Nicomaco de Gerasa | |
---|---|
Nacido | C. 60 |
Fallecido | C. 120 |
Trabajo notable | Introducción a la aritmética Manual de armónicos |
Era | Filosofía romana antigua |
Escuela | Neopitagorismo |
Intereses principales | Aritmética , Música |
Ideas notables | Tablas de multiplicar |
Nicómaco de Gerasa ( griego : Νικόμαχος ; c. 60 - c. 120 d. C. ) fue un filósofo neopitagórico de la antigua Grecia de Gerasa , en la provincia romana de Siria (ahora Jerash , Jordania ). Como muchos pitagóricos , Nicómaco escribió sobre las propiedades místicas de los números, mejor conocido por sus obras Introducción a la aritmética y Manual de armónicos , que son un recurso importante sobre las matemáticas y la música de la antigua Grecia en el período romano . El trabajo de Nicómaco sobre aritmética se convirtió en un texto estándar para la educación neoplatónica en la Antigüedad tardía , con filósofos como Jámblico y Juan Filópono escribiendo comentarios sobre él. Una paráfrasis latina de Boecio de las obras de Nicómaco sobre aritmética y música se convirtieron en libros de texto estándar en la educación medieval.
Poco se sabe sobre la vida de Nicómaco, excepto que era un pitagórico que provenía de Gerasa . [1] Su Manual de armónicas estaba dirigido a una dama de noble cuna, a cuya petición Nicómaco escribió el libro, lo que sugiere que era un erudito respetado de cierto estatus. [2] Menciona su intención de escribir una obra más avanzada, y cómo los viajes que emprende con frecuencia le dejan corto de tiempo. [2] Las fechas aproximadas en las que vivió ( c. 100 d. C. ) solo se pueden estimar en función de a qué otros autores hace referencia en su obra, así como de qué matemáticos posteriores hacen referencia a él. [1] Menciona a Trasilo en su Manual de armónica , y su Introducción a la aritmética fue aparentemente traducida al latín a mediados del siglo II por Apuleyo , [2] mientras que no menciona en absoluto ni el trabajo de Teón de Esmirna sobre aritmética ni el trabajo de Ptolomeo sobre música, lo que implica que fueron contemporáneos posteriores o vivieron en la época después de él. [1]
Los historiadores consideran a Nicómaco un neopitagórico basándose en su tendencia a ver los números como poseedores de propiedades místicas en lugar de sus propiedades matemáticas, [3] [4] citando una extensa cantidad de literatura pitagórica en su obra, incluyendo obras de Filolao , Arquitas y Andrócides . [1] Escribe extensamente sobre números , especialmente sobre el significado de los números primos y perfectos y argumenta que la aritmética es ontológicamente anterior a las otras ciencias matemáticas ( música , geometría y astronomía ), y es su causa . Nicómaco distingue entre el número inmaterial totalmente conceptual, que considera como el "número divino", y los números que miden cosas materiales, el número "científico". [2] Nicómaco proporcionó una de las primeras tablas de multiplicación grecorromanas ; la tabla de multiplicación griega más antigua existente se encuentra en una tablilla de cera que data del siglo I d. C. (ahora se encuentra en el Museo Británico ). [5]
Aunque a Nicómaco se le considera pitagórico, John M. Dillon dice que la filosofía de Nicómaco "encaja cómodamente dentro del espectro del platonismo contemporáneo ". [6] En su obra sobre aritmética, Nicómaco cita el Timeo de Platón [7] para hacer una distinción entre el mundo inteligible de las Formas y el mundo sensible, sin embargo, también hace más distinciones pitagóricas, como entre números pares e impares . [6] A diferencia de muchos otros neopitagóricos, como Moderato o Gades , Nicómaco no intenta distinguir entre el Demiurgo , que actúa sobre el mundo material, y El Uno que sirve como el primer principio supremo . [6] Para Nicómaco, Dios como el primer principio supremo es tanto el demiurgo como el Intelecto ( nous ), que Nicómaco también equipara a ser la mónada , la potencialidad a partir de la cual se crean todas las actualidades. [6]
Dos de las obras de Nicómaco, la Introducción a la aritmética y el Manual de armónicas, se conservan en forma completa, y otras dos, una obra sobre Teología de la aritmética y una Vida de Pitágoras, sobreviven en fragmentos, epítomes y resúmenes de autores posteriores. [1] La Teología de la aritmética ( griego antiguo : Θεολογούμενα ἀριθμητικῆς ), sobre las propiedades místicas pitagóricas de los números en dos libros, es mencionada por Focio. Existe una obra existente a veces atribuida a Jámblico bajo este título escrita dos siglos después que contiene una gran cantidad de material que se cree que fue copiado o parafraseado de la obra de Nicómaco. La Vida de Pitágoras de Nicómaco fue una de las principales fuentes utilizadas por Porfirio y Jámblico para sus Vidas de Pitágoras (existentes). [1] Una Introducción a la geometría , mencionada por el propio Nicómaco en la Introducción a la aritmética, [8] no ha sobrevivido. [1] Entre sus obras perdidas conocidas se encuentra otra obra más grande sobre música, prometida por el propio Nicómaco, y aparentemente [ cita requerida ] mencionada por Eutocio en su comentario sobre la esfera y el cilindro de Arquímedes .
