Los peces con aletas radiadas se presentan en muchas formas diferentes. Las características principales de los peces con aletas radiadas más comunes se muestran en el diagrama adjunto.
La vejiga natatoria es una estructura más derivada y se utiliza para la flotabilidad . [5] A excepción de los bichires , que al igual que los pulmones de los peces de aletas lobuladas han conservado la condición ancestral de gemación ventral del intestino anterior , la vejiga natatoria en los peces de aletas radiadas deriva de una yema dorsal por encima del intestino anterior. [6] [5] En formas tempranas, la vejiga natatoria aún podía usarse para respirar, un rasgo todavía presente en los holostei ( bowfins y gars ). [7] En algunos peces como el arapaima , la vejiga natatoria ha sido modificada para respirar aire nuevamente, [8] y en otros linajes se ha perdido por completo. [9]
Los peces con aletas radiadas tienen muchos tipos diferentes de escamas ; pero todos los teleósteos tienen escamas leptoides . La parte exterior de estas escamas se abre en abanico con crestas óseas, mientras que la parte interior está cruzada con tejido conectivo fibroso. Las escamas leptoides son más delgadas y transparentes que otros tipos de escamas, y carecen de las capas endurecidas similares al esmalte o la dentina que se encuentran en las escamas de muchos otros peces. A diferencia de las escamas ganoides , que se encuentran en los actinopterigios no teleósteos, se agregan nuevas escamas en capas concéntricas a medida que el pez crece. [10]
Los teleósteos y los condrósteos (esturiones y peces espátula) también se diferencian de los bichiros y holósteos (bowfin y gars) en que han pasado por una duplicación de todo el genoma ( paleopoliploidía ). Se estima que la WGD ocurrió hace unos 320 millones de años en los teleósteos, que en promedio han conservado alrededor del 17% de los duplicados de genes, y hace unos 180 (124-225) millones de años en los condrósteos . Desde entonces ha sucedido nuevamente en algunos linajes de teleósteos, como Salmonidae (hace 80-100 millones de años) y varias veces de forma independiente dentro de Cyprinidae (en peces de colores y carpas comunes tan recientemente como hace 14 millones de años). [11] [12] [13] [14] [15]
Formas del cuerpo y disposición de las aletas.
Los peces con aletas radiadas varían en tamaño y forma, en sus especializaciones alimentarias y en el número y disposición de sus aletas radiadas.
En casi todos los peces con aletas radiadas, los sexos están separados, y en la mayoría de las especies las hembras ponen huevos que son fertilizados externamente, típicamente con el macho inseminando los huevos después de que son puestos. El desarrollo luego continúa con una etapa larvaria de natación libre. [16] Sin embargo, existen otros patrones de ontogenia , siendo uno de los más comunes el hermafroditismo secuencial . En la mayoría de los casos esto implica protoginia , peces que comienzan su vida como hembras y se convierten en machos en alguna etapa, desencadenada por algún factor interno o externo. La protandria , donde un pez se convierte de macho a hembra, es mucho menos común que la protoginia. [17]
La mayoría de las familias utilizan la fertilización externa en lugar de la interna . [18] De los teleósteos ovíparos , la mayoría (79%) no proporciona cuidado parental. [19] La viviparidad , ovoviviparidad o alguna forma de cuidado parental de los huevos, ya sea por parte del macho, la hembra o ambos padres, se observa en una fracción significativa (21%) de las 422 familias de teleósteos; es probable que la falta de cuidado sea la condición ancestral. [19] El caso más antiguo de viviparidad en peces con aletas radiadas se encuentra en especies del Triásico Medio de † Saurichthys . [20] La viviparidad es relativamente rara y se encuentra en aproximadamente el 6% de las especies de teleósteos actuales; el cuidado masculino es mucho más común que el femenino. [19] [21] La territorialidad masculina "preadapta" una especie para desarrollar el cuidado parental masculino. [22] [23]
Existen algunos ejemplos de peces que se autofecundan. El rivulus de manglar es un anfibio hermafrodita simultáneo que produce huevos y huevas y tiene fecundación interna. Este modo de reproducción puede estar relacionado con el hábito del pez de pasar largos períodos fuera del agua en los bosques de manglares que habita. Los machos se producen ocasionalmente a temperaturas inferiores a 19 °C (66 °F) y pueden fecundar huevos que luego son desovados por la hembra. Esto mantiene la variabilidad genética en una especie que, por lo demás, es altamente endogámica. [24]
