Bibcode:2018PalJ...52..599V. doi:10.1134/S0031030118060126. S2CID 195302239.
  252. ^ a b c Anna V. Koromyslova; Paul D. Taylor; Silviu O. Martha; Matthew Riley (2018). "Rhagasostoma (Bryozoa) from the Late Cretaceous of Eurasia: taxonomic revision, stratigraphy and palaeobiogeography". European Journal of Taxonomy (490): 1–66. doi:10.5852/ejt.2018.490. S2CID 134102826.
  253. ^ Yong Yi Zhen (2018). "Conodonts, corals and stromatoporoids from Late Ordovician and latest Silurian allochthonous limestones in the Cuga Burga Volcanics of central western New South Wales". Proceedings of the Linnean Society of New South Wales. 140: 265–294.
  254. ^ a b c John S. Peel (2018). "Sponge spicules from the Holm Dal Formation (Cambrian Series 3, Guzhangian) of North Greenland (Laurentia)". GFF. 140 (4): 306–317. Bibcode:2018GFF...140..306P. doi:10.1080/11035897.2018.1479444. S2CID 135037720.
  255. ^ a b Rossana Sanfilippo; Antonietta Rosso; Agatino Reitano; Viola Alfio; Gianni Insacco (2018). "New serpulid polychaetes from the Permian of western Sicily". Acta Palaeontologica Polonica. 63 (3): 579–584. doi:10.4202/app.00448.2017. S2CID 54871456.
  256. ^ Yuning Yang; Xingliang Zhang; Yuanlong Zhao; Yiru Qi; Linhao Cui (2018). "New paleoscolecid worms from the early Cambrian north margin of the Yangtze Platform, South China". Journal of Paleontology. 92 (1): 49–58. Bibcode:2018JPal...92...49Y. doi:10.1017/jpa.2017.50. S2CID 134657064.
  257. ^ Paul D. Taylor; Emanuela Di Martino (2018). "Sonarina tamilensis n. gen., n. sp., an unusual cheilostome bryozoan from the Late Cretaceous of southern India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (1): 79–85. doi:10.1127/njgpa/2018/0724.
  258. ^ Jean-Bernard Caron; Robert R. Gaines; M. Gabriela Mángano; Michael Streng; Allison C. Daley (2010). "A new Burgess Shale–type assemblage from the "thin" Stephen Formation of the southern Canadian Rockies". Geology. 38 (9): 811–814. Bibcode:2010Geo....38..811C. doi:10.1130/G31080.1. Archived from the original on 2023-12-07. Retrieved 2019-12-05.
  259. ^ John S. Peel (2019). "Tarimspira from the Cambrian (Series 2, Stage 4) of Laurentia (Greenland): extending the skeletal record of paraconodontid vertebrates". Journal of Paleontology. 93 (1): 115–125. Bibcode:2019JPal...93..115P. doi:10.1017/jpa.2018.68. S2CID 134345229.
  260. ^ Derek J. Siveter; Derek E. G. Briggs; David J. Siveter; Mark D. Sutton; David Legg (2018). "A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK". Royal Society Open Science. 5 (8): 172101. doi:10.1098/rsos.172101. PMC 6124121. PMID 30224988.
  261. ^ Shimei Pan; Qinglai Feng; Shan Chang (2018). "Small shelly fossils from the Cambrian Terreneuvian Yanjiahe Formation, Yichang, Hubei Province, China". Acta Micropalaeontologica Sinica. 35 (1): 30–40. Archived from the original on 2018-04-27. Retrieved 2018-04-26.
  262. ^ Orabi H. Orabi; Mahmoud Faris; Nageh A. Obaidalla; Amr S. Zaki (2018). "Impacts of ocean acidification on planktonic foraminifera: a case study from the Cretaceous Paleocene transition at the Farafra Oasis, Egypt". Revue de Paléobiologie, Genève. 37 (1): 29–40.
  263. ^ Ignacio Arenillas; José A. Arz; Vicente Gilabert (2018). "Blooms of aberrant planktic foraminifera across the K/Pg boundary in the Western Tethys: causes and evolutionary implications". Paleobiology. 44 (3): 460–489. Bibcode:2018Pbio...44..460A. doi:10.1017/pab.2018.16. S2CID 73621620.
  264. ^ Daniela N. Schmidt; Ellen Thomas; Elisabeth Authier; David Saunders; Andy Ridgwell (2018). "Strategies in times of crisis—insights into the benthic foraminiferal record of the Palaeocene–Eocene Thermal Maximum". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2130): 20170328. Bibcode:2018RSPTA.37670328S. doi:10.1098/rsta.2017.0328. PMC 6127389. PMID 30177568.
  265. ^ Gabriela J. Arreguín-Rodríguez; Ellen Thomas; Simon D'haenens; Robert P. Speijer; Laia Alegret (2018). "Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world". PLOS ONE. 13 (2): e0193167. Bibcode:2018PLoSO..1393167A. doi:10.1371/journal.pone.0193167. PMC 5825042. PMID 29474429.
  266. ^ Anieke Brombacher; Paul A. Wilson; Ian Bailey; Thomas H. G. Ezard (2018). "Temperature is a poor proxy for synergistic climate forcing of plankton evolution". Proceedings of the Royal Society B: Biological Sciences. 285 (1883): 20180665. doi:10.1098/rspb.2018.0665. PMC 6083249. PMID 30051846.
  267. ^ a b c d Lyndsey R. Fox; Stephen Stukins; Tom Hill; Haydon Bailey (2018). "New species of Cenozoic benthic foraminifera from the former British Petroleum micropalaeontology collection". Journal of Micropalaeontology. 37 (1): 11–16. Bibcode:2018JMicP..37...11F. doi:10.5194/jm-37-11-2018. hdl:10141/622325. S2CID 226953798.
  268. ^ Dario Marcello Soldan; Maria Rose Petrizzo; Isabella Premoli Silva (2018). "Alicantina, a new Eocene planktonic foraminiferal genus for the lozanoi group". Journal of Foraminiferal Research. 48 (1): 41–52. Bibcode:2018JForR..48...41S. doi:10.2113/gsjfr.48.1.41.
  269. ^ a b c d e f Hanna Rosa Hjalmarsdottir; Hans Arne Nakrem; Jeno Nagy (2018). "Environmental significance and taxonomy of well preserved foraminifera from Upper Jurassic - Lower Cretaceous hydrocarbon seep carbonates, central Spitsbergen". Micropaleontology. 64 (5–6): 435–480. Bibcode:2018MiPal..64..435H. doi:10.47894/mpal.64.6.09. hdl:10852/71300. S2CID 217317484. Archived from the original on 2019-01-13. Retrieved 2019-01-12.
  270. ^ Michael A. Kaminski; Muhammad Hammad Malik; Eiichi Setoyama (2018). "The occurrence of a shallow-water Ammobaculoides assemblage in the Middle Jurassic (Bajocian) Dhruma Formation of Central Saudi Arabia". Journal of Micropalaeontology. 37 (1): 149–152. Bibcode:2018JMicP..37..149K. doi:10.5194/jm-37-149-2018.
  271. ^ a b c d Fred Rögl; Antonino Briguglio (2018). "The foraminiferal fauna of the Channa Kodi section at Padappakkara, Kerala, India". Palaeontographica Abteilung A. 312 (1–4): 47–101. Bibcode:2018PalAA.312...47B. doi:10.1127/pala/2018/0082. S2CID 133856056.
  272. ^ a b Vlasta Premec Fucek; Morana Hernitz Kucenjak; Brian T. Huber (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Chiloguembelina and Jenkinsina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 459–480.
  273. ^ Richard K. Olsson; Christoph Hemleben; Helen K. Coxall; Bridget S. Wade (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Ciperoella n. gen.". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 215–230.
  274. ^ Nicoletta Mancin; Michael A. Kaminski (2018). "Colominella piriniae n. sp.: a new textulariid from the Pliocene Mediterranean record". Journal of Foraminiferal Research. 48 (2): 172–180. Bibcode:2018JForR..48..172M. doi:10.2113/gsjfr.48.2.172.
  275. ^ Satoshi Hanagata (2018). "Cyclammina saidovae, a new name for Cyclammina pseudopusilla Hanagata 2003 (preoccupied)". Micropaleontology. 64 (5–6): 416. Bibcode:2018MiPal..64..416H. doi:10.47894/mpal.64.6.07. S2CID 248221192. Archived from the original on 2019-01-13. Retrieved 2019-01-12.
  276. ^ Bridget S. Wade; Paul N. Pearson; Richard K. Olsson; Andrew J. Fraass; R. Mark Leckie; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower Miocene Dentoglobigerina and Globoquadrina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 331–384.
  277. ^ Michael T. Read; Merlynd K. Nestell (2018). "Douglassites, a new genus of schubertellid fusulinid from the Virgilian (Upper Pennsylvanian) of Elko County, Nevada, U.S.A." Micropaleontology. 64 (4): 317–327. Bibcode:2018MiPal..64..317R. doi:10.47894/mpal.64.4.05. S2CID 248313180. Archived from the original on 2018-11-18. Retrieved 2018-11-18.
  278. ^ Lorenzo Consorti; Koorosh Rashidi (2018). "A new evidence of passing the Maastichtian–Paleocene boundary by larger benthic foraminifers: The case of Elazigina from the Maastrichtian Tarbur Formation of Iran". Acta Palaeontologica Polonica. 63 (3): 595–605. doi:10.4202/app.00487.2018. S2CID 55450851.
  279. ^ a b c Silvia Spezzaferri; Helen K. Coxall; Richard K. Olsson; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quityella n. gen.". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 179–214.
  280. ^ a b c Silvia Spezzaferri; Richard K. Olsson; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene to Lower Miocene Globigerinoides and Trilobatus". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 269–306.
  281. ^ Martin P. Crundwell (2018). "Globoconella pseudospinosa, n. sp.: a new Early Pliocene planktonic foraminifera from the southwest Pacific". Journal of Foraminiferal Research. 48 (4): 288–300. Bibcode:2018JForR..48..288C. doi:10.2113/gsjfr.48.4.288. S2CID 135020562.
  282. ^ Helen K. Coxall; Silvia Spezzaferri (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 79–124.
  283. ^ a b c Silvia Spezzaferri; Richard K. Olsson; Christoph Hemleben; Bridget S. Wade; Helen K. Coxall (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower Miocene Globoturborotalita". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 231–268.
  284. ^ David H. McNeil; Lisa A. Neville (2018). "On a grain of sand – a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean". Journal of Micropalaeontology. 37 (1): 295–303. Bibcode:2018JMicP..37..295M. doi:10.5194/jm-37-295-2018.
  285. ^ a b Sylvain Rigaud; Felix Schlagintweit; Ioan I. Bucur (2018). "The foraminiferal genus Neotrocholina Reichel, 1955 and its less known relatives: A reappraisal". Cretaceous Research. 91: 41–65. Bibcode:2018CrRes..91...41R. doi:10.1016/j.cretres.2018.04.014. S2CID 134257170.
  286. ^ Ioan I. Bucur; Felix Schlagintweit (2018). "Moulladella jourdanensis (Foury & Moullade, 1966) n. gen., n. comb.: Valanginian-early late Barremian larger benthic foraminifera from the northern Neotethyan margin" (PDF). Acta Palaeontologica Romaniae. 14 (2): 45–59. Archived (PDF) from the original on 2019-05-11. Retrieved 2019-05-11.
  287. ^ Felix Schlagintweit; Koorosh Rashidi (2018). "Neodubrovnikella maastrichtiana n. gen., n. sp., a new larger agglutinated benthic Foraminifera from the Maastrichtian of Iran". Micropaleontology. 64 (5–6): 507–513. Bibcode:2018MiPal..64..507S. doi:10.47894/mpal.64.6.12. S2CID 248225304. Archived from the original on 2019-01-13. Retrieved 2019-01-12.
  288. ^ Luca Giusberti; Michael A. Kaminski; Nicoletta Mancin (2018). "The bathyal larger lituolid Neonavarella n. gen. (Foraminifera) from the Thanetian Scaglia Rossa Formation of northeastern Italy". Micropaleontology. 64 (5–6): 417–434. Bibcode:2018MiPal..64..414G. doi:10.47894/mpal.64.6.08. hdl:11577/3284915. S2CID 133945623. Archived from the original on 2020-07-17. Retrieved 2019-01-12.
  289. ^ a b Safia Al Menoufy; Mohamed Boukhary (2018). "Nummulites fayumensis n. sp. and Nummulites tenuissimus n. sp. from Munquar El-rayan, Fayum, Egypt". Journal of Foraminiferal Research. 48 (1): 17–28. Bibcode:2018JForR..48...17A. doi:10.2113/gsjfr.48.1.17.
  290. ^ a b Qahtan A.M. Al Nuaimy (2018). "New quantitative data on Omphalocyclus from the Maastrichtian in Northern Iraq". Journal of African Earth Sciences. 138: 319–335. doi:10.1016/j.jafrearsci.2017.11.016.
  291. ^ Lorenzo Consorti; Felix Schlagintweit; Koorosh Rashidi (2018). "Palaeoelphidium gen. nov. (type species: Elphidiella multiscissurata Smout 1955): The oldest Elphidiellidae (benthic foraminifera) from Maastrichtian shallow-water carbonates of the Middle East". Cretaceous Research. 86: 163–169. Bibcode:2018CrRes..86..163C. doi:10.1016/j.cretres.2018.02.011.
  292. ^ Lorenzo Consorti; Juan Pablo Navarro-Ramirez; Stéphane Bodin; Adrian Immenhauser (2018). "The architecture and associated fauna of Perouvianella peruviana, an endemic larger benthic foraminifera from the Cenomanian–Turonian transition interval of central Peru". Facies. 64 (1): Article 2. Bibcode:2018Faci...64....2C. doi:10.1007/s10347-017-0514-z. S2CID 135126012.
  293. ^ Ercüment Sirel; Ali Deveciler (2018). "Diagnostic structural elements of Ranikothalia Caudri and re-description of its six species from Thanetian-Ilerdian of Turkey". Journal of the Palaeontological Society of India. 63 (1): 19–36. doi:10.1177/0971102320180102.
  294. ^ Elisa Villa; Oscar Merino-Tomé; Jaime Martín Llaneza (2018). "Fusulines from the Central Asturian Coalfield (Pennsylvanian, Cantabrian Zone, Spain) and their significance for biostratigraphic correlation" (PDF). Spanish Journal of Palaeontology. 33 (1): 231–260. doi:10.7203/sjp.33.1.13252. S2CID 135233438. Archived (PDF) from the original on 2018-10-03. Retrieved 2018-10-02.
