Identificadores | |
---|---|
Araña química |
|
UNIVERSIDAD | |
Panel de control CompTox ( EPA ) |
|
Propiedades | |
Apariencia | Líquido de color paja |
Densidad | 775-840 g/L |
Punto de fusión | -47 °C (-53 °F; 226 K) |
Punto de ebullición | 176 °C (349 °F; 449 K) |
Peligros | |
NFPA 704 (rombo cortafuegos) | |
punto de inflamabilidad | 38 °C (100 °F; 311 K) |
210 °C (410 °F; 483 K) | |
Ficha de datos de seguridad (FDS) | [1] [2] |
Salvo que se indique lo contrario, los datos se proporcionan para los materiales en su estado estándar (a 25 °C [77 °F], 100 kPa). |
El combustible para aviones o combustible para turbinas de aviación ( ATF , también abreviado como avtur ) es un tipo de combustible de aviación diseñado para su uso en aeronaves propulsadas por motores de turbina de gas . Su aspecto es entre incoloro y pajizo. Los combustibles más utilizados para la aviación comercial son el Jet A y el Jet A-1, que se producen según una especificación internacional estandarizada. El otro único combustible para aviones que se utiliza habitualmente en la aviación civil propulsada por motores de turbina es el Jet B, que se utiliza por su rendimiento mejorado en climas fríos.
El combustible para aviones es una mezcla de una variedad de hidrocarburos . Debido a que la composición exacta del combustible para aviones varía ampliamente según la fuente de petróleo, es imposible definir el combustible para aviones como una proporción de hidrocarburos específicos. Por lo tanto, el combustible para aviones se define como una especificación de rendimiento en lugar de un compuesto químico. [1] Además, el rango de masa molecular entre hidrocarburos (o diferentes números de carbono) se define por los requisitos para el producto, como el punto de congelación o el punto de humo. El combustible para aviones tipo queroseno (incluidos Jet A y Jet A-1, JP-5 y JP-8) tiene una distribución del número de carbonos entre aproximadamente 8 y 16 (átomos de carbono por molécula); el combustible para aviones de corte ancho o tipo nafta (incluidos Jet B y JP-4), entre aproximadamente 5 y 15. [2] [3]
El combustible para aeronaves propulsadas por motores de pistón (generalmente una gasolina de alto octanaje conocida como avgas ) tiene una alta volatilidad para mejorar sus características de carburación y una alta temperatura de autoignición para evitar la preignición en motores de aeronaves de alta compresión. Los motores de turbina (al igual que los motores diésel ) pueden funcionar con una amplia gama de combustibles porque el combustible se inyecta en la cámara de combustión caliente. Los motores de aeronaves a reacción y de turbina de gas ( turbohélice , helicóptero ) generalmente utilizan combustibles de menor costo con puntos de inflamación más altos , que son menos inflamables y, por lo tanto, más seguros para transportar y manipular.
El primer motor a reacción de compresor axial que se fabricó ampliamente y se puso en servicio en combate, el Junkers Jumo 004, utilizado en el caza Messerschmitt Me 262A y en el bombardero de reconocimiento a reacción Arado Ar 234B , quemaba un combustible sintético especial "J2" o combustible diésel. La gasolina era una tercera opción, pero poco atractiva debido a su alto consumo de combustible. [4] Otros combustibles utilizados eran queroseno o mezclas de queroseno y gasolina.
La mayoría de los combustibles para aviones que se utilizan desde el final de la Segunda Guerra Mundial se basan en queroseno. Las normas británicas y estadounidenses para los combustibles para aviones se establecieron por primera vez al final de la Segunda Guerra Mundial. Las normas británicas se derivaron de las normas para el uso de queroseno para lámparas, conocido como parafina en el Reino Unido, mientras que las normas estadounidenses se derivaron de las prácticas de gasolina de aviación. En los años siguientes, se ajustaron los detalles de las especificaciones, como el punto de congelación mínimo, para equilibrar los requisitos de rendimiento y la disponibilidad de combustibles. Los puntos de congelación de temperatura muy baja reducen la disponibilidad de combustible. Los productos con puntos de inflamación más altos necesarios para su uso en portaaviones son más caros de producir. [3] En los Estados Unidos, ASTM International produce normas para tipos de combustible civil, y el Departamento de Defensa de los EE. UU. produce normas para uso militar. El Ministerio de Defensa británico establece normas para combustibles para aviones civiles y militares. [3] Por razones de capacidad interoperativa, las normas militares británicas y estadounidenses están armonizadas hasta cierto punto. En Rusia y los miembros de la CEI , los grados de combustibles para aviones están cubiertos por el número de estándar estatal ( GOST ) o un número de condición técnica, siendo el principal grado disponible el TS-1.