Clasificación y registro fósil
Los actinopterigios se dividen en las clases Cladistia y Actinopteri . Esta última comprende las subclases Chondrostei y Neopterygii . Los Neopterygii , a su vez, se dividen en las infraclasas Holostei y Teleostei . Durante el Mesozoico ( Triásico , Jurásico , Cretácico ) y el Cenozoico, los teleósteos en particular se diversificaron ampliamente. Como resultado, el 96% de las especies de peces actuales son teleósteos (el 40% de todas las especies de peces pertenecen al subgrupo de teleósteos Acanthomorpha ), mientras que todos los demás grupos de actinopterigios representan linajes empobrecidos. [25]
La clasificación de los peces con aletas radiadas se puede resumir de la siguiente manera:
Cladistia, que incluye bichires y peces caña
Actinópteros, que incluyen:
Chondrostei, que incluye a los acipenseriformes (peces espátula y esturiones)
Los polipteridos (bichires y peces caña) son el linaje hermano de todos los demás actinopterigios, los acipenseriformes (esturiones y peces espátula) son el linaje hermano de los neopterigios, y los holostei (gajos de mar y pejerreyes) son el linaje hermano de los teleósteos. Los elopomorfos ( anguilas y sábalos ) parecen ser los teleósteos más basales . [26]
El actinopterigio fósil más antiguo conocido es Andreolepis hedei , que data de hace 420 millones de años ( Silúrico tardío ), y cuyos restos se han encontrado en Rusia , Suecia y Estonia . [29] Los actinopterigios del grupo corona probablemente se originaron cerca del límite Devónico-Carbonífero. [30] Los primeros parientes fósiles de los teleósteos modernos son del período Triásico ( Prohalecites , Pholidophorus ), [31] [32] aunque se sospecha que los teleósteos se originaron ya durante la Era Paleozoica . [26]
Los condrosteos (hueso cartilaginoso) son una subclase de peces principalmente cartilaginosos que muestran cierta osificación . Ahora se sabe que las definiciones anteriores de los condrosteos son parafiléticas , lo que significa que esta subclase no contiene todos los descendientes de su ancestro común. Solía haber 52 especies divididas entre dos órdenes, los acipenseriformes ( esturiones y peces espátula ) y los polipteriformes ( peces caña y bichires ). Los peces caña y los bichires ahora están separados de los condrosteos en su propio linaje hermano, los cladistia . Se cree que los condrosteos evolucionaron a partir de peces óseos pero perdieron el endurecimiento óseo de sus esqueletos cartilaginosos, lo que resultó en un aligeramiento del marco. Los condrosteos ancianos muestran comienzos de osificación del esqueleto, lo que sugiere que este proceso se retrasa en lugar de perderse en estos peces. [33] Este grupo había sido clasificado anteriormente con los tiburones : las similitudes son obvias, ya que no solo los condrosteanos carecen en su mayoría de huesos, sino que la estructura de la mandíbula es más parecida a la de los tiburones que a la de otros peces óseos, y ambos carecen de escamas (excluyendo a los polipteriformes). Otras características compartidas incluyen espiráculos y, en los esturiones, una cola heterocerca (las vértebras se extienden hasta el lóbulo más grande de la aleta caudal ). Sin embargo, el registro fósil sugiere que estos peces tienen más en común con los teleósteos de lo que su apariencia externa podría sugerir. [33]
Neopterygii (aletas nuevas) es una subclase de peces con aletas radiadas que apareció en algún momento del Pérmico tardío . Hubo solo unos pocos cambios durante su evolución con respecto a los actinopterigios anteriores. Los neopterigios son un grupo de peces muy exitoso porque pueden moverse más rápidamente que sus antepasados. Sus escamas y esqueletos comenzaron a aligerarse durante su evolución, y sus mandíbulas se volvieron más poderosas y eficientes. Si bien la electrorrecepción y las ampollas de Lorenzini están presentes en todos los demás grupos de peces, con la excepción de los mixinos , los neopterigios han perdido este sentido, aunque luego volvió a evolucionar dentro de Gymnotiformes y bagres , que poseen ampollas de teleósteos no homólogas. [34]
^ Zhao, W.; Zhang, X.; Jia, G.; Shen, Y.; Zhu, M. (2021). "El límite Silúrico-Devónico en el este de Yunnan (sur de China) y la restricción mínima para la división entre peces pulmonados y tetrápodos". Science China Earth Sciences . 64 (10): 1784–1797. Bibcode :2021ScChD..64.1784Z. doi :10.1007/s11430-020-9794-8. S2CID 236438229.