  295. ^ Christopher W. Smart; Ellen Thomas (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Streptochilus". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 495–510.
  296. ^ Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Kirsty M. Edgar; Isabella Premoli Silva (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene Subbotina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.). Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 307–330.
  297. ^ L. A. Glinskikh; B. L. Nikitenko (2018). "Representatives of the genus Trochammina (Foraminifera) from the Middle Jurassic of the Arctic and Boreal regions". Paleontological Journal. 52 (3): 221–230. Bibcode:2018PalJ...52..221G. doi:10.1134/S0031030118030048. S2CID 90348225.
  298. ^ Allen P. Nutman; Vickie C. Bennett; Clark R. L. Friend; Martin J. Van Kranendonk; Allan R. Chivas (2016). "Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures". Nature. 537 (7621): 535–538. Bibcode:2016Natur.537..535N. doi:10.1038/nature19355. PMID 27580034. S2CID 205250494. Archived from the original on 2019-11-13. Retrieved 2019-12-05.
  299. ^ Abigail C. Allwood; Minik T. Rosing; David T. Flannery; Joel A. Hurowitz; Christopher M. Heirwegh (2018). "Reassessing evidence of life in 3,700-million-year-old rocks of Greenland". Nature. 563 (7730): 241–244. Bibcode:2018Natur.563..241A. doi:10.1038/s41586-018-0610-4. PMID 30333621. S2CID 52987320.
  300. ^ J. William Schopf; Kouki Kitajima; Michael J. Spicuzza; Anatoliy B. Kudryavtsev; John W. Valley (2018). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". Proceedings of the National Academy of Sciences of the United States of America. 115 (1): 53–58. Bibcode:2018PNAS..115...53S. doi:10.1073/pnas.1718063115. PMC 5776830. PMID 29255053.
  301. ^ Keyron Hickman-Lewis; Barbara Cavalazzi; Frédéric Foucher; Frances Westall (2018). "Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the ~3.47 Ga Middle Marker horizon". Precambrian Research. 312: 45–67. Bibcode:2018PreR..312...45H. doi:10.1016/j.precamres.2018.04.007. hdl:11585/619579. S2CID 134118012.
  302. ^ Martin Homann; Pierre Sansjofre; Mark Van Zuilen; Christoph Heubeck; Jian Gong; Bryan Killingsworth; Ian S. Foster; Alessandro Airo; Martin J. Van Kranendonk; Magali Ader; Stefan V. Lalonde (2018). "Microbial life and biogeochemical cycling on land 3,220 million years ago" (PDF). Nature Geoscience. 11 (9): 665–671. Bibcode:2018NatGe..11..665H. doi:10.1038/s41561-018-0190-9. S2CID 134935568. Archived (PDF) from the original on 2021-05-09. Retrieved 2021-02-04.
  303. ^ Erica Victoria Barlow; Martin Julian Van Kranendonk (2018). "Snapshot of an early Paleoproterozoic ecosystem: Two diverse microfossil communities from the Turee Creek Group, Western Australia". Geobiology. 16 (5): 449–475. Bibcode:2018Gbio...16..449B. doi:10.1111/gbi.12304. PMID 30091832. S2CID 51939442.
  304. ^ Jérémie Aubineau; Abderrazak El Albani; Ernest Chi Fru; Murray Gingras; Yann Batonneau; Luis A. Buatois; Claude Geffroy; Jérôme Labanowski; Claude Laforest; Laurent Lemée; Maria G. Mángano; Alain Meunier; Anne-Catherine Pierson-Wickmann; Philippe Recourt; Armelle Riboulleau; Alain Trentesaux; Kurt O. Konhauser (2018). "Unusual microbial mat-related structural diversity 2.1 billion years ago and implications for the Francevillian biota" (PDF). Geobiology. 16 (5): 476–497. Bibcode:2018Gbio...16..476A. doi:10.1111/gbi.12296. PMID 29923673. S2CID 49316052. Archived (PDF) from the original on 2019-04-27. Retrieved 2019-12-05.
  305. ^ Yuangao Qu; Shixing Zhu; Martin Whitehouse; Anders Engdahl; Nicola McLoughlin (2018). "Carbonaceous biosignatures of the earliest putative macroscopic multicellular eukaryotes from 1630 Ma Tuanshanzi Formation, north China". Precambrian Research. 304: 99–109. Bibcode:2018PreR..304...99Q. doi:10.1016/j.precamres.2017.11.004.
  306. ^ N. Gueneli; A. M. McKenna; N. Ohkouchi; C. J. Boreham; J. Beghin; E. J. Javaux; J. J. Brocks (2018). "1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers". Proceedings of the National Academy of Sciences of the United States of America. 115 (30): E6978–E6986. Bibcode:2018PNAS..115E6978G. doi:10.1073/pnas.1803866115. PMC 6064987. PMID 29987033.
  307. ^ Stilianos Louca; Patrick M. Shih; Matthew W. Pennell; Woodward W. Fischer; Laura Wegener Parfrey; Michael Doebeli (2018). "Bacterial diversification through geological time" (PDF). Nature Ecology & Evolution. 2 (9): 1458–1467. Bibcode:2018NatEE...2.1458L. doi:10.1038/s41559-018-0625-0. PMID 30061564. S2CID 51867346.
  308. ^ Ilya Bobrovskiy; Janet M. Hope; Anna Krasnova; Andrey Ivantsov; Jochen J. Brocks (2018). "Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis". Nature Ecology & Evolution. 2 (3): 437–440. Bibcode:2018NatEE...2..437B. doi:10.1038/s41559-017-0438-6. PMID 29358605. S2CID 3334262.
  309. ^ Jean-Paul Saint Martin; Simona Saint Martin (2018). "Beltanelliformis brunsae Menner in Keller, Menner, Stepanov & Chumakov, 1974: an Ediacaran fossil from Neoproterozoic of Dobrogea (Romania)". Geodiversitas. 40 (23): 537–548. doi:10.5252/geodiversitas2018v40a23. S2CID 134512804.
  310. ^ Timothy M. Gibson; Patrick M. Shih; Vivien M. Cumming; Woodward W. Fischer; Peter W. Crockford; Malcolm S.W. Hodgskiss; Sarah Wörndle; Robert A. Creaser; Robert H. Rainbird; Thomas M. Skulski; Galen P. Halverson (2018). "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis" (PDF). Geology. 46 (2): 135–138. Bibcode:2018Geo....46..135G. doi:10.1130/G39829.1.
  311. ^ Anton V. Kolesnikov; Alexander G. Liu; Taniel Danelian; Dmitriy V. Grazhdankin (2018). "A reassessment of the problematic Ediacaran genus Orbisiana Sokolov 1976". Precambrian Research. 316: 197–205. Bibcode:2018PreR..316..197K. doi:10.1016/j.precamres.2018.08.011. S2CID 134213721.
  312. ^ Emily G. Mitchell; Nicholas J. Butterfield (2018). "Spatial analyses of Ediacaran communities at Mistaken Point". Paleobiology. 44 (1): 40–57. Bibcode:2018Pbio...44...40M. doi:10.1017/pab.2017.35. S2CID 90612964.
  313. ^ Emily G. Mitchell; Charlotte G. Kenchington (2018). "The utility of height for the Ediacaran organisms of Mistaken Point". Nature Ecology & Evolution. 2 (8): 1218–1222. Bibcode:2018NatEE...2.1218M. doi:10.1038/s41559-018-0591-6. PMID 29942022. S2CID 49409652.
  314. ^ Lidya G. Tarhan; Mary L. Droser; Devon B. Cole; James G. Gehling (2018). "Ecological expansion and extinction in the late Ediacaran: weighing the evidence for environmental and biotic drivers". Integrative and Comparative Biology. 58 (4): 688–702. doi:10.1093/icb/icy020. PMID 29718307.
  315. ^ Christine M.S. Hall; Mary L. Droser; James G. Gehling (2018). "Sizing up Rugoconites: A study of the ontogeny and ecology of an enigmatic Ediacaran genus". Australasian Palaeontological Memoirs. 51: 7–17. ISSN 2205-8877.
  316. ^ Didier Néraudeau; Marie-Pierre Dabard; Abderrazak El Albani; Romain Gougeon; Arnaud Mazurier; Anne-Catherine Pierson-Wickmann; Marc Poujol; Jean-Paul Saint Martin; Simona Saint Martin (2018). "First evidence of Ediacaran–Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France". Lethaia. 51 (4): 513–522. Bibcode:2018Letha..51..513N. doi:10.1111/let.12270.
  317. ^ Anton V. Kolesnikov; Vladimir I. Rogov; Natalia V. Bykova; Taniel Danelian; Sébastien Clausen; Andrey V. Maslov; Dmitriy V. Grazhdankin (2018). "The oldest skeletal macroscopic organism Palaeopascichnus linearis". Precambrian Research. 316: 24–37. Bibcode:2018PreR..316...24K. doi:10.1016/j.precamres.2018.07.017. S2CID 134885946.
  318. ^ Teodoro Palacios; Sören Jensen; Sandra M. Barr; Chris E. White; Paul M. Myrow (2018). "Organic-walled microfossils from the Ediacaran–Cambrian boundary stratotype section, Chapel Island and Random formations, Burin Peninsula, Newfoundland, Canada: Global correlation and significance for the evolution of early complex ecosystems". Geological Journal. 53 (5): 1728–1742. Bibcode:2018GeolJ..53.1728P. doi:10.1002/gj.2998. S2CID 134245510.
  319. ^ Christopher Castellani; Andreas Maas; Mats E. Eriksson; Joachim T. Haug; Carolin Haug; Dieter Waloszek (2018). "First record of Cyanobacteria in Cambrian Orsten deposits of Sweden". Palaeontology. 61 (6): 855–880. Bibcode:2018Palgy..61..855C. doi:10.1111/pala.12374. S2CID 134049042.
  320. ^ Gregory J. Retallack (2018). "Reassessment of the Devonian problematicum Protonympha as another post-Ediacaran vendobiont". Lethaia. 51 (3): 406–423. Bibcode:2018Letha..51..406R. doi:10.1111/let.12253.
  321. ^ Tatsuya Hayashi; William N. Krebs; Megumi Saito-Kato; Yoshihiro Tanimura (2018). "The turnover of continental planktonic diatoms near the middle/late Miocene boundary and their Cenozoic evolution". PLOS ONE. 13 (6): e0198003. Bibcode:2018PLoSO..1398003H. doi:10.1371/journal.pone.0198003. PMC 5988279. PMID 29870528.
  322. ^ Samantha J. Gibbs; Rosie M. Sheward; Paul R. Bown; Alex J. Poulton; Sarah A. Alvarez (2018). "Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2130): 20170075. Bibcode:2018RSPTA.37670075G. doi:10.1098/rsta.2017.0075. PMC 6127380. PMID 30177560.
  323. ^ a b c Liubov Bragina; Nikita Bragin (2018). "Family Pseudoaulophacidae (Radiolaria) from the Upper Cretaceous (Coniacian-Maastrichtian) of Cyprus". Revue de Micropaléontologie. 61 (2): 55–79. Bibcode:2018RvMic..61...55B. doi:10.1016/j.revmic.2018.03.002. S2CID 134356824.
  324. ^ a b Sol Noetinger; Mercedes di Pasquo; Daniel Starck (2018). "Middle-Upper Devonian palynofloras from Argentina, systematic and correlation". Review of Palaeobotany and Palynology. 257: 95–116. Bibcode:2018RPaPa.257...95N. doi:10.1016/j.revpalbo.2018.07.009. hdl:11336/93134. S2CID 134590587.
  325. ^ Ke Pang; Qing Tang; Lei Chen; Bin Wan; Changtai Niu; Xunlai Yuan; Shuhai Xiao (2018). "Nitrogen-fixing heterocystous Cyanobacteria in the Tonian period". Current Biology. 28 (4): 616–622.e1. Bibcode:2018CBio...28E.616P. doi:10.1016/j.cub.2018.01.008. PMID 29398221. S2CID 3397505.
  326. ^ M. L. Droser; S. D. Evans; P. W. Dzaugis; E. B. Hughes; J. G. Gehling (2020). "Attenborites janeae: a new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia". Australian Journal of Earth Sciences. 67 (6): 915–921. Bibcode:2020AuJES..67..915D. doi:10.1080/08120099.2018.1495668. S2CID 133787909.
  327. ^ a b Christine Paillès; Florence Sylvestre; Jaime Escobar; Alain Tonetto; Sybille Rustig; Jean-Charles Mazur (2018). "Cyclotella petenensis and Cyclotella cassandrae, two new fossil diatoms from Pleistocene sediments of Lake Petén-Itzá, Guatemala, Central America" (PDF). Phytotaxa. 351 (4): 247–263. doi:10.11646/phytotaxa.351.4.1. S2CID 90996700.
  328. ^ a b c d Tian Lan; Jie Yang; Xi-guang Zhang; Jin-bo Hou (2018). "A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 35–44. Bibcode:2018PPP...499...35L. doi:10.1016/j.palaeo.2018.02.029. S2CID 134928746.
  329. ^ Mostafa Falahatgar; Daniel Vachard; Mehdi Sarfi (2018). "Revision of the Lower Viséan (MFZ11) calcareous algae and archaediscoid foraminifers of the Sari area (central Alborz, Iran)". Geobios. 51 (2): 107–121. Bibcode:2018Geobi..51..107F. doi:10.1016/j.geobios.2018.02.005.
  330. ^ a b c John S. Peel (2018). "An epiphytacean-Girvanella (Cyanobacteria) symbiosis from the Cambrian (Series 3, Drumian) of North Greenland (Laurentia)". Bulletin of Geosciences. 93 (3): 327–336. doi:10.3140/bull.geosci.1705. S2CID 51885844.
  331. ^ Charlotte G. Kenchington; Frances S. Dunn; Philip R. Wilby (2018). "Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures". Current Biology. 28 (20): 3330–3336.e2. Bibcode:2018CBio...28E3330K. doi:10.1016/j.cub.2018.08.036. PMID 30293718. S2CID 52933769.
  332. ^ Corentin Loron; Małgorzata Moczydłowska (2018). "Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden". Palynology. 42 (2): 220–254. Bibcode:2018Paly...42..220L. doi:10.1080/01916122.2017.1335656. S2CID 133730200.