El combustible de especificación Jet A se ha utilizado en los Estados Unidos desde la década de 1950 y, por lo general, no está disponible fuera de los Estados Unidos [5] y en algunos aeropuertos canadienses como Toronto , Montreal y Vancouver [6] , mientras que Jet A-1 es el combustible de especificación estándar utilizado en la mayor parte del resto del mundo, [a] las principales excepciones son Rusia y los miembros de la CEI , donde el tipo de combustible TS-1 es el estándar más común. Tanto Jet A como Jet A-1 tienen un punto de inflamación superior a 38 °C (100 °F), con una temperatura de autoignición de 210 °C (410 °F). [9]
Las diferencias entre el Jet A y el Jet A-1 son dobles. La principal diferencia es el punto de congelación más bajo del combustible Jet A-1: [5]
La otra diferencia es la adición obligatoria de un aditivo antiestático al combustible Jet A-1.
Los camiones de combustible Jet A y Jet A-1 y sus tanques de almacenamiento, así como las tuberías que los transportan, están todos marcados como "Jet A" o "Jet A-1" en texto blanco en cursiva dentro de un fondo rectangular negro, adyacente a una o dos franjas negras diagonales. [ cita requerida ]
El combustible Jet A-1 debe cumplir:
El combustible Jet A debe cumplir con la especificación ASTM D1655 (Jet A). [10]
Avión a reacción A-1 | chorro a | |
---|---|---|
punto de inflamabilidad | 38 °C (100 °F) | |
Temperatura de autoignición | 210 °C (410 °F) [9] | |
Punto de congelación | -47 °C (-53 °F) | -40 °C (-40 °F) |
Temperatura máxima de combustión adiabática | 2230 °C (4050 °F) Temperatura de combustión al aire libre: 1030 °C (1890 °F) [12] [13] [14] | |
Densidad a 15 °C (59 °F) | 0,804 kg/L (6,71 lb/gal EE.UU.) | 0,820 kg/L (6,84 lb/gal EE.UU.) |
Energía específica | 43,15 MJ/kg (11,99 kWh/kg) | 43,02 MJ/kg (11,95 kWh/kg) |
Densidad de energía | 34,7 MJ/L (9,6 kWh/L) [15] | 35,3 MJ/L (9,8 kWh/L) |
El Jet B es un combustible de nafta-queroseno que se utiliza por su rendimiento mejorado en climas fríos. Sin embargo, la composición más ligera del Jet B lo hace más peligroso de manejar. [10] Por esta razón, rara vez se utiliza, excepto en climas muy fríos. Una mezcla de aproximadamente 30% de queroseno y 70% de gasolina, se conoce como combustible de corte ancho. Tiene un punto de congelación muy bajo de −60 °C (−76 °F), y también un punto de inflamación bajo . Se utiliza principalmente en el norte de Canadá y Alaska , donde el frío extremo hace necesario su bajo punto de congelación, y lo que ayuda a mitigar el peligro de su punto de inflamación más bajo.
El TS-1 es un combustible para aviones fabricado según la norma rusa GOST 10227 para un mejor rendimiento en climas fríos. Tiene una volatilidad ligeramente superior a la del Jet A-1 (el punto de inflamación es de 28 °C (82 °F) como mínimo). Tiene un punto de congelación muy bajo, por debajo de los -50 °C (-58 °F). [16]
Las especificaciones DEF STAN 91-091 (Reino Unido) y ASTM D1655 (internacional) permiten agregar ciertos aditivos al combustible para aviones, incluidos: [17] [18]
Como las demandas de queroseno para aviones de la industria de la aviación han aumentado a más del 5% de todos los productos refinados derivados del crudo, ha sido necesario que el refinador optimice el rendimiento del queroseno para aviones, un producto de alto valor, mediante la variación de las técnicas de proceso.
Los nuevos procesos han permitido una mayor flexibilidad en la elección de crudos, el uso de arenas bituminosas de carbón como fuente de moléculas y la fabricación de mezclas sintéticas. Debido a la cantidad y la severidad de los procesos utilizados, a menudo es necesario y, a veces, obligatorio utilizar aditivos. Estos aditivos pueden, por ejemplo, prevenir la formación de especies químicas nocivas o mejorar una propiedad de un combustible para evitar un mayor desgaste del motor.