^ ab Funk, Emily; Breen, Catriona; Sanketi, Bhargav; Kurpios, Natasza; McCune, Amy (2020). "Cambios en la expresión de Nkx2.1, Sox2, Bmp4 y Bmp16 que subyacen a la transición evolutiva de pulmón a vejiga de gas en peces con aletas radiadas". Evolución y desarrollo . 22 (5): 384–402. doi :10.1111/ede.12354. PMC 8013215 . PMID 33463017.
^ Funk, Emily C.; Breen, Catriona; Sanketi, Bhargav D.; Kurpios, Natasza; McCune, Amy (25 de septiembre de 2020). "Cambios en la expresión de Nkx2.1, Sox2, Bmp4 y Bmp16 que subyacen a la transición evolutiva de pulmón a vejiga de gas en peces con aletas radiadas". Evolución y desarrollo . 22 (5): 384–402. doi :10.1111/ede.12354. PMC 8013215 . PMID 33463017.
^ Zhang, Ruihua; Liu, Qun; Pan, Shanshan; Zhang, Yingying; Qin, Yating; Du, Xiao; Yuan, Zengbao; Lu, Yongrui; Canción, Yue; Zhang, Mengqi; Zhang, Nannan; Mamá, Jie; Zhang, Zhe; Jia, Xiaodong; Wang, Kun; Él, Shunping; Liu, Shanshan; Ni, Ming; Liu, Xin; Xu, Xun; Yang, Huanming; Wang, Jian; Seim, Inge; Fan, Guangyi (13 de septiembre de 2023). "Un atlas unicelular del sistema respiratorio de los peces pulmonados de África occidental revela adaptaciones evolutivas a la terrestrialización". Comunicaciones de la naturaleza . 14 (1): 5630. Código bibliográfico : 2023NatCo..14.5630Z. doi :10.1038/s41467-023-41309-3. Número de modelo : PMID 37699889 .
^ Scadeng, Miriam; McKenzie, Christina; He, Weston; Bartsch, Hauke; Dubowitz, David J.; Stec, Dominik; St. Leger, Judy (25 de noviembre de 2020). "Morfología del género de teleósteos amazónicos Arapaima utilizando imágenes 3D avanzadas". Frontiers in Physiology . 11 : 260. doi : 10.3389/fphys.2020.00260 . PMC 7197331 . PMID 32395105.
^ Martin, Rene P; Dias, Abigail S; Summers, Adam P; Gerringer, Mackenzie E (16 de octubre de 2022). "Variación de la densidad ósea en colas de rata (Macrouridae, Gadiformes): flotabilidad, profundidad, tamaño corporal y alimentación". Biología integradora de organismos . 4 (1): obac044. doi :10.1093/iob/obac044. PMC 9652093 . PMID 36381998.
^ "Actinopterygii Klein, 1885". www.gbif.org . Consultado el 20 de septiembre de 2021 .