  333. ^ Peter A. Siver (2018). "Mallomonas aperturae sp. nov. (Synurophyceae) reveals that the complex cell architecture observed on modern synurophytes was well established by the middle Eocene". Phycologia. 57 (3): 273–279. Bibcode:2018Phyco..57..273S. doi:10.2216/17-112.1. S2CID 91141704.
  334. ^ a b Peter A. Siver (2018). "Mallomonas skogstadii sp. nov. and M. bakeri sp. nov.: two new fossil species from the middle Eocene representing extinct members of the section Heterospinae?". Cryptogamie, Algologie. 39 (4): 511–524. doi:10.7872/crya/v39.iss4.2018.511. S2CID 92407855.
  335. ^ Duncan McLean; David J. Bodman; Peter Lucas; Janine L. Pendleton (2018). "An incertae sedis organic-walled microfossil from the Mississippian (Early Carboniferous): Kirby Misperton-1 borehole, North Yorkshire, UK". Proceedings of the Yorkshire Geological Society. 62 (1): 51–57. Bibcode:2018PYGS...62...51M. doi:10.1144/pygs2017-398.
  336. ^ P. W. Dzaugis; S. D. Evans; M. L. Droser; J. G. Gehling; I. V. Hughes (2020). "Stuck in the mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Australian Journal of Earth Sciences. 67 (6): 897–903. Bibcode:2020AuJES..67..897D. doi:10.1080/08120099.2018.1479306. S2CID 134887346.
  337. ^ Leigh Anne Riedman; Susannah M. Porter; Clive R. Calver (2018). "Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon". Precambrian Research. 319: 19–36. Bibcode:2018PreR..319...19R. doi:10.1016/j.precamres.2017.09.019. S2CID 133746303.
  338. ^ Vandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India". Cretaceous Research. 86: 186–198. Bibcode:2018CrRes..86..186P. doi:10.1016/j.cretres.2018.03.004. S2CID 134729292.
  339. ^ P. N. Kolosov; L. S. Sofroneeva (2018). "New Vendian saarinid microorganisms from the Siberian Platform". Paleontological Journal. 52 (6): 589–592. Bibcode:2018PalJ...52..589K. doi:10.1134/S0031030118060060. S2CID 91829874.
  340. ^ V.G. Vorob'eva; V.N. Sergeev (2018). "Stellarossica gen. nov. and the infragroup Keltmiides infragroup. nov.: extremely large acanthomorph acritarchs from the Vendian of Siberia and the East European Platform". Paleontological Journal. 52 (5): 563–573. Bibcode:2018PalJ...52..563V. doi:10.1134/S0031030118040147. S2CID 91776722.
  341. ^ Lei-Ming Yin; B.P. Singh; O.N. Bhargava; Yuan-Long Zhao; R.S. Negi; Fan-Wei Meng; C.A. Sharma (2018). "Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya". Palaeoworld. 27 (1): 30–41. doi:10.1016/j.palwor.2017.05.004.
  342. ^ Dianne Edwards; Rosmarie Honegger; Lindsey Axe; Jennifer L. Morris (2018). "Anatomically preserved Silurian 'nematophytes' from the Welsh Borderland (UK)" (PDF). Botanical Journal of the Linnean Society. 187 (2): 272–291. doi:10.1093/botlinnean/boy022.
  343. ^ a b Fan Yang; Shujian Qin; Weiming Ding; Yihe Xu; Bing Shen (2018). "New discovery of macroscopic algae fossils from Shibantan bituminous limestone of Dengying Formation in the Yangtze Gorges area, South China". Acta Scientiarum Naturalium Universitatis Pekinensis. 54 (3): 563–572. doi:10.13209/j.0479-8023.2017.093.
  344. ^ Sean McMahon; John Parnell (2018). "The deep history of Earth's biomass". Journal of the Geological Society. 175 (5): 716–720. Bibcode:2018JGSoc.175..716M. doi:10.1144/jgs2018-061. hdl:2164/12379. S2CID 134552701.
  345. ^ Holly C. Betts; Mark N. Puttick; James W. Clark; Tom A. Williams; Philip C. J. Donoghue; Davide Pisani (2018). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature Ecology & Evolution. 2 (10): 1556–1562. Bibcode:2018NatEE...2.1556B. doi:10.1038/s41559-018-0644-x. PMC 6152910. PMID 30127539.
  346. ^ Ana Gutiérrez-Preciado; Aurélien Saghaï; David Moreira; Yvan Zivanovic; Philippe Deschamps; Purificación López-García (2018). "Functional shifts in microbial mats recapitulate early Earth metabolic transitions". Nature Ecology & Evolution. 2 (11): 1700–1708. Bibcode:2018NatEE...2.1700G. doi:10.1038/s41559-018-0683-3. PMC 6217971. PMID 30297749.
  347. ^ Nina A. Kamennaya; Marcin Zemla; Laura Mahoney; Liang Chen; Elizabeth Holman; Hoi-Ying Holman; Manfred Auer; Caroline M. Ajo-Franklin; Christer Jansson (2018). "High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial". Nature Communications. 9 (1): Article number 2116. Bibcode:2018NatCo...9.2116K. doi:10.1038/s41467-018-04588-9. PMC 5974010. PMID 29844378.
  348. ^ Indrani Mukherjee; Ross R. Large; Ross Corkrey; Leonid V. Danyushevsky (2018). "The Boring Billion, a slingshot for Complex Life on Earth". Scientific Reports. 8 (1): Article number 4432. Bibcode:2018NatSR...8.4432M. doi:10.1038/s41598-018-22695-x. PMC 5849639. PMID 29535324.
  349. ^ Leigh Anne Riedman; Peter M. Sadler (2018). "Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils". Precambrian Research. 319: 6–18. Bibcode:2018PreR..319....6R. doi:10.1016/j.precamres.2017.10.008. S2CID 134938306.
  350. ^ Simon A. F. Darroch; Marc Laflamme; Peter J. Wagner (2018). "High ecological complexity in benthic Ediacaran communities". Nature Ecology & Evolution. 2 (10): 1541–1547. Bibcode:2018NatEE...2.1541D. doi:10.1038/s41559-018-0663-7. PMID 30224815. S2CID 52288217.
  351. ^ Thomas H. Boag; Richard G. Stockey; Leanne E. Elder; Pincelli M. Hull; Erik A. Sperling (2018). "Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution". Proceedings of the Royal Society B: Biological Sciences. 285 (1893): 20181724. doi:10.1098/rspb.2018.1724. PMC 6304043. PMID 30963899.
  352. ^ Rachel Wood; Frederick Bowyer; Amelia Penny; Simon W. Poulton (2018). "Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis". Precambrian Research. 313: 134–147. Bibcode:2018PreR..313..134W. doi:10.1016/j.precamres.2018.05.011. S2CID 135328721.
  353. ^ Ulf Linnemann; Maria Ovtcharova; Urs Schaltegger; Andreas Gärtner; Michael Hautmann; Gerd Geyer; Patricia Vickers-Rich; Tom Rich; Birgit Plessen; Mandy Hofmann; Johannes Zieger; Rita Krause; Les Kriesfeld; Jeff Smith (2018). "New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion" (PDF). Terra Nova. 31 (1): 49–58. Bibcode:2019TeNov..31...49L. doi:10.1111/ter.12368. S2CID 134022425.
  354. ^ Bradley Deline; Jennifer M. Greenwood; James W. Clark; Mark N. Puttick; Kevin J. Peterson; Philip C. J. Donoghue (2018). "Evolution of metazoan morphological disparity". Proceedings of the National Academy of Sciences of the United States of America. 115 (38): E8909–E8918. Bibcode:2018PNAS..115E8909D. doi:10.1073/pnas.1810575115. PMC 6156614. PMID 30181261.
  355. ^ Russell D. C. Bicknell; John R. Paterson (2018). "Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion". Biological Reviews. 93 (2): 754–784. doi:10.1111/brv.12365. PMID 28967704. S2CID 4700493.
  356. ^ Xiangkuan Zhao; Xinqiang Wang; Xiaoying Shi; Dongjie Tang; Qing Shi (2018). "Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification". Palaeogeography, Palaeoclimatology, Palaeoecology. 504: 86–103. Bibcode:2018PPP...504...86Z. doi:10.1016/j.palaeo.2018.05.009. S2CID 133732928.
  357. ^ A. D. Muscente; Anirudh Prabhu; Hao Zhong; Ahmed Eleish; Michael B. Meyer; Peter Fox; Robert M. Hazen; Andrew H. Knoll (2018). "Quantifying ecological impacts of mass extinctions with network analysis of fossil communities". Proceedings of the National Academy of Sciences of the United States of America. 115 (20): 5217–5222. Bibcode:2018PNAS..115.5217M. doi:10.1073/pnas.1719976115. PMC 5960297. PMID 29686079.
  358. ^ Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2018). "Climate change and the latitudinal selectivity of ancient marine extinctions". Paleobiology. 45 (1): 70–84. doi:10.1017/pab.2018.34. S2CID 91932969.
  359. ^ Ádám T. Kocsis; Carl J. Reddin; Wolfgang Kiessling (2018). "The biogeographical imprint of mass extinctions". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180232. doi:10.1098/rspb.2018.0232. PMC 5966600. PMID 29720415.
  360. ^ Christopher D. Whalen; Derek E. G. Briggs (2018). "The Palaeozoic colonization of the water column and the rise of global nekton". Proceedings of the Royal Society B: Biological Sciences. 285 (1883): 20180883. doi:10.1098/rspb.2018.0883. PMC 6083262. PMID 30051837.
  361. ^ Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2018). "Marine invertebrate migrations trace climate change over 450 million years". Global Ecology and Biogeography. 27 (6): 704–713. Bibcode:2018GloEB..27..704R. doi:10.1111/geb.12732. S2CID 90890673.
  362. ^ Richard Hofmann; Melanie Tietje; Martin Aberhan (2018). "Diversity partitioning in Phanerozoic benthic marine communities". Proceedings of the National Academy of Sciences of the United States of America. 116 (1): 79–83. Bibcode:2019PNAS..116...79H. doi:10.1073/pnas.1814487116. PMC 6320541. PMID 30559194.
  363. ^ Peter Wagner; Roy E. Plotnick; S. Kathleen Lyons (2018). "Evidence for trait-based dominance in occupancy among fossil taxa and the decoupling of macroecological and macroevolutionary success". The American Naturalist. 192 (3): E120–E138. doi:10.1086/697642. PMID 30125228. S2CID 52049376.
  364. ^ Yukio Isozaki; Thomas Servais (2018). "The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass-extinction events compared". Lethaia. 51 (2): 173–186. Bibcode:2018Letha..51..173I. doi:10.1111/let.12252.
  365. ^ Magdalena N. Georgieva; Crispin T. S. Little; Russell J. Bailey; Alexander D. Ball; Adrian G. Glover (2018). "Microbial-tubeworm associations in a 440 million year old hydrothermal vent community". Proceedings of the Royal Society B: Biological Sciences. 285 (1891): 20182004. doi:10.1098/rspb.2018.2004. PMC 6253371. PMID 30429307.
  366. ^ Benjamin K. A. Otoo; Jennifer A. Clack; Timothy R. Smithson; Carys E. Bennett; Timothy I. Kearsey; Michael I. Coates (2018). "A fish and tetrapod fauna from Romer's Gap preserved in Scottish Tournaisian floodplain deposits". Palaeontology. 62 (2): 225–253. doi:10.1111/pala.12395. S2CID 134566755.
  367. ^ Emma M. Dunne; Roger A. Close; David J. Button; Neil Brocklehurst; Daniel D. Cashmore; Graeme T. Lloyd; Richard J. Butler (2018). "Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'". Proceedings of the Royal Society B: Biological Sciences. 285 (1872): 20172730. doi:10.1098/rspb.2017.2730. PMC 5829207. PMID 29436503.
  368. ^ Neil Brocklehurst; Emma M. Dunne; Daniel D. Cashmore; Jӧrg Frӧbisch (2018). "Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea". Nature Communications. 9 (1): Article number 5216. Bibcode:2018NatCo...9.5216B. doi:10.1038/s41467-018-07623-x. PMC 6284015. PMID 30523258.
  369. ^ Rebecca E. O'Connor; Michael N. Romanov; Lucas G. Kiazim; Paul M. Barrett; Marta Farré; Joana Damas; Malcolm Ferguson-Smith; Nicole Valenzuela; Denis M. Larkin; Darren K. Griffin (2018). "Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs". Nature Communications. 9 (1): Article number 1883. Bibcode:2018NatCo...9.1883O. doi:10.1038/s41467-018-04267-9. PMC 5962605. PMID 29784931.
  370. ^ Neil Brocklehurst (2018). "An examination of the impact of Olson's extinction on tetrapods from Texas". PeerJ. 6: e4767. doi:10.7717/peerj.4767. PMC 5958880. PMID 29780669.
  371. ^ Michael O. Day; Roger B. J. Benson; Christian F. Kammerer; Bruce S. Rubidge (2018). "Evolutionary rates of mid-Permian tetrapods from South Africa and the role of temporal resolution in turnover reconstruction". Paleobiology. 44 (3): 347–367. Bibcode:2018Pbio...44..347D. doi:10.1017/pab.2018.17. S2CID 92094370.
  372. ^ Massimo Bernardi; Fabio Massimo Petti; Michael J. Benton (2018). "Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172331. doi:10.1098/rspb.2017.2331. PMC 5784198. PMID 29321300.
  373. ^ Yuangeng Huang; Zhong-Qiang Chen; Paul B. Wignall; Stephen E. Grasby; Laishi Zhao; Xiangdong Wang; Kunio Kaiho (2018). "Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition" (PDF). Geology. 47 (2): 175–178. doi:10.1130/G45283.1. S2CID 134834892.
  374. ^ Peter D. Roopnarine; K.D. Angielczyk; A. Weik; A. Dineen (2019). "Ecological persistence, incumbency and reorganization in the Karoo Basin during the Permian-Triassic transition". Earth-Science Reviews. 189: 244–263. Bibcode:2019ESRv..189..244R. doi:10.1016/j.earscirev.2018.10.014. S2CID 133779523.
  375. ^ Justin L. Penn; Curtis Deutsch; Jonathan L. Payne; Erik A. Sperling (2018). "Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction". Science. 362 (6419): eaat1327. Bibcode:2018Sci...362.1327P. doi:10.1126/science.aat1327. PMID 30523082. S2CID 54456989.
  376. ^ Yong Lei; Jun Shen; Thomas J. Algeo; Thomas Servais; Qinglai Feng; Jianxin Yu (2019). "Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 519: 84–94. Bibcode:2019PPP...519...84L. doi:10.1016/j.palaeo.2018.09.033. S2CID 133815297.