Es muy importante que el combustible para aviones no esté contaminado por agua . Durante el vuelo, la temperatura del combustible en los tanques disminuye debido a las bajas temperaturas en la atmósfera superior . Esto provoca la precipitación del agua disuelta del combustible. El agua separada cae entonces al fondo del tanque, porque es más densa que el combustible. Como el agua ya no está en solución, puede formar gotitas que pueden sobreenfriarse por debajo de los 0 °C (32 °F). Si estas gotitas sobreenfriadas chocan con una superficie, pueden congelarse y provocar el bloqueo de las tuberías de entrada de combustible. [21] Esta fue la causa del accidente del vuelo 38 de British Airways . Eliminar toda el agua del combustible es poco práctico; por lo tanto, los calentadores de combustible se utilizan generalmente en los aviones comerciales para evitar que el agua del combustible se congele.
Existen varios métodos para detectar agua en el combustible para aviones. Una comprobación visual puede detectar altas concentraciones de agua en suspensión, ya que esto hará que el combustible adquiera un aspecto turbio. Una prueba química estándar de la industria para la detección de agua libre en el combustible para aviones utiliza una almohadilla de filtro sensible al agua que se vuelve verde si el combustible excede el límite de especificación de 30 ppm (partes por millón) de agua libre. [22] Una prueba crítica para evaluar la capacidad del combustible para aviones de liberar agua emulsionada cuando pasa a través de filtros coalescentes es la norma ASTM D3948 Método de prueba estándar para determinar las características de separación de agua de los combustibles para turbinas de aviación mediante un separómetro portátil.
Las organizaciones militares de todo el mundo utilizan un sistema de clasificación diferente de números JP (por "Jet Propellant"). Algunos son casi idénticos a sus homólogos civiles y difieren solo en las cantidades de unos pocos aditivos; Jet A-1 es similar a JP-8 , Jet B es similar a JP-4 . [23] Otros combustibles militares son productos altamente especializados y se desarrollan para aplicaciones muy específicas.
Esta sección puede resultar confusa o poco clara para los lectores . ( Julio de 2014 ) |
El combustible para aviones es muy similar al combustible diésel y, en algunos casos, puede utilizarse en motores diésel . La posibilidad de que una legislación medioambiental prohíba el uso de avgas con plomo (combustible en motores de combustión interna con encendido por chispa, que normalmente contiene tetraetilo de plomo (TEL), una sustancia tóxica añadida para evitar el golpeteo del motor ) y la falta de un combustible de sustitución con un rendimiento similar, ha hecho que los diseñadores de aeronaves y las organizaciones de pilotos busquen motores alternativos para su uso en aeronaves pequeñas. [36] Como resultado, algunos fabricantes de motores de aeronaves, sobre todo Thielert y Austro Engine , han empezado a ofrecer motores diésel de aeronaves que funcionan con combustible para aviones, lo que puede simplificar la logística aeroportuaria al reducir la cantidad de tipos de combustible necesarios. El combustible para aviones está disponible en la mayoría de los lugares del mundo, mientras que el avgas solo está ampliamente disponible en unos pocos países que tienen una gran cantidad de aeronaves de aviación general . Un motor diésel puede ser más eficiente en cuanto al consumo de combustible que un motor avgas. Sin embargo, muy pocos motores de aeronaves diésel han sido certificados por las autoridades de aviación. Los motores diésel de aviación son poco comunes hoy en día, a pesar de que durante la Segunda Guerra Mundial se habían utilizado motores diésel de aviación con pistones opuestos, como la familia Junkers Jumo 205 .
El combustible para aviones se utiliza a menudo en vehículos de apoyo terrestre propulsados por diésel en los aeropuertos. Sin embargo, el combustible para aviones tiende a tener una capacidad lubricante deficiente en comparación con el diésel, lo que aumenta el desgaste del equipo de inyección de combustible. [ cita requerida ] Puede ser necesario un aditivo para restaurar su lubricidad . El combustible para aviones es más caro que el combustible diésel, pero las ventajas logísticas de utilizar un combustible pueden compensar el gasto adicional de su uso en determinadas circunstancias.