Introducción a la aritmética ( griego : Ἀριθμητικὴ εἰσαγωγή , Arithmetike eisagoge ) es la única obra existente sobre matemáticas de Nicómaco. La obra contiene tanto prosa filosófica como ideas matemáticas básicas. Nicómaco hace referencia a Platón con bastante frecuencia y escribe que la filosofía solo puede ser posible si uno sabe lo suficiente sobre matemáticas . Nicómaco también describe cómo los números naturales y las ideas matemáticas básicas son eternos e inmutables, y en un ámbito abstracto . La obra consta de dos libros, veintitrés y veintinueve capítulos, respectivamente.
La exposición de Nicómaco es mucho menos rigurosa que la de Euclides siglos antes. Las proposiciones suelen enunciarse e ilustrarse con un ejemplo, pero no se prueban mediante inferencia. En algunos casos, esto da lugar a afirmaciones patentemente falsas. Por ejemplo, afirma que de (ab) ∶ (bc) ∷ c ∶ a se puede concluir que ab=2bc , sólo porque esto es cierto para a=6, b=5 y c=3. [9]
De Institutione arithmetica de Boecio es en gran parte una traducción latina de esta obra.
El Manuale Harmonicum (Ἐγχειρίδιον ἁρμονικῆς, Encheiridion Harmonikes ) es el primer tratado importante de teoría musical desde la época de Aristóxeno y Euclides . Proporciona el registro más antiguo que sobrevive de la leyenda de la epifanía de Pitágoras fuera de una herrería, según la cual el tono está determinado por proporciones numéricas. Nicómaco también ofrece el primer relato en profundidad de la relación entre la música y el ordenamiento del universo a través de la " música de las esferas ". La discusión de Nicómaco sobre el gobierno del oído y la voz en la comprensión de la música une las preocupaciones aristoxénicas y pitagóricas, normalmente consideradas como antítesis. [10] En medio de discusiones teóricas, Nicómaco también describe los instrumentos de su tiempo, lo que también proporciona un recurso valioso. Además del Manual , sobreviven diez extractos de lo que parece haber sido originalmente un trabajo más sustancial sobre música.
La Introducción a la Aritmética de Nicómaco fue un libro de texto estándar en las escuelas neoplatónicas, y Jámblico (siglo III) y Juan Filopono (siglo VI) escribieron comentarios al respecto . [1]
La Aritmética (en latín: De Institutione Arithmetica ) de Boecio fue una paráfrasis latina y una traducción parcial de la Introducción a la aritmética . [11] El Manual de armónicas también se convirtió en la base del tratado latino de Boecio titulado De institutione musica . [12]
El trabajo de Boecio sobre aritmética y música fue una parte central de las artes liberales del Quadrivium y tuvo una gran difusión durante la Edad Media . [13]
Al final del capítulo 20 de su Introducción a la aritmética , Nicómaco señala que si uno escribe una lista de los números impares, el primero es el cubo de 1, la suma de los dos siguientes es el cubo de 2, la suma de los tres siguientes es el cubo de 3, y así sucesivamente. No va más allá de esto, pero de esto se sigue que la suma de los primeros n cubos es igual a la suma de los primeros números impares, es decir, los números impares de 1 a . El promedio de estos números es obviamente , y hay de ellos, por lo que su suma es Muchos matemáticos tempranos han estudiado y proporcionado pruebas del teorema de Nicómaco. [14]