  377. ^ William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett (2018). "Paleoecological analysis of benthic recovery after the Late Permian mass extinction event in eastern Lombardy, Italy". PALAIOS. 33 (6): 266–281. Bibcode:2018Palai..33..266F. doi:10.2110/palo.2017.079. S2CID 54006839.
  378. ^ Morgane Brosse; Hugo Bucher; Aymon Baud; Åsa M. Frisk; Nicolas Goudemand; Hans Hagdorn; Alexander Nützel; David Ware; Michael Hautmann (2018). "New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian–Triassic Boundary mass extinction". Lethaia. 52 (2): 165–187. doi:10.1111/let.12281. S2CID 135442906.
  379. ^ Xiong Duan; Zhiqiang Shi; Yanlong Chen; Lan Chen; Bin Chen; Lijie Wang; Lu Han (2018). "Early Triassic Griesbachian microbial mounds in the Upper Yangtze Region, southwest China: Implications for biotic recovery from the latest Permian mass extinction". PLOS ONE. 13 (8): e0201012. Bibcode:2018PLoSO..1301012D. doi:10.1371/journal.pone.0201012. PMC 6082531. PMID 30089141.
  380. ^ Haijun Song; Paul B. Wignall; Alexander M. Dunhill (2018). "Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction". Science Advances. 4 (10): eaat5091. Bibcode:2018SciA....4.5091S. doi:10.1126/sciadv.aat5091. PMC 6179380. PMID 30324133.
  381. ^ Xu Dai; Haijun Song; Paul B. Wignall; Enhao Jia; Ruoyu Bai; Fengyu Wang; Jing Chen; Li Tian (2018). "Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction" (PDF). GSA Bulletin. 130 (11–12): 2015–2030. Bibcode:2018GSAB..130.2015D. doi:10.1130/B31969.1. S2CID 134620954.
  382. ^ Jonathan Rolland; Daniele Silvestro; Dolph Schluter; Antoine Guisan; Olivier Broennimann; Nicolas Salamin (2018). "The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity". Nature Ecology & Evolution. 2 (3): 459–464. Bibcode:2018NatEE...2..459R. doi:10.1038/s41559-017-0451-9. PMID 29379185. S2CID 3336951.
  383. ^ Hao Lu; Da-Yong Jiang; Ryosuke Motani; Pei-Gang Ni; Zuo-Yu Sun; Andrea Tintori; Shi-Zhen Xiao; Min Zhou; Cheng Ji; Wan-Lu Fu (2018). "Middle Triassic Xingyi Fauna: Showing turnover of marine reptiles from coastal to oceanic environments". Palaeoworld. 27 (1): 107–116. doi:10.1016/j.palwor.2017.05.005.
  384. ^ Alexander M. Dunhill; William J. Foster; James Sciberras; Richard J. Twitchett (2018). "Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems". Palaeontology. 61 (1): 133–148. Bibcode:2018Palgy..61..133D. doi:10.1111/pala.12332. S2CID 55284356.
  385. ^ Alexander M. Dunhill; William J. Foster; Sandro Azaele; James Sciberras; Richard J. Twitchett (2018). "Modelling determinants of extinction across two Mesozoic hyperthermal events". Proceedings of the Royal Society B: Biological Sciences. 285 (1889): 20180404. doi:10.1098/rspb.2018.0404. PMC 6234883. PMID 30355705.
  386. ^ Mario Giordano; Camilla Olivieri; Simona Ratti; Alessandra Norici; John A. Raven; Andrew H. Knoll (2018). "A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry". Geobiology. 16 (5): 498–506. Bibcode:2018Gbio...16..498G. doi:10.1111/gbi.12290. hdl:11566/255641. PMID 29851212. S2CID 44073379.
  387. ^ Victoria M. Arbour; Lindsay E. Zanno (2018). "The evolution of tail weaponization in amniotes". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172299. doi:10.1098/rspb.2017.2299. PMC 5805935. PMID 29343599.
  388. ^ Geerat J. Vermeij; Ryosuke Motani (2018). "Land to sea transitions in vertebrates: the dynamics of colonization". Paleobiology. 44 (2): 237–250. Bibcode:2018Pbio...44..237V. doi:10.1017/pab.2017.37. S2CID 91116726.
  389. ^ Davide Foffa; Mark T. Young; Stephen L. Brusatte (2018). "Filling the Corallian gap: New information on Late Jurassic marine reptile faunas from England". Acta Palaeontologica Polonica. 63 (2): 287–313. doi:10.4202/app.00455.2018. hdl:20.500.11820/729f4cac-6217-4a21-b22c-8683b38c733b. S2CID 52254345.
  390. ^ Davide Foffa; Mark T. Young; Thomas L. Stubbs; Kyle G. Dexter; Stephen L. Brusatte (2018). "The long-term ecology and evolution of marine reptiles in a Jurassic seaway" (PDF). Nature Ecology & Evolution. 2 (10): 1548–1555. Bibcode:2018NatEE...2.1548F. doi:10.1038/s41559-018-0656-6. hdl:20.500.11820/789aa9d0-076f-41bc-bd78-213a3313ebbe. PMID 30177805. S2CID 52147976.
  391. ^ Joseph A. Frederickson; Thomas R. Lipka; Richard L. Cifelli (2018). "Faunal composition and paleoenvironment of the Arundel Clay (Potomac Formation; Early Cretaceous), Maryland, USA". Palaeontologia Electronica. 21 (2): Article number 21.2.31A. doi:10.26879/847.
  392. ^ Sandra Barrios-de Pedro; Francisco José Poyato-Ariza; José Joaquín Moratalla; Ángela D. Buscalioni (2018). "Exceptional coprolite association from the Early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain". PLOS ONE. 13 (5): e0196982. Bibcode:2018PLoSO..1396982B. doi:10.1371/journal.pone.0196982. PMC 5965836. PMID 29791478.
  393. ^ Sandra Barrios-de Pedro; Ángela D. Buscalioni (2018). "Scrutinizing Barremian coprolite inclusions to record digestive strategies". Annales Societatis Geologorum Poloniae. 88 (2): 203–221. doi:10.14241/asgp.2018.014 (inactive 2024-10-21).{{cite journal}}: CS1 maint: DOI inactive as of October 2024 (link)
  394. ^ Yingyan Mao; Kun Liang; Yitong Su; Jianguo Li; Xin Rao; Hua Zhang; Fangyuan Xia; Yanzhe Fu; Chenyang Cai; Diying Huang (2018). "Various amberground marine animals on Burmese amber with discussions on its age". Palaeoentomology. 1 (1): 91–103. doi:10.11646/palaeoentomology.1.1.11. S2CID 68048811.
  395. ^ Haviv M. Avrahami; Terry A. Gates; Andrew B. Heckert; Peter J. Makovicky; Lindsay E. Zanno (2018). "A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America". PeerJ. 6: e5883. doi:10.7717/peerj.5883. PMC 6241397. PMID 30479889.
  396. ^ Nathan A. Jud; Michael D. D'Emic; Scott A. Williams; Josh C. Mathews; Katie M. Tremaine; Janok Bhattacharya (2018). "A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)". Science Advances. 4 (9): eaar8568. Bibcode:2018SciA....4.8568J. doi:10.1126/sciadv.aar8568. PMC 6157959. PMID 30263954.
  397. ^ Joshua D. Laird; Christina L. Belanger (2018). "Quantifying successional change and ecological similarity among Cretaceous and modern cold-seep faunas". Paleobiology. 45 (1): 114–135. doi:10.1017/pab.2018.41. S2CID 91267997.
  398. ^ Christopher M. Lowery; Timothy J. Bralower; Jeremy D. Owens; Francisco J. Rodríguez-Tovar; Heather Jones; Jan Smit; Michael T. Whalen; Phillipe Claeys; Kenneth Farley; Sean P. S. Gulick; Joanna V. Morgan; Sophie Green; Elise Chenot; Gail L. Christeson; Charles S. Cockell; Marco J. L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; David A. Kring; Johanna Lofi; Rubén Ocampo-Torres; Ligia Perez-Cruz; Annemarie E. Pickersgill; Michael H. Poelchau; Auriol S. P. Rae; Cornelia Rasmussen; Mario Rebolledo-Vieyra; Ulrich Riller; Honami Sato; Sonia M. Tikoo; Naotaka Tomioka; Jaime Urrutia-Fucugauchi; Johan Vellekoop; Axel Wittmann; Long Xiao; Kosei E. Yamaguchi; William Zylberman (2018). "Rapid recovery of life at ground zero of the end-Cretaceous mass extinction". Nature. 558 (7709): 288–291. Bibcode:2018Natur.558..288L. doi:10.1038/s41586-018-0163-6. PMC 6058194. PMID 29849143.
  399. ^ George Poinar (2018). "Vertebrate pathogens vectored by ancient hematophagous arthropods". Historical Biology: An International Journal of Paleobiology. 32 (7): 888–901. doi:10.1080/08912963.2018.1545018. S2CID 91497974.
  400. ^ David A. Grimaldi; David Sunderlin; Georgene A. Aaroe; Michelle R. Dempsky; Nancy E. Parker; George Q. Tillery; Jaclyn G. White; Phillip Barden; Paul C. Nascimbene; Christopher J. Williams (2018). "Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska". American Museum Novitates (3908): 1–37. doi:10.1206/3908.1. hdl:2246/6909. S2CID 91866682.
  401. ^ Geerat J. Vermeij; Roxanne Banker; Lena R. Capece; Emilia Sakai Hernandez; Sydney O. Salley; Veronica Padilla Vriesman; Barbara E. Wortham (2018). "The coastal North Pacific: Origins and history of a dominant marine biota". Journal of Biogeography. 46 (1): 1–18. doi:10.1111/jbi.13471. S2CID 91257553.
  402. ^ Maia Bukhsianidze; Kakhaber Koiava (2018). "Synopsis of the terrestrial vertebrate faunas from the Middle Kura Basin (Eastern Georgia and Western Azerbaijan, South Caucasus)". Acta Palaeontologica Polonica. 63 (3): 441–461. doi:10.4202/app.00499.2018. S2CID 56242572.
  403. ^ Andrea Villa; Hugues-Alexandre Blain; Lars W. van den Hoek Ostende; Massimo Delfino (2018). "Fossil amphibians and reptiles from Tegelen (Province of Limburg) and the early Pleistocene palaeoclimate of The Netherlands". Quaternary Science Reviews. 187: 203–219. Bibcode:2018QSRv..187..203V. doi:10.1016/j.quascirev.2018.03.020. hdl:2318/1664966.
  404. ^ Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018). "Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship to Homo erectus paleoecology". Journal of Human Evolution. 122: 70–83. Bibcode:2018JHumE.122...70R. doi:10.1016/j.jhevol.2018.04.014. PMID 29970233. S2CID 49681563.
  405. ^ Geoff M. Smith; Karen Ruebens; Sabine Gaudzinski-Windheuser; Teresa E. Steele (2019). "Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition". Journal of Human Evolution. 127: 1–20. Bibcode:2019JHumE.127....1S. doi:10.1016/j.jhevol.2018.11.011. PMID 30777352. S2CID 73469724.
  406. ^ Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018). "First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)". Scientific Reports. 8 (1): Article number 10551. Bibcode:2018NatSR...810551G. doi:10.1038/s41598-018-28377-y. PMC 6043621. PMID 30002396.
  407. ^ Thomas Sutikna; Matthew W. Tocheri; J. Tyler Faith; Jatmiko; Rokus Due Awe; Hanneke J. M.Meijer; E. Wahyu Saptomo; Richard G. Roberts (2018). "The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology for Homo floresiensis". Journal of Human Evolution. 124: 52–74. Bibcode:2018JHumE.124...52S. doi:10.1016/j.jhevol.2018.07.001. PMID 30173885. S2CID 52145882.
  408. ^ Marco F. Raczka; Mark B. Bush; Paulo Eduardo De Oliveira (2018). "The collapse of megafaunal populations in southeastern Brazil". Quaternary Research. 89 (1): 103–118. Bibcode:2018QuRes..89..103R. doi:10.1017/qua.2017.60. S2CID 134333714.
  409. ^ John Dodson; Judith H. Field (2018). "What does the occurrence of Sporormiella (Preussia) spores mean in Australian fossil sequences?". Journal of Quaternary Science. 33 (4): 380–392. Bibcode:2018JQS....33..380D. doi:10.1002/jqs.3020. S2CID 133737405.
  410. ^ Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee; Stephen J. Brooks; Katherine J. Willis; Cynthia A. Froyd; Jenny E. Watson; Michael B. Bonsall (2018). "Plant controls on Late Quaternary whole ecosystem structure and function" (PDF). Ecology Letters. 21 (6): 814–825. Bibcode:2018EcolL..21..814J. doi:10.1111/ele.12944. PMID 29601664. S2CID 4493047.
  411. ^ Mauro Galetti; Marcos Moleón; Pedro Jordano; Mathias M. Pires; Paulo R. Guimarães Jr.; Thomas Pape; Elizabeth Nichols; Dennis Hansen; Jens M. Olesen; Michael Munk; Jacqueline S. de Mattos; Andreas H. Schweiger; Norman Owen-Smith; Christopher N. Johnson; Robert J. Marquis; Jens-Christian Svenning (2018). "Ecological and evolutionary legacy of megafauna extinctions" (PDF). Biological Reviews. 93 (2): 845–862. doi:10.1111/brv.12374. PMID 28990321. S2CID 4762203.
  412. ^ Daniel H. Mann; Pamela Groves; Benjamin V. Gaglioti; Beth A. Shapiro (2018). "Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis". Biological Reviews. 94 (1): 328–352. doi:10.1111/brv.12456. PMC 7379602. PMID 30136433. S2CID 52072606.
  413. ^ Frederik V. Seersholm; Theresa L. Cole; Alicia Grealy; Nicolas J. Rawlence; Karen Greig; Michael Knapp; Michael Stat; Anders J. Hansen; Luke J. Easton; Lara Shepherd; Alan J. D. Tennyson; R. Paul Scofield; Richard Walter; Michael Bunce (2018). "Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey". Proceedings of the National Academy of Sciences of the United States of America. 115 (30): 7771–7776. Bibcode:2018PNAS..115.7771S. doi:10.1073/pnas.1803573115. PMC 6065006. PMID 29987016.
  414. ^ Jamie R. Wood; Francisca P. Díaz; Claudio Latorre; Janet M. Wilmshurst; Olivia R. Burge; Rodrigo A. Gutiérrez (2018). "Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile". Scientific Reports. 8 (1): Article number 17208. Bibcode:2018NatSR...817208W. doi:10.1038/s41598-018-35299-2. PMC 6249261. PMID 30464240.