^ Davesne, Donald; Friedman, Matt; Schmitt, Armin D.; Fernandez, Vincent; Carnevale, Giorgio; Ahlberg, Per E.; Sanchez, Sophie; Benson, Roger BJ (27 de julio de 2021). "Las estructuras celulares fosilizadas identifican un origen antiguo para la duplicación del genoma completo de los teleósteos". Actas de la Academia Nacional de Ciencias . 118 (30). Bibcode :2021PNAS..11801780D. doi : 10.1073/pnas.2101780118 . PMC 8325350 . PMID 34301898.
^ Parey, Elise; Louis, Alexandra; Montfort, Jerome; Guiguen, Yann; Crollius, Hugues Roest; Berthelot, Camille (12 de agosto de 2022). "Un atlas de la evolución del genoma de los peces revela una rediploidización retrasada tras la duplicación del genoma completo de los teleósteos". Genome Research . 32 (9): 1685–1697. doi :10.1101/gr.276953.122. PMC 9528989 . PMID 35961774 – vía genome.cshlp.org.
^ Du, Kang; Stöck, Matías; Kneitz, Susana; Klopp, Christophe; Woltering, Joost M.; Adolfi, Mateus Contar; Ferón, Romain; Prokopov, Dmitri; Makunin, Alexey; Kichigin, Ilya; Schmidt, Cornelia; Fischer, Petra; Kuhl, Heiner; Wuertz, Sven; Gessner, Jörn (2020). "La secuencia del genoma del esturión esterlet y los mecanismos de rediploidización segmentaria". Ecología y evolución de la naturaleza . 4 (6): 841–852. Código Bib : 2020NatEE...4..841D. doi :10.1038/s41559-020-1166-x. ISSN 2397-334X. PMC 7269910 . Número de modelo: PMID32231327.
^ Kuraku, Shigehiro; Sato, Mana; Yoshida, Kohta; Uno, Yoshinobu (2024). "Reconsideración genómica de la no monofilia de los peces: ¿por qué no podemos simplemente llamarlos a todos 'peces'?". Ichthyological Research . 71 (1): 1–12. Bibcode :2024IchtR..71....1K. doi : 10.1007/s10228-023-00939-9 . ISSN 1616-3915.
^ Xu, Peng; Xu, Jian; Liu, Guangjian; Chen, Lin; Zhou, Zhixiong; Peng, Wenzhu; Jiang, Yanliang; Zhao, Zixia; Jia, Zhiying; Sol, Yonghua; Wu, Yidi; Chen, Baohua; Pu, Fei; Feng, Jianxin; Luo, Jing (2019). "El origen alotetraploide y evolución asimétrica del genoma de la carpa común Cyprinus carpio". Comunicaciones de la naturaleza . 10 (1): 4625. Código bibliográfico : 2019NatCo..10.4625X. doi :10.1038/s41467-019-12644-1. ISSN 2041-1723. PMC 6789147 . PMID 31604932.
^ Avise, JC ; Mank, JE (2009). "Perspectivas evolutivas sobre el hermafroditismo en peces". Sexual Development . 3 (2–3): 152–163. doi :10.1159/000223079. PMID 19684459. S2CID 22712745.
^ Pitcher, T (1993). El comportamiento de los peces teleósteos . Londres: Chapman & Hall.
^ abc Reynolds, John; Nicholas B. Goodwin; Robert P. Freckleton (19 de marzo de 2002). "Transiciones evolutivas en el cuidado parental y la procreación en vertebrados". Philosophical Transactions of the Royal Society B: Biological Sciences . 357 (1419): 269–281. doi :10.1098/rstb.2001.0930. PMC 1692951 . PMID 11958696.
^ Maxwell; et al. (2018). "Reevaluación de la ontogenia y biología reproductiva del pez triásico Saurichthys (Actinopterygii, Saurichthyidae)". Paleontología . 61 : 559–574. doi :10.5061/dryad.vc8h5.