El combustible para aviones contiene más azufre, hasta 1000 ppm, lo que significa que tiene una mejor lubricidad y actualmente no requiere un aditivo de lubricidad como lo requieren todos los combustibles diésel para oleoductos. [ cita requerida ] La introducción del diésel con contenido ultrabajo de azufre o ULSD trajo consigo la necesidad de modificadores de lubricidad. Los diésel para oleoductos anteriores al ULSD podían contener hasta 500 ppm de azufre y se llamaban diésel con bajo contenido de azufre o LSD. En los Estados Unidos, el LSD ahora solo está disponible para los mercados de construcción todoterreno, locomotoras y marinos. A medida que se introducen más regulaciones de la EPA, más refinerías están hidrotratando su producción de combustible para aviones, lo que limita las capacidades lubricantes del combustible para aviones, según lo determinado por la norma ASTM D445.
El JP-8 , que es similar al Jet A-1, se utiliza en los vehículos diésel de la OTAN como parte de la política de combustible único. [37]
Los combustibles sintéticos de queroseno parafínico sintetizado (SPK) Fischer-Tropsch (FT) están certificados para su uso en flotas de aviación de Estados Unidos e internacionales en hasta un 50% en una mezcla con combustible para aviones convencional. [38] A fines de 2017, otras cuatro vías para SPK están certificadas, con sus designaciones y porcentaje máximo de mezcla entre paréntesis: ésteres hidroprocesados y ácidos grasos (HEFA SPK, 50%); isoparafinas sintetizadas a partir de azúcares fermentados hidroprocesados (SIP, 10%); queroseno parafínico sintetizado más aromáticos (SPK/A, 50%); SPK de alcohol a jet (ATJ-SPK, 30%). Tanto los SPK basados en FT como en HEFA mezclados con JP-8 están especificados en MIL-DTL-83133H.
Algunos combustibles sintéticos para aviones muestran una reducción de contaminantes como SOx, NOx, partículas y, a veces, emisiones de carbono. [39] [40] [41] [42] [43] Se prevé que el uso de combustibles sintéticos para aviones aumentará la calidad del aire alrededor de los aeropuertos, lo que será particularmente ventajoso en los aeropuertos del centro de la ciudad. [44]
Qatar Airways se convirtió en la primera aerolínea en operar un vuelo comercial con una mezcla 50:50 de combustible sintético para aviones a reacción Gas-Líquido (GTL) y combustible convencional para aviones a reacción. El queroseno sintético derivado del gas natural para el vuelo de seis horas de Londres a Doha provino de la planta GTL de Shell en Bintulu , Malasia . [45] El primer vuelo de un avión de pasajeros del mundo en utilizar únicamente combustible sintético para aviones a reacción fue desde el Aeropuerto Internacional de Lanseria hasta el Aeropuerto Internacional de Ciudad del Cabo el 22 de septiembre de 2010. El combustible fue desarrollado por Sasol . [46]
La química Heather Willauer dirige un equipo de investigadores del Laboratorio de Investigación Naval de los EE. UU. que están desarrollando un proceso para fabricar combustible para aviones a partir de agua de mar. La tecnología requiere un aporte de energía eléctrica para separar el oxígeno (O2 ) y el hidrógeno (H2 ) gaseoso del agua de mar utilizando un catalizador a base de hierro, seguido de un paso de oligomerización en el que el monóxido de carbono (CO) y el hidrógeno se recombinan en hidrocarburos de cadena larga, utilizando zeolita como catalizador. Se espera que la tecnología se implemente en la década de 2020 en los buques de guerra de la Armada de los EE. UU., especialmente en los portaaviones de propulsión nuclear. [47] [48] [49] [50] [51] [52]
El 8 de febrero de 2021, se realizó el primer vuelo regular de pasajeros del mundo con queroseno sintético de una fuente de combustible no fósil. Se mezclaron 500 litros de queroseno sintético con combustible para aviones normal. El queroseno sintético fue producido por Shell y el vuelo fue operado por KLM. [53]