  415. ^ Robert S. Sansom; Peter G. Choate; Joseph N. Keating; Emma Randle (2018). "Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees". Biology Letters. 14 (6): 20180263. doi:10.1098/rsbl.2018.0263. PMC 6030593. PMID 29925561.
  416. ^ Daniele Silvestro; Rachel C. M. Warnock; Alexandra Gavryushkina; Tanja Stadler (2018). "Closing the gap between palaeontological and neontological speciation and extinction rate estimates". Nature Communications. 9 (1): Article number 5237. Bibcode:2018NatCo...9.5237S. doi:10.1038/s41467-018-07622-y. PMC 6286320. PMID 30532040.
  417. ^ Kevin Padian (2018). "Measuring and comparing extinction events: Reconsidering diversity crises and concepts". Integrative and Comparative Biology. 58 (6): 1191–1203. doi:10.1093/icb/icy084. PMID 29945185.
  418. ^ Dominic J. Bennett; Mark D. Sutton; Samuel T. Turvey (2018). "Quantifying the living fossil concept". Palaeontologia Electronica. 21 (1): Article number: 21.1.14A. doi:10.26879/750. hdl:10044/1/60906. S2CID 53372593.
  419. ^ Asefeh Golreihan; Christian Steuwe; Lineke Woelders; Arne Deprez; Yasuhiko Fujita; Johan Vellekoop; Rudy Swennen; Maarten B. J. Roeffaers (2018). "Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging". PLOS ONE. 13 (7): e0199695. Bibcode:2018PLoSO..1399695G. doi:10.1371/journal.pone.0199695. PMC 6040746. PMID 29995961.
  420. ^ Fredrik K. Mürer; Sophie Sanchez; Michelle Álvarez-Murga; Marco Di Michiel; Franz Pfeiffer; Martin Bech; Dag W. Breiby (2018). "3D maps of mineral composition and hydroxyapatite orientation in fossil bone samples obtained by X-ray diffraction computed tomography". Scientific Reports. 8 (1): Article number 10052. Bibcode:2018NatSR...810052M. doi:10.1038/s41598-018-28269-1. PMC 6030225. PMID 29968761.
  421. ^ Maria E. McNamara; Jonathan S. Kaye; Michael J. Benton; Patrick J. Orr; Valentina Rossi; Shosuke Ito; Kazumasa Wakamatsu (2018). "Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrates". Nature Communications. 9 (1): Article number 2878. Bibcode:2018NatCo...9.2878M. doi:10.1038/s41467-018-05148-x. PMC 6056411. PMID 30038333.
  422. ^ Jasmina Wiemann; Matteo Fabbri; Tzu-Ruei Yang; Koen Stein; P. Martin Sander; Mark A. Norell; Derek E. G. Briggs (2018). "Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers". Nature Communications. 9 (1): Article number 4741. Bibcode:2018NatCo...9.4741W. doi:10.1038/s41467-018-07013-3. PMC 6226439. PMID 30413693.
  423. ^ Thiago F. Rangel; Neil R. Edwards; Philip B. Holden; José Alexandre F. Diniz-Filho; William D. Gosling; Marco Túlio P. Coelho; Fernanda A. S. Cassemiro; Carsten Rahbek; Robert K. Colwell (2018). "Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves" (PDF). Science. 361 (6399): eaar5452. Bibcode:2018Sci...361R5452R. doi:10.1126/science.aar5452. PMID 30026200. S2CID 51701215.
  424. ^ Ian G. Brennan; J. Scott Keogh (2018). "Miocene biome turnover drove conservative body size evolution across Australian vertebrates". Proceedings of the Royal Society B: Biological Sciences. 285 (1889): 20181474. doi:10.1098/rspb.2018.1474. PMC 6234893. PMID 30333208.
  425. ^ Rafał Nawrot; Daniele Scarponi; Michele Azzarone; Troy A. Dexter; Kristopher M. Kusnerik; Jacalyn M. Wittmer; Alessandro Amorosi; Michał Kowalewski (2018). "Stratigraphic signatures of mass extinctions: ecological and sedimentary determinants". Proceedings of the Royal Society B: Biological Sciences. 285 (1886): 20181191. doi:10.1098/rspb.2018.1191. PMC 6158527. PMID 30209225.
  426. ^ Peter J. Wagner (2018). "Early bursts of disparity and the reorganization of character integration". Proceedings of the Royal Society B: Biological Sciences. 285 (1891): 20181604. doi:10.1098/rspb.2018.1604. PMC 6253373. PMID 30429302.
  427. ^ Geerat J. Vermeij (2018). "Comparative biogeography: innovations and the rise to dominance of the North Pacific biota". Proceedings of the Royal Society B: Biological Sciences. 285 (1891): 20182027. doi:10.1098/rspb.2018.2027. PMC 6253370. PMID 30429310.
  428. ^ Neil Brocklehurst; Jörg Fröbisch (2018). "The definition of bioregions in palaeontological studies of diversity and biogeography affects interpretations: Palaeozoic tetrapods as a case study". Frontiers in Earth Science. 6: 200. Bibcode:2018FrEaS...6..200B. doi:10.3389/feart.2018.00200.
  429. ^ C. R. Marshall; S. Finnegan; E. C. Clites; P. A. Holroyd; N. Bonuso; C. Cortez; E. Davis; G. P. Dietl; P. S. Druckenmiller; R. C. Eng; C. Garcia; K. Estes-Smargiassi; A. Hendy; K. A. Hollis; H. Little; E. A. Nesbitt; P. Roopnarine; L. Skibinski; J. Vendetti; L. D. White (2018). "Quantifying the dark data in museum fossil collections as palaeontology undergoes a second digital revolution". Biology Letters. 14 (9): 20180431. doi:10.1098/rsbl.2018.0431. PMC 6170754. PMID 30185609.
  430. ^ Lauren Sallan; Matt Friedman; Robert S. Sansom; Charlotte M. Bird; Ivan J. Sansom (2018). "The nearshore cradle of early vertebrate diversification" (PDF). Science. 362 (6413): 460–464. Bibcode:2018Sci...362..460S. doi:10.1126/science.aar3689. PMID 30361374. S2CID 53089922.
  431. ^ Asier Gómez-Olivencia; Alon Barash; Daniel García-Martínez; Mikel Arlegi; Patricia Kramer; Markus Bastir; Ella Been (2018). "3D virtual reconstruction of the Kebara 2 Neandertal thorax". Nature Communications. 9 (1): 4387. Bibcode:2018NatCo...9.4387G. doi:10.1038/s41467-018-06803-z. PMC 6207772. PMID 30377294.
  432. ^ Tanya M. Smith; Christine Austin; Daniel R. Green; Renaud Joannes-Boyau; Shara Bailey; Dani Dumitriu; Stewart Fallon; Rainer Grün; Hannah F. James; Marie-Hélène Moncel; Ian S. Williams; Rachel Wood; Manish Arora (2018). "Wintertime stress, nursing, and lead exposure in Neanderthal children". Science Advances. 4 (10): eaau9483. Bibcode:2018SciA....4.9483S. doi:10.1126/sciadv.aau9483. PMC 6209393. PMID 30402544.
  433. ^ Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2018). "Dinosaur egg colour had a single evolutionary origin". Nature. 563 (7732): 555–558. Bibcode:2018Natur.563..555W. doi:10.1038/s41586-018-0646-5. PMID 30464264. S2CID 53188171.
  434. ^ Martin Qvarnström; Piotr Szrek; Per E. Ahlberg; Grzegorz Niedźwiedzki (2018). "Non-marine palaeoenvironment associated to the earliest tetrapod tracks". Scientific Reports. 8 (1): Article number 1074. Bibcode:2018NatSR...8.1074Q. doi:10.1038/s41598-018-19220-5. PMC 5773519. PMID 29348562.
  435. ^ Heitor Francischini; Paula Dentzien-Dias; Spencer G. Lucas; Cesar L. Schultz (2018). "Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)". PeerJ. 6: e4764. doi:10.7717/peerj.4764. PMC 5961629. PMID 29796341.
  436. ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8 (1): Article number 741. Bibcode:2018NatSR...8..741S. doi:10.1038/s41598-017-18619-w. PMC 5792599. PMID 29386519.
  437. ^ Chloe L. Stanton; Christopher T. Reinhard; James F. Kasting; Nathaniel E. Ostrom; Joshua A. Haslun; Timothy W. Lyons; Jennifer B. Glass (2018). "Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration". Geobiology. 16 (6): 597–609. Bibcode:2018Gbio...16..597S. doi:10.1111/gbi.12311. PMID 30133143. S2CID 52055337.
  438. ^ Sarah P. Slotznick; Nicholas L. Swanson-Hysell; Erik A. Sperling (2018). "Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy". Proceedings of the National Academy of Sciences of the United States of America. 115 (51): 12938–12943. Bibcode:2018PNAS..11512938S. doi:10.1073/pnas.1813493115. PMC 6304936. PMID 30509974.
  439. ^ Peter W. Crockford; Justin A. Hayles; Huiming Bao; Noah J. Planavsky; Andrey Bekker; Philip W. Fralick; Galen P. Halverson; Thi Hao Bui; Yongbo Peng; Boswell A. Wing (2018). "Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity". Nature. 559 (7715): 613–616. Bibcode:2018Natur.559..613C. doi:10.1038/s41586-018-0349-y. PMID 30022163. S2CID 49869017.
  440. ^ Donald E. Canfield; Shuichang Zhang; Anja B. Frank; Xiaomei Wang; Huajian Wang; Jin Su; Yuntao Ye; Robert Frei (2018). "Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen". Nature Communications. 9 (1): Article number 2871. Bibcode:2018NatCo...9.2871C. doi:10.1038/s41467-018-05263-9. PMC 6054612. PMID 30030422.
  441. ^ Kazumi Ozaki; Christopher T. Reinhard; Eiichi Tajika (2019). "A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance". Geobiology. 17 (1): 3–11. arXiv:1907.13567. Bibcode:2019arXiv190713567O. doi:10.1111/gbi.12317. PMC 6585969. PMID 30281196.
  442. ^ Yebo Liu; Zheng-Xiang Li; Sergei A. Pisarevsky; Uwe Kirscher; Ross N. Mitchell; J. Camilla Stark; Chris Clark; Martin Hand (2018). "First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications". Scientific Reports. 8 (1): Article number 16403. Bibcode:2018NatSR...816403L. doi:10.1038/s41598-018-34748-2. PMC 6219563. PMID 30401799.
  443. ^ C. Brenhin Keller; Jon M. Husson; Ross N. Mitchell; William F. Bottke; Thomas M. Gernon; Patrick Boehnke; Elizabeth A. Bell; Nicholas L. Swanson-Hysell; Shanan E. Peters (2018). "Neoproterozoic glacial origin of the Great Unconformity". Proceedings of the National Academy of Sciences of the United States of America. 116 (4): 1136–1145. Bibcode:2019PNAS..116.1136B. doi:10.1073/pnas.1804350116. PMC 6347685. PMID 30598437.
  444. ^ Kelden Pehr; Gordon D. Love; Anton Kuznetsov; Victor Podkovyrov; Christopher K. Junium; Leonid Shumlyanskyy; Tetyana Sokur; Andrey Bekker (2018). "Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica". Nature Communications. 9 (1): Article number 1807. Bibcode:2018NatCo...9.1807P. doi:10.1038/s41467-018-04195-8. PMC 5935690. PMID 29728614.
  445. ^ Romain C. Gougeon; M. Gabriela Mángano; Luis A. Buatois; Guy M. Narbonne; Brittany A. Laing (2018). "Early Cambrian origin of the shelf sediment mixed layer". Nature Communications. 9 (1): Article number 1909. Bibcode:2018NatCo...9.1909G. doi:10.1038/s41467-018-04311-8. PMC 5953921. PMID 29765030.
  446. ^ Sebastiaan van de Velde; Benjamin J. W. Mills; Filip J. R. Meysman; Timothy M. Lenton; Simon W. Poulton (2018). "Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing". Nature Communications. 9 (1): Article number 2554. Bibcode:2018NatCo...9.2554V. doi:10.1038/s41467-018-04973-4. PMC 6028391. PMID 29967319.
  447. ^ Thomas Servais; David A.T. Harper (2018). "The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration" (PDF). Lethaia. 51 (2): 151–164. Bibcode:2018Letha..51..151S. doi:10.1111/let.12259. S2CID 135307811.
  448. ^ Jiaheng Shen; Ann Pearson; Gregory A. Henkes; Yi Ge Zhang; Kefan Chen; Dandan Li; Scott D. Wankel; Stanley C. Finney; Yanan Shen (2018). "Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation". Nature Geoscience. 11 (7): 510–514. Bibcode:2018NatGe..11..510S. doi:10.1038/s41561-018-0141-5. S2CID 133854468.
  449. ^ Grzegorz Racki; Michał Rakociński; Leszek Marynowski; Paul B. Wignall (2018). "Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?" (PDF). Geology. 46 (6): 543–546. Bibcode:2018Geo....46..543R. doi:10.1130/G40233.1.
  450. ^ Catherine Girard; Jean-Jacques Cornée; Michael M. Joachimski; Anne-Lise Charruault; Anne-Béatrice Dufour; Sabrina Renaud (2018). "Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 108852. doi:10.1016/j.palaeo.2018.06.046. S2CID 134155041.
  451. ^ Aaron M. Martinez; Diana L. Boyer; Mary L. Droser; Craig Barrie; Gordon D. Love (2018). "A stable and productive marine microbial community was sustained through the end-Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States". Geobiology. 17 (1): 27–42. doi:10.1111/gbi.12314. PMID 30248226. S2CID 52811336.
  452. ^ L. M. E. Percival; J. H. F. L. Davies; U. Schaltegger; D. De Vleeschouwer; A.-C. Da Silva; K. B. Föllmi (2018). "Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction". Scientific Reports. 8 (1): Article number 9578. Bibcode:2018NatSR...8.9578P. doi:10.1038/s41598-018-27847-7. PMC 6014997. PMID 29934550.
  453. ^ Pia A. Viglietti; Roger M.H. Smith; Bruce S. Rubidge (2018). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. Bibcode:2018JAfES.138..102V. doi:10.1016/j.jafrearsci.2017.11.010.
