Lista de integrales de funciones trigonométricas inversas

La siguiente es una lista de integrales indefinidas ( antiderivadas ) de expresiones que involucran las funciones trigonométricas inversas . Para obtener una lista completa de fórmulas integrales, consulte listas de integrales .

  • Las funciones trigonométricas inversas también se conocen como "funciones de arco".
  • C se utiliza para la constante arbitraria de integración que solo se puede determinar si se conoce algo sobre el valor de la integral en algún punto. Por lo tanto, cada función tiene un número infinito de antiderivadas.
  • Existen tres notaciones comunes para las funciones trigonométricas inversas. La función arcoseno, por ejemplo, se puede escribir como sin −1 , asin o, como se utiliza en esta página, arcsin .
  • Para cada fórmula de integración trigonométrica inversa a continuación, existe una fórmula correspondiente en la lista de integrales de funciones hiperbólicas inversas .

Fórmulas de integración de la función arcoseno

  • arcsin ( x ) d x = x arcsin ( x ) + 1 x 2 + C {\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)+{\sqrt {1-x^{2}}}+C}
  • arcsin ( a x ) d x = x arcsin ( a x ) + 1 a 2 x 2 a + C {\displaystyle \int \arcsin(ax)\,dx=x\arcsin(ax)+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
  • x arcsin ( a x ) d x = x 2 arcsin ( a x ) 2 arcsin ( a x ) 4 a 2 + x 1 a 2 x 2 4 a + C {\displaystyle \int x\arcsin(ax)\,dx={\frac {x^{2}\arcsin(ax)}{2}}-{\frac {\arcsin(ax)}{4\,a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
  • x 2 arcsin ( a x ) d x = x 3 arcsin ( a x ) 3 + ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arcsin(ax)\,dx={\frac {x^{3}\arcsin(ax)}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
  • x m arcsin ( a x ) d x = x m + 1 arcsin ( a x ) m + 1 a m + 1 x m + 1 1 a 2 x 2 d x , ( m 1 ) {\displaystyle \int x^{m}\arcsin(ax)\,dx={\frac {x^{m+1}\arcsin(ax)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\,,\quad (m\neq -1)}
  • arcsin ( a x ) 2 d x = 2 x + x arcsin ( a x ) 2 + 2 1 a 2 x 2 arcsin ( a x ) a + C {\displaystyle \int \arcsin(ax)^{2}\,dx=-2x+x\arcsin(ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)}{a}}+C}
  • arcsin ( a x ) n d x = x arcsin ( a x ) n + n 1 a 2 x 2 arcsin ( a x ) n 1 a n ( n 1 ) arcsin ( a x ) n 2 d x {\displaystyle \int \arcsin(ax)^{n}\,dx=x\arcsin(ax)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)^{n-1}}{a}}\,-\,n\,(n-1)\int \arcsin(ax)^{n-2}\,dx}
  • arcsin ( a x ) n d x = x arcsin ( a x ) n + 2 ( n + 1 ) ( n + 2 ) + 1 a 2 x 2 arcsin ( a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) arcsin ( a x ) n + 2 d x , ( n 1 , 2 ) {\displaystyle \int \arcsin(ax)^{n}\,dx={\frac {x\arcsin(ax)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arcsin(ax)^{n+2}\,dx\,,\quad (n\neq -1,-2)}

Fórmulas de integración de la función arcocoseno

  • arccos ( x ) d x = x arccos ( x ) 1 x 2 + C {\displaystyle \int \arccos(x)\,dx=x\arccos(x)-{\sqrt {1-x^{2}}}+C}
  • arccos ( a x ) d x = x arccos ( a x ) 1 a 2 x 2 a + C {\displaystyle \int \arccos(ax)\,dx=x\arccos(ax)-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
  • x arccos ( a x ) d x = x 2 arccos ( a x ) 2 arccos ( a x ) 4 a 2 x 1 a 2 x 2 4 a + C {\displaystyle \int x\arccos(ax)\,dx={\frac {x^{2}\arccos(ax)}{2}}-{\frac {\arccos(ax)}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
  • x 2 arccos ( a x ) d x = x 3 arccos ( a x ) 3 ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arccos(ax)\,dx={\frac {x^{3}\arccos(ax)}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
  • x m arccos ( a x ) d x = x m + 1 arccos ( a x ) m + 1 + a m + 1 x m + 1 1 a 2 x 2 d x , ( m 1 ) {\displaystyle \int x^{m}\arccos(ax)\,dx={\frac {x^{m+1}\arccos(ax)}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\,,\quad (m\neq -1)}
  • arccos ( a x ) 2 d x = 2 x + x arccos ( a x ) 2 2 1 a 2 x 2 arccos ( a x ) a + C {\displaystyle \int \arccos(ax)^{2}\,dx=-2x+x\arccos(ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos(ax)}{a}}+C}
  • arccos ( a x ) n d x = x arccos ( a x ) n n 1 a 2 x 2 arccos ( a x ) n 1 a n ( n 1 ) arccos ( a x ) n 2 d x {\displaystyle \int \arccos(ax)^{n}\,dx=x\arccos(ax)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\arccos(ax)^{n-1}}{a}}\,-\,n\,(n-1)\int \arccos(ax)^{n-2}\,dx}
  • arccos ( a x ) n d x = x arccos ( a x ) n + 2 ( n + 1 ) ( n + 2 ) 1 a 2 x 2 arccos ( a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) arccos ( a x ) n + 2 d x , ( n 1 , 2 ) {\displaystyle \int \arccos(ax)^{n}\,dx={\frac {x\arccos(ax)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}x^{2}}}\arccos(ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arccos(ax)^{n+2}\,dx\,,\quad (n\neq -1,-2)}