El 8 de agosto de 2007, el Secretario de la Fuerza Aérea Michael Wynne certificó que el B-52H estaba plenamente aprobado para utilizar la mezcla FT, lo que marca la conclusión formal del programa de pruebas. Este programa forma parte de la Iniciativa de Combustible Asegurado del Departamento de Defensa, un esfuerzo por desarrollar fuentes nacionales seguras para las necesidades energéticas militares. El Pentágono espera reducir su uso de petróleo crudo de productores extranjeros y obtener aproximadamente la mitad de su combustible de aviación de fuentes alternativas para 2016. Ahora que el B-52 ha sido aprobado para utilizar la mezcla FT, la USAF utilizará los protocolos de prueba desarrollados durante el programa para certificar el uso del combustible del Boeing C-17 Globemaster III y luego del Rockwell B-1B Lancer . Para probar estos dos aviones, la USAF ha pedido 281.000 galones estadounidenses (1.060.000 L) de combustible FT. La USAF tiene la intención de probar y certificar cada fuselaje en su inventario para utilizar el combustible en 2011. También suministrará más de 9.000 galones estadounidenses (34.000 litros; 7.500 galones imperiales) a la NASA para realizar pruebas en varias aeronaves y motores. [ necesita actualización ]
La USAF ha certificado el B-1B, B-52H, C-17, Lockheed Martin C-130J Super Hercules , McDonnell Douglas F-4 Phantom (como drones objetivo QF-4 ), McDonnell Douglas F-15 Eagle , Lockheed Martin F-22 Raptor y Northrop T-38 Talon para utilizar la mezcla de combustible sintético. [54]
Los aviones C-17 Globemaster III, F-16 y F-15 de la Fuerza Aérea de Estados Unidos están certificados para el uso de combustibles renovables hidrotratados para aviones a reacción. [55] [56] La USAF planea certificar más de 40 modelos para combustibles derivados de aceites y plantas usados para 2013. [56] El Ejército de Estados Unidos es considerado uno de los pocos clientes de biocombustibles lo suficientemente grande como para potencialmente llevar los biocombustibles hasta el volumen de producción necesario para reducir los costos. [56] La Marina de Estados Unidos también ha volado un Boeing F/A-18E/F Super Hornet apodado el "Green Hornet" a 1,7 veces la velocidad del sonido usando una mezcla de biocombustibles. [56] La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) financió un proyecto de 6,7 millones de dólares con Honeywell UOP para desarrollar tecnologías para crear combustibles para aviones a partir de materias primas biológicas para su uso por los ejércitos de Estados Unidos y la OTAN. [57]
En abril de 2011, cuatro aviones F-15E Strike Eagles de la USAF sobrevolaron la ceremonia inaugural de los Philadelphia Phillies utilizando una mezcla de combustible para aviones tradicional y biocombustibles sintéticos. Este sobrevuelo hizo historia, ya que fue el primero en utilizar biocombustibles en el Departamento de Defensa . [58]
La industria del transporte aéreo es responsable del 2 al 3 por ciento del dióxido de carbono emitido por el hombre . [59] Boeing estima que los biocombustibles podrían reducir las emisiones de gases de efecto invernadero relacionadas con los vuelos entre un 60 y un 80 por ciento. Una posible solución que ha recibido más cobertura mediática que otras sería mezclar combustible sintético derivado de algas con el combustible para aviones existente: [60]
Solazyme produjo el primer combustible para aviones del mundo 100 por ciento derivado de algas, Solajet, para aplicaciones comerciales y militares. [68]
Los precios del petróleo se quintuplicaron entre 2003 y 2008, lo que hace temer que la producción mundial de petróleo no pueda satisfacer la demanda . El hecho de que haya pocas alternativas al petróleo como combustible para la aviación hace que la búsqueda de alternativas sea más urgente . Veinticinco aerolíneas se declararon en quiebra o suspendieron sus operaciones en los primeros seis meses de 2008, en gran medida debido a los costos del combustible. [69]
En 2015, ASTM aprobó una modificación a la Especificación D1655 Especificación estándar para combustibles de turbinas de aviación para permitir hasta 50 ppm (50 mg/kg) de FAME ( éster metílico de ácido graso ) en el combustible para aviones para permitir una mayor contaminación cruzada a partir de la producción de biocombustibles. [70]
La demanda mundial de combustible para aviones ha aumentado de manera constante desde 1980. El consumo se triplicó en 30 años, pasando de 1.837.000 barriles/día en 1980 a 5.220.000 en 2010. [71] Alrededor del 30% del consumo mundial de combustible para aviones se produce en Estados Unidos (1.398.130 barriles/día en 2012).