  454. ^ Li Tian; Jinnan Tong; Yifan Xiao; Michael J. Benton; Huyue Song; Haijun Song; Lei Liang; Kui Wu; Daoliang Chu; Thomas J. Algeo (2019). "Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China)". Palaeogeography, Palaeoclimatology, Palaeoecology. 519: 23–36. Bibcode:2019PPP...519...23T. doi:10.1016/j.palaeo.2018.05.011. hdl:1983/fbd7b0d5-ae23-4d61-900a-3cd566d298e3. S2CID 135112454.
  455. ^ Michael W. Broadley; Peter H. Barry; Chris J. Ballentine; Lawrence A. Taylor; Ray Burgess (2018). "End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles". Nature Geoscience. 11 (9): 682–687. Bibcode:2018NatGe..11..682B. doi:10.1038/s41561-018-0215-4. S2CID 133833819.
  456. ^ He Sun; Yilin Xiao; Yongjun Gao; Guijie Zhang; John F. Casey; Yanan Shen (2018). "Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary". Proceedings of the National Academy of Sciences of the United States of America. 115 (15): 3782–3787. Bibcode:2018PNAS..115.3782S. doi:10.1073/pnas.1711862115. PMC 5899431. PMID 29581278.
  457. ^ Shu-Zhong Shen; Jahandar Ramezani; Jun Chen; Chang-Qun Cao; Douglas H. Erwin; Hua Zhang; Lei Xiang; Shane D. Schoepfer; Charles M. Henderson; Quan-Feng Zheng; Samuel A. Bowring; Yue Wang; Xian-Hua Li; Xiang-Dong Wang; Dong-Xun Yuan; Yi-Chun Zhang; Lin Mu; Jun Wang; Ya-Sheng Wu (2018). "A sudden end-Permian mass extinction in South China". GSA Bulletin. 131 (1–2): 205–223. Bibcode:2019GSAB..131..205S. doi:10.1130/B31909.1. S2CID 134291243.
  458. ^ Max C. Langer; Jahandar Ramezani; Átila A.S. Da Rosa (2018). "U-Pb age constraints on dinosaur rise from south Brazil". Gondwana Research. 57: 133–140. Bibcode:2018GondR..57..133L. doi:10.1016/j.gr.2018.01.005.
  459. ^ Dennis V. Kent; Paul E. Olsen; Cornelia Rasmussen; Christopher Lepre; Roland Mundil; Randall B. Irmis; George E. Gehrels; Dominique Giesler; John W. Geissman; William G. Parker (2018). "Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years". Proceedings of the National Academy of Sciences of the United States of America. 115 (24): 6153–6158. Bibcode:2018PNAS..115.6153K. doi:10.1073/pnas.1800891115. PMC 6004457. PMID 29735684.
  460. ^ Thea H. Heimdal; Henrik. H. Svensen; Jahandar Ramezani; Karthik Iyer; Egberto Pereira; René Rodrigues; Morgan T. Jones; Sara Callegaro (2018). "Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis". Scientific Reports. 8 (1): Article number 141. Bibcode:2018NatSR...8..141H. doi:10.1038/s41598-017-18629-8. PMC 5760721. PMID 29317730.
  461. ^ Tamara L. Fletcher; Patrick T. Moss; Steven W. Salisbury (2018). "The palaeoenvironment of the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, Queensland, Australia". PeerJ. 6: e5513. doi:10.7717/peerj.5513. PMC 6130253. PMID 30210941.
  462. ^ Sarah J. Widlansky; William C. Clyde; Patrick M. O'Connor; Eric M. Roberts; Nancy J. Stevens (2018). "Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution". Journal of African Earth Sciences. 139: 403–420. Bibcode:2018JAfES.139..403W. doi:10.1016/j.jafrearsci.2017.11.029.
  463. ^ Phil R. Bell; Federico Fanti; Lachlan J. Hart; Luke A. Milan; Stephen J. Craven; Thomas Brougham; Elizabeth Smith (2019). "Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales, Australia". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 655–671. Bibcode:2019PPP...514..655B. doi:10.1016/j.palaeo.2018.11.020. hdl:11585/651841. S2CID 134264936.
  464. ^ Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 152–165. Bibcode:2019PPP...516..152C. doi:10.1016/j.palaeo.2018.11.022. S2CID 135118646.
  465. ^ Prosenjit Ghosh; K. Prasanna; Yogaraj Banerjee; Ian S. Williams; Michael K. Gagan; Atanu Chaudhuri; Satyam Suwas (2018). "Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse". Scientific Reports. 8 (1): Article number 8482. Bibcode:2018NatSR...8.8482G. doi:10.1038/s41598-018-26272-0. PMC 5981374. PMID 29855487.
  466. ^ Joseph S. Byrnes; Leif Karlstrom (2018). "Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism". Science Advances. 4 (2): eaao2994. Bibcode:2018SciA....4.2994B. doi:10.1126/sciadv.aao2994. PMC 5810608. PMID 29441360.
  467. ^ K. G. MacLeod; P. C. Quinton; J. Sepúlveda; M. H. Negra (2018). "Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia)". Science. 360 (6396): 1467–1469. Bibcode:2018Sci...360.1467M. doi:10.1126/science.aap8525. PMID 29794216. S2CID 206664436.
  468. ^ Johan Vellekoop; Lineke Woelders; Niels A.G.M. van Helmond; Simone Galeotti; Jan Smit; Caroline P. Slomp; Henk Brinkhuis; Philippe Claeys; Robert P. Speijer (2018). "Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact". Geology. 46 (8): 683–686. Bibcode:2018Geo....46..683V. doi:10.1130/G45000.1. S2CID 134506332.
  469. ^ S. J. Batenburg; S. Voigt; O. Friedrich; A. H. Osborne; A. Bornemann; T. Klein; L. Pérez-Díaz; M. Frank (2018). "Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth". Nature Communications. 9 (1): Article number 4954. Bibcode:2018NatCo...9.4954B. doi:10.1038/s41467-018-07457-7. PMC 6251870. PMID 30470783.
  470. ^ Liao Chang; Richard J. Harrison; Fan Zeng; Thomas A. Berndt; Andrew P. Roberts; David Heslop; Xiang Zhao (2018). "Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene–Eocene Thermal Maximum". Nature Communications. 9 (1): Article number 4007. Bibcode:2018NatCo...9.4007C. doi:10.1038/s41467-018-06472-y. PMC 6167317. PMID 30275540.
  471. ^ Jeffrey T. Kiehl; Christine A. Shields; Mark A. Snyder; James C. Zachos; Mathew Rothstein (2018). "Greenhouse- and orbital-forced climate extremes during the early Eocene". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2130): 20170085. Bibcode:2018RSPTA.37670085K. doi:10.1098/rsta.2017.0085. PMC 6127382. PMID 30177566.
  472. ^ Margot J. Cramwinckel; Matthew Huber; Ilja J. Kocken; Claudia Agnini; Peter K. Bijl; Steven M. Bohaty; Joost Frieling; Aaron Goldner; Frederik J. Hilgen; Elizabeth L. Kip; Francien Peterse; Robin van der Ploeg; Ursula Röhl; Stefan Schouten; Appy Sluijs (2018). "Synchronous tropical and polar temperature evolution in the Eocene". Nature. 559 (7714): 382–386. Bibcode:2018Natur.559..382C. doi:10.1038/s41586-018-0272-2. hdl:1874/366626. PMID 29967546. S2CID 49556944.
  473. ^ Robin van der Ploeg; David Selby; Margot J. Cramwinckel; Yang Li; Steven M. Bohaty; Jack J. Middelburg; Appy Sluijs (2018). "Middle Eocene greenhouse warming facilitated by diminished weathering feedback". Nature Communications. 9 (1): Article number 2877. Bibcode:2018NatCo...9.2877V. doi:10.1038/s41467-018-05104-9. PMC 6056486. PMID 30038400.
  474. ^ Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li; Li Wang; Lin-Bo Jia; Wei-Yu-Dong Deng; Jia Liu; Cheng-Long Deng; Shi-Tao Zhang; Paul J. Valdes; Zhe-Kun Zhou (2018). "Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet". National Science Review. 6 (3): 495–504. doi:10.1093/nsr/nwy062. PMC 8291530. PMID 34691898.
  475. ^ Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 143–151. Bibcode:2019PPP...515..143A. doi:10.1016/j.palaeo.2018.04.017. S2CID 134696755.
  476. ^ Kaarel Mänd; Karlis Muehlenbachs; Ryan C. McKellar; Alexander P. Wolfe; Kurt O. Konhauser (2018). "Distinct origins for Rovno and Baltic ambers: Evidence from carbon and hydrogen stable isotopes". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 265–273. Bibcode:2018PPP...505..265M. doi:10.1016/j.palaeo.2018.06.004. S2CID 49567887.
  477. ^ Jennifer Kasbohm; Blair Schoene (2018). "Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum". Science Advances. 4 (9): eaat8223. Bibcode:2018SciA....4.8223K. doi:10.1126/sciadv.aat8223. PMC 6154988. PMID 30255148.
  478. ^ Jon J. Smith; Elijah Turner; Andreas Möller; R. M. Joeckel; Rick E. Otto (2018). "First U-Pb zircon ages for late Miocene Ashfall Konservat-Lagerstätte and Grove Lake ashes from eastern Great Plains, USA". PLOS ONE. 13 (11): e0207103. Bibcode:2018PLoSO..1307103S. doi:10.1371/journal.pone.0207103. PMC 6224108. PMID 30408086.
  479. ^ Dirk Simon; Dan Palcu; Paul Meijer; Wout Krijgsman (2018). "The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe". Geology. 47 (1): 35–38. Bibcode:2019Geo....47...35S. doi:10.1130/G45698.1. hdl:1874/378164. S2CID 134633409.
  480. ^ Thomas Denk; Constantin M. Zohner; Guido W. Grimm; Susanne S. Renner (2018). "Plant fossils reveal major biomes occupied by the late Miocene Old-World Pikermian fauna". Nature Ecology & Evolution. 2 (12): 1864–1870. Bibcode:2018NatEE...2.1864D. doi:10.1038/s41559-018-0695-z. PMID 30374173. S2CID 53106568.
  481. ^ Daniel De Miguel; Beatriz Azanza; Jorge Morales (2018). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world". Palaeontology. 62 (1): 77–92. doi:10.1111/pala.12382. S2CID 133968515.
  482. ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. Bibcode:2018PPP...490..571F. doi:10.1016/j.palaeo.2017.11.045.
  483. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 250–251. Bibcode:2018PPP...506..250B. doi:10.1016/j.palaeo.2018.02.022. S2CID 135094022.
  484. ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 252–253. Bibcode:2018PPP...506..252F. doi:10.1016/j.palaeo.2018.02.023. S2CID 134698793.
  485. ^ Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018). "Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20172566. doi:10.1098/rspb.2017.2566. PMC 5904307. PMID 29643207.
  486. ^ Kathlyn M. Stewart; Scott J. Rufolo (2018). "Kanapoi revisited: Paleoecological and biogeographical inferences from the fossil fish". Journal of Human Evolution. 140: Article 102452. doi:10.1016/j.jhevol.2018.01.008. PMID 29602541. S2CID 4505213.
  487. ^ Sev Kender; Ana Christina Ravelo; Savannah Worne; George E. A. Swann; Melanie J. Leng; Hirofumi Asahi; Julia Becker; Henrieka Detlef; Ivano W. Aiello; Dyke Andreasen; Ian R. Hall (2018). "Closure of the Bering Strait caused Mid-Pleistocene Transition cooling". Nature Communications. 9 (1): Article number 5386. Bibcode:2018NatCo...9.5386K. doi:10.1038/s41467-018-07828-0. PMC 6300599. PMID 30568245.
  488. ^ Manuel Domínguez-Rodrigo; Enrique Baquedano (2018). "Distinguishing butchery cut marks from crocodile bite marks through machine learning methods". Scientific Reports. 8 (1): Article number 5786. Bibcode:2018NatSR...8.5786D. doi:10.1038/s41598-018-24071-1. PMC 5893542. PMID 29636550.
  489. ^ Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018). "Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence". Journal of Human Evolution. 120: 48–75. Bibcode:2018JHumE.120...48B. doi:10.1016/j.jhevol.2017.10.009. hdl:10138/303935. PMID 29191415. S2CID 33617735.
  490. ^ Roberts, Patrick; Stewart, Mathew; Alagaili, Abdulaziz N.; Breeze, Paul; Candy, Ian; Drake, Nick; Groucutt, Huw S.; Scerri, Eleanor M. L.; Lee-Thorp, Julia; Louys, Julien; Zalmout, Iyad S.; Al-Mufarreh, Yahya S. A.; Zech, Jana; Alsharekh, Abdullah M.; al Omari, Abdulaziz; Nicole Boivin; Michael Petraglia (2018). "Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in 'Green Arabia'". Nature Ecology & Evolution. 2 (12): 1871–1878. Bibcode:2018NatEE...2.1871R. doi:10.1038/s41559-018-0698-9. hdl:10072/382068. PMID 30374171. S2CID 53099270.
  491. ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. Bibcode:2018Sci...360...86P. doi:10.1126/science.aao2200. PMID 29545506. S2CID 206662634.
  492. ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. Bibcode:2018Sci...360...95D. doi:10.1126/science.aao2216. PMID 29545510. S2CID 3895578.
  493. ^ Finn A. Viehberg; Janna Just; Jonathan R. Dean; Bernd Wagner; Sven Oliver Franz; Nicole Klasen; Thomas Kleinen; Patrick Ludwig; Asfawossen Asrat; Henry F. Lamb; Melanie J. Leng; Janet Rethemeyer; Antoni E. Milodowski; Martin Claussen; Frank Schäbitz (2018). "Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion". Quaternary Science Reviews. 202: 139–153. Bibcode:2018QSRv..202..139V. doi:10.1016/j.quascirev.2018.09.008. hdl:21.11116/0000-0002-4B3E-6. S2CID 134622062.
  494. ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. Bibcode:2018JHumE.116...75Y. doi:10.1016/j.jhevol.2017.11.005. PMID 29477183.
  495. ^ Jennifer R. Jones; Michael P. Richards; Lawrence G. Straus; Hazel Reade; Jesús Altuna; Koro Mariezkurrena; Ana B. Marín-Arroyo (2018). "Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones". Scientific Reports. 8 (1): Article number 14842. Bibcode:2018NatSR...814842J. doi:10.1038/s41598-018-32493-0. PMC 6172272. PMID 30287834.