Fórmulas de integración de funciones arcotangentes

  • arctan ( x ) d x = x arctan ( x ) ln ( x 2 + 1 ) 2 + C {\displaystyle \int \arctan(x)\,dx=x\arctan(x)-{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
  • arctan ( a x ) d x = x arctan ( a x ) ln ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \arctan(ax)\,dx=x\arctan(ax)-{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}
  • x arctan ( a x ) d x = x 2 arctan ( a x ) 2 + arctan ( a x ) 2 a 2 x 2 a + C {\displaystyle \int x\arctan(ax)\,dx={\frac {x^{2}\arctan(ax)}{2}}+{\frac {\arctan(ax)}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}
  • x 2 arctan ( a x ) d x = x 3 arctan ( a x ) 3 + ln ( a 2 x 2 + 1 ) 6 a 3 x 2 6 a + C {\displaystyle \int x^{2}\arctan(ax)\,dx={\frac {x^{3}\arctan(ax)}{3}}+{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}
  • x m arctan ( a x ) d x = x m + 1 arctan ( a x ) m + 1 a m + 1 x m + 1 a 2 x 2 + 1 d x , ( m 1 ) {\displaystyle \int x^{m}\arctan(ax)\,dx={\frac {x^{m+1}\arctan(ax)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\,,\quad (m\neq -1)}

Fórmulas de integración de funciones arco-tangentes

  • arccot ( x ) d x = x arccot ( x ) + ln ( x 2 + 1 ) 2 + C {\displaystyle \int \operatorname {arccot}(x)\,dx=x\operatorname {arccot}(x)+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
  • arccot ( a x ) d x = x arccot ( a x ) + ln ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \operatorname {arccot}(ax)\,dx=x\operatorname {arccot}(ax)+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}
  • x arccot ( a x ) d x = x 2 arccot ( a x ) 2 + arccot ( a x ) 2 a 2 + x 2 a + C {\displaystyle \int x\operatorname {arccot}(ax)\,dx={\frac {x^{2}\operatorname {arccot}(ax)}{2}}+{\frac {\operatorname {arccot}(ax)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
  • x 2 arccot ( a x ) d x = x 3 arccot ( a x ) 3 ln ( a 2 x 2 + 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\operatorname {arccot}(ax)\,dx={\frac {x^{3}\operatorname {arccot}(ax)}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
  • x m arccot ( a x ) d x = x m + 1 arccot ( a x ) m + 1 + a m + 1 x m + 1 a 2 x 2 + 1 d x , ( m 1 ) {\displaystyle \int x^{m}\operatorname {arccot}(ax)\,dx={\frac {x^{m+1}\operatorname {arccot}(ax)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\,,\quad (m\neq -1)}

Fórmulas de integración de funciones de arcosecante

  • arcsec ( x ) d x = x arcsec ( x ) ln ( | x | + x 2 1 ) + C = x arcsec ( x ) arcosh | x | + C {\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C}
  • arcsec ( a x ) d x = x arcsec ( a x ) 1 a arcosh | a x | + C {\displaystyle \int \operatorname {arcsec}(ax)\,dx=x\operatorname {arcsec}(ax)-{\frac {1}{a}}\,\operatorname {arcosh} |ax|+C}
  • x arcsec ( a x ) d x = x 2 arcsec ( a x ) 2 x 2 a 1 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arcsec}(ax)\,dx={\frac {x^{2}\operatorname {arcsec}(ax)}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
  • x 2 arcsec ( a x ) d x = x 3 arcsec ( a x ) 3 arcosh | a x | 6 a 3 x 2 6 a 1 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arcsec}(ax)\,dx={\frac {x^{3}\operatorname {arcsec}(ax)}{3}}\,-\,{\frac {\operatorname {arcosh} |ax|}{6\,a^{3}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
  • x m arcsec ( a x ) d x = x m + 1 arcsec ( a x ) m + 1 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x , ( m 1 ) {\displaystyle \int x^{m}\operatorname {arcsec}(ax)\,dx={\frac {x^{m+1}\operatorname {arcsec}(ax)}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\,,\quad (m\neq -1)}

Fórmulas de integración de la función arco cosecante

  • arccsc ( x ) d x = x arccsc ( x ) + ln ( | x | + x 2 1 ) + C = x arccsc ( x ) + arcosh | x | + C {\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arccsc}(x)\,+\,\operatorname {arcosh} |x|\,+\,C}
  • arccsc ( a x ) d x = x arccsc ( a x ) + 1 a artanh 1 1 a 2 x 2 + C {\displaystyle \int \operatorname {arccsc}(ax)\,dx=x\operatorname {arccsc}(ax)+{\frac {1}{a}}\,\operatorname {artanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
  • x arccsc ( a x ) d x = x 2 arccsc ( a x ) 2 + x 2 a 1 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arccsc}(ax)\,dx={\frac {x^{2}\operatorname {arccsc}(ax)}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
  • x 2 arccsc ( a x ) d x = x 3 arccsc ( a x ) 3 + 1 6 a 3 artanh 1 1 a 2 x 2 + x 2 6 a 1 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arccsc}(ax)\,dx={\frac {x^{3}\operatorname {arccsc}(ax)}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {artanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
  • x m arccsc ( a x ) d x = x m + 1 arccsc ( a x ) m + 1 + 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x , ( m 1 ) {\displaystyle \int x^{m}\operatorname {arccsc}(ax)\,dx={\frac {x^{m+1}\operatorname {arccsc}(ax)}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\,,\quad (m\neq -1)}

Véase también

Referencias

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_inverse_trigonometric_functions&oldid=1157785972"