El artículo 24 del Convenio de Chicago sobre Aviación Civil Internacional de 7 de diciembre de 1944 estipula que, en los vuelos de un Estado contratante a otro, el queroseno que ya se encuentre a bordo de una aeronave no podrá ser gravado por el Estado en el que aterrice la aeronave ni por el Estado por cuyo espacio aéreo haya volado la aeronave. Esto tiene por objeto evitar la doble imposición. A veces se ha sugerido que el Convenio de Chicago impide la imposición de impuestos al combustible de aviación. Sin embargo, esto no es correcto. El Convenio de Chicago no impide un impuesto al queroseno en los vuelos nacionales o en el reabastecimiento de combustible antes de los vuelos internacionales. [72] : 22
En ocasiones también se dice que el artículo 15 del Convenio de Chicago prohíbe los impuestos sobre el combustible. El artículo 15 establece: "Ningún Estado contratante impondrá derechos, tasas u otros cargos únicamente por el derecho de tránsito sobre su territorio, de entrada en él o de salida de él, de ninguna aeronave de un Estado contratante, ni de personas o bienes que se encuentren en él". Sin embargo, la OACI distingue entre cargos e impuestos, y el artículo 15 no prohíbe la imposición de impuestos sin que se preste un servicio. [72] : 23
En la Unión Europea, el combustible de aviación comercial está exento de impuestos , según la Directiva de Impuestos sobre la Energía de 2003. [73] Los Estados miembros de la UE pueden gravar el combustible para aviones a través de acuerdos bilaterales, sin embargo no existen tales acuerdos. [72]
En Estados Unidos, la mayoría de los estados gravan el combustible para aviones .
Los riesgos generales para la salud asociados con la exposición al combustible para aviones varían según sus componentes, la duración de la exposición (aguda o prolongada), la vía de administración (dérmica, respiratoria o oral) y la fase de exposición (vapor, aerosol o combustible crudo). [74] [75] Los combustibles de hidrocarburos a base de queroseno son mezclas complejas que pueden contener hasta 260 compuestos de hidrocarburos alifáticos y aromáticos, incluidos tóxicos como benceno, n-hexano, tolueno, xilenos, trimetilpentano, metoxietanol y naftalenos. [75] Si bien las exposiciones promedio ponderadas en el tiempo a los combustibles de hidrocarburos a menudo pueden estar por debajo de los límites de exposición recomendados, puede producirse una exposición máxima y no se comprende completamente el impacto en la salud de las exposiciones ocupacionales. La evidencia de los efectos de los combustibles para aviones en la salud proviene de informes sobre la exposición biológica temporal o persistente de humanos o animales a combustibles de hidrocarburos a base de queroseno, o los componentes químicos de estos combustibles, o a productos de combustión de combustible. Los efectos estudiados incluyen: cáncer , afecciones de la piel , trastornos respiratorios , [76] trastornos inmunológicos y hematológicos , [77] efectos neurológicos , [78] trastornos visuales y auditivos , [79] [80] enfermedades renales y hepáticas , afecciones cardiovasculares , trastornos gastrointestinales , efectos genotóxicos y metabólicos . [75] [81]
El Convenio de Chicago no establece ningún obstáculo para la imposición de un impuesto sobre el combustible de aviación nacional o intracomunitario. El Convenio prohíbe a las partes imponer impuestos sobre el combustible que ya se encuentra a bordo de una aeronave cuando aterriza en otro país, pero no contiene ninguna prohibición de gravar el combustible vendido a aeronaves en un país. Además, el Convenio de Chicago no es aplicable a la aviación nacional. A menudo se sugiere que el Convenio de Chicago exime de impuestos al combustible de aviación. Sin embargo, el Convenio de Chicago solo exime de impuestos a los combustibles que ya se encuentran a bordo de la aeronave al aterrizar y que se mantienen a bordo al salir. El artículo 24 establece: «El combustible... que se encuentre a bordo de una aeronave de un Estado contratante, a su llegada al territorio de otro Estado contratante y que se conserve a bordo al salir del territorio de dicho Estado, estará exento de derechos de aduana, tasas de inspección o derechos y cargas nacionales o locales similares». Por tanto, el artículo 24 no prohíbe la imposición del combustible embarcado en un país determinado, sino que prohíbe la imposición del combustible que ya se encontraba a bordo de la aeronave cuando ésta aterrizó, es decir, los Estados miembros no pueden gravar el combustible de aviación comprado en otro país que llegue a bordo de la aeronave. El objetivo de este artículo es evitar la doble imposición.
Los Estados miembros eximirán de imposición los productos energéticos suministrados para su uso como carburante a efectos de navegación aérea distintos de los vuelos de recreo privados.