  496. ^ Matthew J. Wooller; Émilie Saulnier-Talbot; Ben A. Potter; Soumaya Belmecheri; Nancy Bigelow; Kyungcheol Choy; Les C. Cwynar; Kimberley Davies; Russell W. Graham; Joshua Kurek; Peter Langdon; Andrew Medeiros; Ruth Rawcliffe; Yue Wang; John W. Williams (2018). "A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal". Royal Society Open Science. 5 (6): 180145. Bibcode:2018RSOS....580145W. doi:10.1098/rsos.180145. PMC 6030284. PMID 30110451.
  497. ^ Anja S. Studer; Daniel M. Sigman; Alfredo Martínez-García; Lena M. Thöle; Elisabeth Michel; Samuel L. Jaccard; Jörg A. Lippold; Alain Mazaud; Xingchen T. Wang; Laura F. Robinson; Jess F. Adkins; Gerald H. Haug (2018). "Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise" (PDF). Nature Geoscience. 11 (10): 756–760. Bibcode:2018NatGe..11..756S. doi:10.1038/s41561-018-0191-8. hdl:1983/59f1368d-42cb-4ae9-a700-45e6b18dfd7c. S2CID 134793252.
  498. ^ Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018). "Early anthropogenic impact on Western Central African rainforests 2,600 y ago". Proceedings of the National Academy of Sciences of the United States of America. 115 (13): 3261–3266. Bibcode:2018PNAS..115.3261G. doi:10.1073/pnas.1715336115. PMC 5879660. PMID 29483260.
  499. ^ Bernard Clist; Koen Bostoen; Pierre de Maret; Manfred K. H. Eggert; Alexa Höhn; Christophe Mbida Mindzié; Katharina Neumann; Dirk Seidensticker (2018). "Did human activity really trigger the late Holocene rainforest crisis in Central Africa?". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): E4733–E4734. Bibcode:2018PNAS..115E4733C. doi:10.1073/pnas.1805247115. PMC 6003455. PMID 29739887.
  500. ^ Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018). "Reply to Clist et al.: Human activity is the most probable trigger of the late Holocene rainforest crisis in Western Central Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): E4735–E4736. Bibcode:2018PNAS..115E4735G. doi:10.1073/pnas.1805582115. PMC 6003483. PMID 29739892.
  501. ^ P. Giresse; J. Maley; C. Doumenge; N. Philippon; G. Mahé; A. Chepstow-Lusty; J. Aleman; M. Lokonda; H. Elenga (2018). "Paleoclimatic changes are the most probable causes of the rainforest crises 2,600 y ago in Central Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (29): E6672–E6673. Bibcode:2018PNAS..115E6672G. doi:10.1073/pnas.1807615115. PMC 6055146. PMID 29970425.
  502. ^ Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018). "Reply to Giresse et al.: No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (29): E6674–E6675. Bibcode:2018PNAS..115E6674G. doi:10.1073/pnas.1808481115. PMC 6055198. PMID 29970424.
  503. ^ Connor Nolan; Jonathan T. Overpeck; Judy R. M. Allen; Patricia M. Anderson; Julio L. Betancourt; Heather A. Binney; Simon Brewer; Mark B. Bush; Brian M. Chase; Rachid Cheddadi; Morteza Djamali; John Dodson; Mary E. Edwards; William D. Gosling; Simon Haberle; Sara C. Hotchkiss; Brian Huntley; Sarah J. Ivory; A. Peter Kershaw; Soo-Hyun Kim; Claudio Latorre; Michelle Leydet; Anne-Marie Lézine; Kam-Biu Liu; Yao Liu; A. V. Lozhkin; Matt S. McGlone; Robert A. Marchant; Arata Momohara; Patricio I. Moreno; Stefanie Müller; Bette L. Otto-Bliesner; Caiming Shen; Janelle Stevenson; Hikaru Takahara; Pavel E. Tarasov; John Tipton; Annie Vincens; Chengyu Weng; Qinghai Xu; Zhuo Zheng; Stephen T. Jackson (2018). "Past and future global transformation of terrestrial ecosystems under climate change" (PDF). Science. 361 (6405): 920–923. Bibcode:2018Sci...361..920N. doi:10.1126/science.aan5360. PMID 30166491. S2CID 52131254.
  504. ^ Eleni Asouti; Maria Ntinou; Ceren Kabukcu (2018). "The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece". PLOS ONE. 13 (11): e0207805. Bibcode:2018PLoSO..1307805A. doi:10.1371/journal.pone.0207805. PMC 6245798. PMID 30458046.
  505. ^ Kurt H. Kjær; Nicolaj K. Larsen; Tobias Binder; Anders A. Bjørk; Olaf Eisen; Mark A. Fahnestock; Svend Funder; Adam A. Garde; Henning Haack; Veit Helm; Michael Houmark-Nielsen; Kristian K. Kjeldsen; Shfaqat A. Khan; Horst Machguth; Iain McDonald; Mathieu Morlighem; Jérémie Mouginot; John D. Paden; Tod E. Waight; Christian Weikusat; Eske Willerslev; Joseph A. MacGregor (2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC 6235527. PMID 30443592.
  506. ^ Matthew C. Koehler; Roger Buick; Michael A. Kipp; Eva E. Stüeken; Jonathan Zaloumis (2018). "Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia". Proceedings of the National Academy of Sciences of the United States of America. 115 (30): 7711–7716. Bibcode:2018PNAS..115.7711K. doi:10.1073/pnas.1720820115. PMC 6065012. PMID 29987010.
  507. ^ Kan Zhang; Xiangkun Zhu; Rachel A. Wood; Yao Shi; Zhaofu Gao; Simon W. Poulton (2018). "Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes" (PDF). Nature Geoscience. 11 (5): 345–350. Bibcode:2018NatGe..11..345Z. doi:10.1038/s41561-018-0111-y. hdl:20.500.11820/e1499fdf-fa88-4756-bf51-8c40b6986024. S2CID 134531162.
  508. ^ Wang Zheng; Geoffrey J. Gilleaudeau; Linda C. Kah; Ariel D. Anbar (2018). "Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10594–10599. Bibcode:2018PNAS..11510594Z. doi:10.1073/pnas.1721733115. PMC 6196510. PMID 30275325.
  509. ^ Xianguo Lang; Bing Shen; Yongbo Peng; Shuhai Xiao; Chuanming Zhou; Huiming Bao; Alan Jay Kaufman; Kangjun Huang; Peter W. Crockford; Yonggang Liu; Wenbo Tang; Haoran Ma (2018). "Transient marine euxinia at the end of the terminal Cryogenian glaciation". Nature Communications. 9 (1): Article number 3019. Bibcode:2018NatCo...9.3019L. doi:10.1038/s41467-018-05423-x. PMC 6070556. PMID 30068999.
  510. ^ P. M. Myrow; M. P. Lamb; R. C. Ewing (2018). "Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth". Science. 360 (6389): 649–651. Bibcode:2018Sci...360..649M. doi:10.1126/science.aap8612. PMID 29674430. S2CID 4982439.
  511. ^ Feifei Zhang; Shuhai Xiao; Brian Kendall; Stephen J. Romaniello; Huan Cui; Mike Meyer; Geoffrey J. Gilleaudeau; Alan J. Kaufman; Ariel D. Anbar (2018). "Extensive marine anoxia during the terminal Ediacaran Period". Science Advances. 4 (6): eaan8983. Bibcode:2018SciA....4.8983Z. doi:10.1126/sciadv.aan8983. PMC 6010336. PMID 29938217.
  512. ^ Guang-Yi Wei; Noah J. Planavsky; Lidya G. Tarhan; Xi Chen; Wei Wei; Da Li; Hong-Fei Ling (2018). "Marine redox fluctuation as a potential trigger for the Cambrian explosion". Geology. 46 (7): 587–590. Bibcode:2018Geo....46..587W. doi:10.1130/G40150.1. S2CID 243897354.
  513. ^ Dan Wang; Hong-Fei Ling; Ulrich Struck; Xiang-Kun Zhu; Maoyan Zhu; Tianchen He; Ben Yang; Antonia Gamper; Graham A. Shields (2018). "Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition". Nature Communications. 9 (1): Article number 2575. Bibcode:2018NatCo...9.2575W. doi:10.1038/s41467-018-04980-5. PMC 6030108. PMID 29968714.
  514. ^ Thomas W. Hearing; Thomas H. P. Harvey; Mark Williams; Melanie J. Leng; Angela L. Lamb; Philip R. Wilby; Sarah E. Gabbott; Alexandre Pohl; Yannick Donnadieu (2018). "An early Cambrian greenhouse climate". Science Advances. 4 (5): eaar5690. Bibcode:2018SciA....4.5690H. doi:10.1126/sciadv.aar5690. PMC 5942912. PMID 29750198.
  515. ^ Emma U. Hammarlund; M. Paul Smith; Jan A. Rasmussen; Arne T. Nielsen; Donald E. Canfield; David A. T. Harper (2018). "The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems". Geobiology. 17 (1): 12–26. doi:10.1111/gbi.12315. PMC 6586032. PMID 30264482.
  516. ^ Kalev G. Hantsoo; Alan J. Kaufman; Huan Cui; Rebecca E. Plummer; Guy M. Narbonne (2018). "Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada" (PDF). Canadian Journal of Earth Sciences. 55 (11): 1240–1252. Bibcode:2018CaJES..55.1240H. doi:10.1139/cjes-2017-0274. S2CID 135135109.
  517. ^ Karl Karlstrom; James Hagadorn; George Gehrels; William Matthews; Mark Schmitz; Lauren Madronich; Jacob Mulder; Mark Pecha; Dominique Giesler; Laura Crossey (2018). "Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons". Nature Geoscience. 11 (6): 438–443. Bibcode:2018NatGe..11..438K. doi:10.1038/s41561-018-0131-7. S2CID 134377178.
  518. ^ Uri Ryb; John M. Eiler (2018). "Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem". Proceedings of the National Academy of Sciences of the United States of America. 115 (26): 6602–6607. Bibcode:2018PNAS..115.6602R. doi:10.1073/pnas.1719681115. PMC 6042145. PMID 29891710.
  519. ^ Jisuo Jin; Renbin Zhan; Rongchang Wu (2018). "Equatorial cold-water tongue in the Late Ordovician". Geology. 46 (9): 759–762. Bibcode:2018Geo....46..759J. doi:10.1130/G45302.1. S2CID 51920389.
  520. ^ Rick Bartlett; Maya Elrick; James R. Wheeley; Victor Polyak; André Desrochers; Yemane Asmerom (2018). "Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates". Proceedings of the National Academy of Sciences of the United States of America. 115 (23): 5896–5901. Bibcode:2018PNAS..115.5896B. doi:10.1073/pnas.1802438115. PMC 6003337. PMID 29784792.
  521. ^ Caineng Zou; Zhen Qiu; Simon W. Poulton; Dazhong Dong; Hongyan Wang; Daizhao Chen; Bin Lu; Zhensheng Shi; Huifei Tao (2018). "Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction" (PDF). Geology. 46 (6): 535–538. Bibcode:2018Geo....46..535Z. doi:10.1130/G40121.1. S2CID 135039656.
  522. ^ Feifei Zhang; Stephen J. Romaniello; Thomas J. Algeo; Kimberly V. Lau; Matthew E. Clapham; Sylvain Richoz; Achim D. Herrmann; Harrison Smith; Micha Horacek; Ariel D. Anbar (2018). "Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction". Science Advances. 4 (4): e1602921. Bibcode:2018SciA....4.2921Z. doi:10.1126/sciadv.1602921. PMC 5895439. PMID 29651454.
  523. ^ Theodore R. Them II; Benjamin C. Gill; Andrew H. Caruthers; Angela M. Gerhardt; Darren R. Gröcke; Timothy W. Lyons; Selva M. Marroquín; Sune G. Nielsen; João P. Trabucho Alexandre; Jeremy D. Owens (2018). "Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 115 (26): 6596–6601. Bibcode:2018PNAS..115.6596T. doi:10.1073/pnas.1803478115. PMC 6042096. PMID 29891692.
  524. ^ Alejandro R. Gómez Dacal; Sebastián M. Richiano; Lucía E. Gómez Peral; Luis A. Spalletti; Alcides N. Sial; Daniel G. Poiré (2019). "Evidence of warm seas in high latitudes of southern South America during the Early Cretaceous". Cretaceous Research. 95: 8–20. Bibcode:2019CrRes..95....8G. doi:10.1016/j.cretres.2018.10.021. S2CID 134078999.
  525. ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2017). "Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes". Nature Communications. 8 (1): Article number 1134. Bibcode:2017NatCo...8.1134B. doi:10.1038/s41467-017-01225-9. PMC 5656689. PMID 29070888.
  526. ^ David Evans; Marcus P. S. Badger; Gavin L. Foster; Michael J. Henehan; Caroline H. Lear; James C. Zachos (2018). "No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record". Nature Communications. 9 (1): Article number 2875. Bibcode:2018NatCo...9.2875E. doi:10.1038/s41467-018-05303-4. PMC 6056492. PMID 30038330.
  527. ^ S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2018). "Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record'". Nature Communications. 9 (1): Article number 2874. Bibcode:2018NatCo...9.2874B. doi:10.1038/s41467-018-05304-3. PMC 6056461. PMID 30038223.
  528. ^ Weiqi Yao; Adina Paytan; Ulrich G. Wortmann (2018). "Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum". Science. 361 (6404): 804–806. Bibcode:2018Sci...361..804Y. doi:10.1126/science.aar8658. PMID 30026315. S2CID 206666570.
  529. ^ Christopher K. Junium; Alexander J. Dickson; Benjamin T. Uveges (2018). "Perturbation to the nitrogen cycle during rapid Early Eocene global warming". Nature Communications. 9 (1): Article number 3186. Bibcode:2018NatCo...9.3186J. doi:10.1038/s41467-018-05486-w. PMC 6085358. PMID 30093725.
  530. ^ Tali L. Babila; Donald E. Penman; Bärbel Hönisch; D. Clay Kelly; Timothy J. Bralower; Yair Rosenthal; James C. Zachos (2018). "Capturing the global signature of surface ocean acidification during the Palaeocene–Eocene Thermal Maximum". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2130): 20170072. Bibcode:2018RSPTA.37670072B. doi:10.1098/rsta.2017.0072. PMC 6127385. PMID 30177558.
  531. ^ David Evans; Navjit Sagoo; Willem Renema; Laura J. Cotton; Wolfgang Müller; Jonathan A. Todd; Pratul Kumar Saraswati; Peter Stassen; Martin Ziegler; Paul N. Pearson; Paul J. Valdes; Hagit P. Affek (2018). "Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1174–1179. Bibcode:2018PNAS..115.1174E. doi:10.1073/pnas.1714744115. PMC 5819407. PMID 29358374.