^ Clutton-Brock, TH (1991). La evolución del cuidado parental . Princeton, NJ: Princeton UP.
^ Werren, John; Mart R. Gross; Richard Shine (1980). "Paternidad y evolución de la paternidad masculina". Journal of Theoretical Biology . 82 (4): 619–631. doi :10.1016/0022-5193(80)90182-4. PMID 7382520 . Consultado el 15 de septiembre de 2013 .
^ Baylis, Jeffrey (1981). "La evolución del cuidado parental en los peces, con referencia a la regla de Darwin de la selección sexual masculina". Biología ambiental de los peces . 6 (2): 223–251. Bibcode :1981EnvBF...6..223B. doi :10.1007/BF00002788. S2CID 19242013.
^ Wootton, Robert J.; Smith, Carl (2014). Biología reproductiva de los peces teleósteos. Wiley. ISBN978-1-118-89139-1.
^ Sallan, Lauren C. (febrero de 2014). "Principales cuestiones sobre los orígenes de la biodiversidad de los peces con aletas radiadas (Actinopterygii)". Biological Reviews . 89 (4): 950–971. doi :10.1111/brv.12086. hdl : 2027.42/109271 . PMID 24612207. S2CID 24876484.
^ abcd Thomas J. Near ; et al. (2012). "Resolución de la filogenia de los peces con aletas radiadas y cronología de la diversificación". PNAS . 109 (34): 13698–13703. Bibcode :2012PNAS..10913698N. doi : 10.1073/pnas.1206625109 . PMC 3427055 . PMID 22869754.
^ ab Betancur-R, Ricardo; et al. (2013). "El árbol de la vida y una nueva clasificación de los peces óseos". PLOS Currents Tree of Life . 5 (Edición 1). doi : 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 . hdl :2027.42/150563. PMC 3644299 . PMID 23653398.
^ Laurin, M.; Reisz, RR (1995). "Una reevaluación de la filogenia temprana de los amniotas". Revista Zoológica de la Sociedad Linneana . 113 (2): 165–223. doi :10.1111/j.1096-3642.1995.tb00932.x.
^ "Fossilworks: Andreolepis". Archivado desde el original el 12 de febrero de 2010. Consultado el 14 de mayo de 2008 .
^ Henderson, Struan; Dunne, Emma M.; Fasey, Sophie A.; Giles, Sam (3 de octubre de 2022). "La diversificación temprana de los peces con aletas radiadas (Actinopterygii): hipótesis, desafíos y perspectivas futuras". Biological Reviews . 98 (1): 284–315. doi :10.1111/brv.12907. PMC 10091770 . PMID 36192821. S2CID 241850484.
^ Arratia, G. (2015). "Complejidades de los primeros teleósteos y la evolución de estructuras morfológicas particulares a través del tiempo". Copeia . 103 (4): 999–1025. doi :10.1643/CG-14-184. S2CID 85808890.
^ Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen (febrero de 2016). "Osteichthyes (peces óseos) del Pérmico-Triásico: dinámica de la diversidad y evolución del tamaño corporal". Biological Reviews . 91 (1): 106–147. doi :10.1111/brv.12161. PMID 25431138. S2CID 5332637.
^ ab "Chondrosteans: Sturgeon Relatives". paleos.com. Archivado desde el original el 25 de diciembre de 2010.
^ R. Froese y D. Pauly, ed. (febrero de 2006). «FishBase». Archivado desde el original el 5 de julio de 2018. Consultado el 8 de enero de 2020 .
^ Van der Laan, Richard (2016). Nombres de grupos familiares de peces fósiles. doi :10.13140/RG.2.1.2130.1361.
^ Xu, Guang-Hui (9 de enero de 2021). "Un nuevo pez neopterigiano del Triásico Medio (Anisiano) de Yunnan, China, con una reevaluación de las relaciones de los clados neopterigianos tempranos". Revista Zoológica de la Sociedad Linneana . 191 (2): 375–394. doi : 10.1093/zoolinnean/zlaa053 . ISSN 0024-4082.