  532. ^ Zhonghui Liu; Yuxin He; Yiqing Jiang; Huanye Wang; Weiguo Liu; Steven M. Bohaty; Paul A. Wilson (2018). "Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean" (PDF). Nature Geoscience. 11 (9): 656–660. Bibcode:2018NatGe..11..656L. doi:10.1038/s41561-018-0182-9. S2CID 133776130.
  533. ^ Guillem Mas; Agnès Maillard; Josep A. Alcover; Joan J. Fornós; Pere Bover; Enric Torres-Roig (2018). "Terrestrial colonization of the Balearic Islands: New evidence for the Mediterranean sea-level drawdown during the Messinian Salinity Crisis". Geology. 46 (6): 527–530. Bibcode:2018Geo....46..527M. doi:10.1130/G40260.1.
  534. ^ Aaron Micallef; Angelo Camerlenghi; Daniel Garcia-Castellanos; Daniel Cunarro Otero; Marc-André Gutscher; Giovanni Barreca; Daniele Spatola; Lorenzo Facchin; Riccardo Geletti; Sebastian Krastel; Felix Gross; Morelia Urlaub (2018). "Evidence of the Zanclean megaflood in the eastern Mediterranean Basin". Scientific Reports. 8 (1): Article number 1078. Bibcode:2018NatSR...8.1078M. doi:10.1038/s41598-018-19446-3. PMC 5773550. PMID 29348516.
  535. ^ Jody M. Webster; Juan Carlos Braga; Marc Humblet; Donald C. Potts; Yasufumi Iryu; Yusuke Yokoyama; Kazuhiko Fujita; Raphael Bourillot; Tezer M. Esat; Stewart Fallon; William G. Thompson; Alexander L. Thomas; Hironobu Kan; Helen V. McGregor; Gustavo Hinestrosa; Stephen P. Obrochta; Bryan C. Lougheed (2018). "Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years" (PDF). Nature Geoscience. 11 (6): 426–432. Bibcode:2018NatGe..11..426W. doi:10.1038/s41561-018-0127-3. hdl:20.500.11820/920d9bf3-2233-464d-8890-6bce999804b7. S2CID 134502712.
  536. ^ Yusuke Yokoyama; Tezer M. Esat; William G. Thompson; Alexander L. Thomas; Jody M. Webster; Yosuke Miyairi; Chikako Sawada; Takahiro Aze; Hiroyuki Matsuzaki; Jun'ichi Okuno; Stewart Fallon; Juan-Carlos Braga; Marc Humblet; Yasufumi Iryu; Donald C. Potts; Kazuhiko Fujita; Atsushi Suzuki; Hironobu Kan (2018). "Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum". Nature. 559 (7715): 603–607. Bibcode:2018Natur.559..603Y. doi:10.1038/s41586-018-0335-4. hdl:20.500.11820/55cd176c-f726-4d88-b424-003f30c31214. PMID 30046076. S2CID 50781626.
  537. ^ Stephen R. Meyers; Alberto Malinverno (2018). "Proterozoic Milankovitch cycles and the history of the solar system". Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6363–6368. Bibcode:2018PNAS..115.6363M. doi:10.1073/pnas.1717689115. PMC 6016783. PMID 29866837.
  538. ^ Kazumi Ozaki; Eiichi Tajika; Peng K. Hong; Yusuke Nakagawa; Christopher T. Reinhard (2018). "Effects of primitive photosynthesis on Earth's early climate system". Nature Geoscience. 11 (1): 55–59. arXiv:1907.12995. Bibcode:2018NatGe..11...55O. doi:10.1038/s41561-017-0031-2. S2CID 51896428.
  539. ^ Eric J. Bellefroid; Ashleigh v. S. Hood; Paul F. Hoffman; Matthew D. Thomas; Christopher T. Reinhard; Noah J. Planavsky (2018). "Constraints on Paleoproterozoic atmospheric oxygen levels". Proceedings of the National Academy of Sciences of the United States of America. 115 (32): 8104–8109. Bibcode:2018PNAS..115.8104B. doi:10.1073/pnas.1806216115. PMC 6094116. PMID 30038009.
  540. ^ Scott MacLennan; Yuem Park; Nicholas Swanson-Hysell; Adam Maloof; Blair Schoene; Mulubrhan Gebreslassie; Eliel Antilla; Tadele Tesema; Mulugeta Alene; Bereket Haileab (2018). "The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation". Geology. 46 (6): 539–542. Bibcode:2018Geo....46..539M. doi:10.1130/G40171.1. S2CID 52888739.
  541. ^ Caitlyn R. Witkowski; Johan W. H. Weijers; Brian Blais; Stefan Schouten; Jaap S. Sinninghe Damsté (2018). "Molecular fossils from phytoplankton reveal secular Pco2 trend over the Phanerozoic". Science Advances. 4 (11): eaat4556. Bibcode:2018SciA....4.4556W. doi:10.1126/sciadv.aat4556. PMC 6261654. PMID 30498776.
  542. ^ Alexander J. Krause; Benjamin J. W. Mills; Shuang Zhang; Noah J. Planavsky; Timothy M. Lenton; Simon W. Poulton (2018). "Stepwise oxygenation of the Paleozoic atmosphere". Nature Communications. 9 (1): Article number 4081. Bibcode:2018NatCo...9.4081K. doi:10.1038/s41467-018-06383-y. PMC 6172248. PMID 30287825.
  543. ^ Page C. Quinton; Laura Speir; James Miller; Raymond Ethington; Kenneth G. MacLeod (2018). "Extreme heat in the Early Ordovician". PALAIOS. 33 (8): 353–360. Bibcode:2018Palai..33..353Q. doi:10.2110/palo.2018.031. S2CID 133931760.
  544. ^ Cheng Huang; Michael M. Joachimski; Yiming Gong (2018). "Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18OPO4 record from South China". Earth and Planetary Science Letters. 495: 174–184. Bibcode:2018E&PSL.495..174H. doi:10.1016/j.epsl.2018.05.016. S2CID 133886379.
  545. ^ Sandra R. Schachat; Conrad C. Labandeira; Matthew R. Saltzman; Bradley D. Cramer; Jonathan L. Payne; C. Kevin Boyce (2018). "Phanerozoic pO2 and the early evolution of terrestrial animals". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172631. doi:10.1098/rspb.2017.2631. PMC 5805952. PMID 29367401.
  546. ^ Benjamin A. Black; Ryan R. Neely; Jean-François Lamarque; Linda T. Elkins-Tanton; Jeffrey T. Kiehl; Christine A. Shields; Michael J. Mills; Charles Bardeen (2018). "Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing" (PDF). Nature Geoscience. 11 (12): 949–954. Bibcode:2018NatGe..11..949B. doi:10.1038/s41561-018-0261-y. S2CID 133632594.
  547. ^ Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research. 85: 232–242. Bibcode:2018CrRes..85..232J. doi:10.1016/j.cretres.2017.08.011.
  548. ^ Laiming Zhang; Chengshan Wang; Paul B. Wignall; Tobias Kluge; Xiaoqiao Wan; Qian Wang; Yuan Gao (2018). "Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China" (PDF). Geology. 46 (3): 271–274. Bibcode:2018Geo....46..271Z. doi:10.1130/G39992.1.
  549. ^ Shelby L. Lyons; Allison A. Baczynski; Tali L. Babila; Timothy J. Bralower; Elizabeth A. Hajek; Lee R. Kump; Ellen G. Polites; Jean M. Self-Trail; Sheila M. Trampush; Jamie R. Vornlocher; James C. Zachos; Katherine H. Freeman (2018). "Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation". Nature Geoscience. 12 (1): 54–60. Bibcode:2019NatGe..12...54L. doi:10.1038/s41561-018-0277-3. S2CID 134346753.
  550. ^ B. D. A. Naafs; M. Rohrssen; G. N. Inglis; O. Lähteenoja; S. J. Feakins; M. E. Collinson; E. M. Kennedy; P. K. Singh; M. P. Singh; D. J. Lunt; R. D. Pancost (2018). "High temperatures in the terrestrial mid-latitudes during the early Palaeogene". Nature Geoscience. 11 (10): 766–771. Bibcode:2018NatGe..11..766N. doi:10.1038/s41561-018-0199-0. hdl:1983/82e93473-2a5d-4a6d-9ca1-da5ebf433d8b. S2CID 135045515.
  551. ^ J. X. Li; L. P. Yue; A. P. Roberts; A. M. Hirt; F. Pan; Lin Guo; Y. Xu; R. G. Xi; Lei Guo; X. K. Qiang; C. C. Gai; Z. X. Jiang; Z. M. Sun; Q. S. Liu (2018). "Global cooling and enhanced Eocene Asian mid-latitude interior aridity". Nature Communications. 9 (1): Article number 3026. Bibcode:2018NatCo...9.3026L. doi:10.1038/s41467-018-05415-x. PMC 6072711. PMID 30072688.
  552. ^ Vera A. Korasidis; Malcolm W. Wallace; Barbara E. Wagstaff; Robert S. Hill (2019). "Terrestrial cooling record through the Eocene-Oligocene transition of Australia". Global and Planetary Change. 173: 61–72. Bibcode:2019GPC...173...61K. doi:10.1016/j.gloplacha.2018.12.007. S2CID 135354421.
  553. ^ Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas-Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm". American Journal of Botany. 105 (11): 1929–1937. doi:10.1002/ajb2.1187. hdl:10784/26743. PMID 30418663. S2CID 53277803.
  554. ^ Yul Altolaguirre; José M. Postigo-Mijarra; Eduardo Barrón; José S. Carrión; Suzanne A.G. Leroy; Angela A. Bruch (2019). "An environmental scenario for the earliest hominins in the Iberian Peninsula: Early Pleistocene palaeovegetation and palaeoclimate". Review of Palaeobotany and Palynology. 260: 51–64. Bibcode:2019RPaPa.260...51A. doi:10.1016/j.revpalbo.2018.10.008. S2CID 134333102.
  555. ^ Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018). "A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa" (PDF). Nature. 560 (7716): 76–79. Bibcode:2018Natur.560...76C. doi:10.1038/s41586-018-0309-6. PMID 29988081. S2CID 49668495.
  556. ^ Silvia H. Ascari; Jackson K. Njau; Peter E. Sauer; P. David Polly; Yongbo Peng (2018). "Fossil herbivores and crocodiles as paleoclimatic indicators of environmental shifts from Bed I and Bed II times of the Olduvai Gorge, Tanzania". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 550–557. Bibcode:2018PPP...511..550A. doi:10.1016/j.palaeo.2018.09.021. S2CID 96425484.
  557. ^ R. Bernhart Owen; Veronica M. Muiruri; Tim K. Lowenstein; Robin W. Renaut; Nathan Rabideaux; Shangde Luo; Alan L. Deino; Mark J. Sier; Guillaume Dupont-Nivet; Emma P. McNulty; Kennie Leet; Andrew Cohen; Christopher Campisano; Daniel Deocampo; Chuan-Chou Shen; Anne Billingsley; Anthony Mbuthia (2018). "Progressive aridification in East Africa over the last half million years and implications for human evolution". Proceedings of the National Academy of Sciences of the United States of America. 115 (44): 11174–11179. Bibcode:2018PNAS..11511174B. doi:10.1073/pnas.1801357115. PMC 6217406. PMID 30297412.
  558. ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8 (1): Article number 1077. Bibcode:2018NatSR...8.1077L. doi:10.1038/s41598-018-19601-w. PMC 5773494. PMID 29348464.
  559. ^ J. Sakari Salonen; Karin F. Helmens; Jo Brendryen; Niina Kuosmanen; Minna Väliranta; Simon Goring; Mikko Korpela; Malin Kylander; Annemarie Philip; Anna Plikk; Hans Renssen; Miska Luoto (2018). "Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian". Nature Communications. 9 (1): Article number 2851. Bibcode:2018NatCo...9.2851S. doi:10.1038/s41467-018-05314-1. PMC 6054633. PMID 30030443.
  560. ^ P. C. Tzedakis; R. N. Drysdale; V. Margari; L. C. Skinner; L. Menviel; R. H. Rhodes; A. S. Taschetto; D. A. Hodell; S. J. Crowhurst; J. C. Hellstrom; A. E. Fallick; J. O. Grimalt; J. F. McManus; B. Martrat; Z. Mokeddem; F. Parrenin; E. Regattieri; K. Roe; G. Zanchetta (2018). "Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial". Nature Communications. 9 (1): Article number 4235. Bibcode:2018NatCo...9.4235T. doi:10.1038/s41467-018-06683-3. PMC 6185935. PMID 30315157.
  561. ^ D. Lobo; T. Kolb; M. Alcaraz-Castaño; S. Enrique; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Fausto (2018). "Deterioro climático y desaparición de los neandertales en el interior de la Península Ibérica". Informes científicos . 8 (1): Número de artículo 7048. Bibcode :2018NatSR...8.7048W. doi :10.1038/s41598-018-25343-6. PMC 5935692 . PMID  29728579. 
  562. ^ Michael Staubwasser; Virgil Drăgușin; Bogdan P. Onac; Sergey Assonov; Vasile Ersek; Dirk L. Hoffmann; Daniel Veres (2018). "Impacto del cambio climático en la transición de los neandertales a los humanos modernos en Europa". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 115 (37): 9116–9121. Bibcode :2018PNAS..115.9116S. doi : 10.1073/pnas.1808647115 . PMC 6140518 . PMID  30150388. 
  563. ^ Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018). "La deglaciación del corredor costero del Pacífico precedió directamente a la colonización humana de las Américas". Science Advances . 4 (5): eaar5040. Bibcode :2018SciA....4.5040L. doi :10.1126/sciadv.aar5040. PMC 5976267 . PMID  29854947. 
  564. ^ Robert S. Harbert; Kevin C. Nixon (2018). "Reconstrucción cuantitativa del clima del Cuaternario tardío a partir de comunidades de macrofósiles vegetales en el oeste de Norteamérica". Open Quaternary . 4 : Artículo 8. doi : 10.5334/oq.46 . S2CID  197558635.
  565. ^ KD Burke; JW Williams; MA Chandler; AM Haywood; DJ Lunt; BL Otto-Bliesner (2018). "El Plioceno y el Eoceno proporcionan los mejores análogos para los climas del futuro cercano". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 115 (52): 13288–13293. Bibcode :2018PNAS..11513288B. doi : 10.1073/pnas.1809600115 . PMC 6310841 . PMID  30530685. 
Retrieved from "https://en.wikipedia.org/w/index.php?title=2018_in_paleontology&oldid=1252393452"