Lista de sólidos de Johnson

En geometría, los poliedros son objetos tridimensionales en los que los puntos están conectados por líneas para formar polígonos . Los puntos, líneas y polígonos de un poliedro se denominan vértices , aristas y caras , respectivamente. [1] Se considera que un poliedro es convexo si: [2]

  • El camino más corto entre dos de sus vértices se encuentra en su interior o en su límite .
  • Ninguna de sus caras es coplanar , es decir, no comparten el mismo plano y no quedan “planas”.
  • Ninguno de sus bordes es colineal , es decir, no son segmentos de la misma línea.

Un poliedro convexo cuyas caras son polígonos regulares se conoce como sólido de Johnson o, a veces, como sólido de Johnson-Zalgaller . Algunos autores excluyen los poliedros uniformes de la definición. Un poliedro uniforme es un poliedro en el que las caras son regulares y son isogonales ; los ejemplos incluyen sólidos platónicos y arquimedianos , así como prismas y antiprismas . [3] Los sólidos de Johnson reciben su nombre del matemático estadounidense Norman Johnson (1930-2017), quien publicó una lista de 92 poliedros de este tipo en 1966. Su conjetura de que la lista estaba completa y no existían otros ejemplos fue demostrada por el matemático ruso-israelí Victor Zalgaller (1920-2020) en 1969. [4]

Algunos de los sólidos de Johnson pueden clasificarse como poliedros elementales , lo que significa que no pueden separarse por un plano para crear dos pequeños poliedros convexos con caras regulares. Los sólidos de Johnson que satisfacen este criterio son los seis primeros: pirámide cuadrada equilátera , pirámide pentagonal , cúpula triangular , cúpula cuadrada , cúpula pentagonal y rotonda pentagonal . El criterio también lo satisfacen otros once sólidos de Johnson, específicamente el icosaedro tridisminuido , el rombicosidodecaedro parabidisminuido , el rombicosidodecaedro tridisminuido , el disfenoide romo , el antiprisma cuadrado romo , la esfenocorona , la esfenomegacorona , la hebesfenomegacorona , el disfenocínculo , la bilunabirotonda y la hebesfenorrotonda triangular . [5] El resto de los sólidos de Johnson no son elementales, y se construyen utilizando los primeros seis sólidos de Johnson junto con sólidos platónicos y arquimedianos en varios procesos. La aumentación implica unir los sólidos de Johnson a una o más caras de poliedros, mientras que la elongación o giroelongación implican unirlos a las bases de un prisma o antiprisma, respectivamente. Algunos otros se construyen por disminución , la eliminación de uno de los primeros seis sólidos de una o más de las caras de un poliedro. [6]

La siguiente tabla contiene los 92 sólidos de Johnson, con longitud de arista . La tabla incluye la enumeración del sólido (denotada como ). [7] También incluye el número de vértices, aristas y caras de cada sólido, así como su grupo de simetría , área de superficie y volumen . Cada poliedro tiene sus propias características , incluyendo simetría y medida. Se dice que un objeto tiene simetría si hay una transformación que lo asigna a sí mismo. Todas esas transformaciones pueden estar compuestas en un grupo , junto con el número de elementos del grupo , conocido como orden . En el espacio bidimensional, estas transformaciones incluyen rotar alrededor del centro de un polígono y reflejar un objeto alrededor de la bisectriz perpendicular de un polígono. Un polígono que se rota simétricamente por se denota por , un grupo cíclico de orden ; combinando esto con la simetría de reflexión da como resultado la simetría del grupo diedro de orden . [8] En los grupos de puntos de simetría tridimensionales , las transformaciones que preservan la simetría de un poliedro incluyen la rotación alrededor de la línea que pasa por el centro de la base, conocida como eje de simetría , y la reflexión relativa a los planos perpendiculares que pasan por la bisectriz de una base, que se conoce como simetría piramidal de orden . La transformación que preserva la simetría de un poliedro reflejándolo a través de un plano horizontal se conoce como simetría prismática de orden . La simetría antiprismática de orden preserva la simetría rotando su mitad inferior y reflejándose a través del plano horizontal. [9] El grupo de simetría de orden preserva la simetría mediante rotación alrededor del eje de simetría y reflexión en el plano horizontal; el caso específico que preserva la simetría mediante una rotación completa es de orden 2, a menudo denotado como . [10] La medición de los poliedros incluye el área de la superficie y el volumen . Un área es una medida bidimensional calculada por el producto de la longitud y el ancho; Para un poliedro, el área de la superficie es la suma de las áreas de todas sus caras. [11] Un volumen es una medida de una región en el espacio tridimensional. [12] a {\estilo de visualización a} Yo norte Estilo de visualización J_{n} A {\estilo de visualización A} V {\estilo de visualización V} 360 norte {\textstyle {\frac {360^{\circ }}{n}}} do norte Estilo de visualización C_{n} norte {\estilo de visualización n} D norte Estilo de visualización D_{n} 2 norte {\estilo de visualización 2n} do norte en {\displaystyle C_{n\mathrm {v}}} 2 norte {\estilo de visualización 2n} D norte yo {\displaystyle D_{n\mathrm {h}}} 4 norte {\estilo de visualización 4n} D norte d {\displaystyle D_{n\mathrm {d}}} 4 norte {\estilo de visualización 4n} do norte yo {\displaystyle C_{n\mathrm {h}}} 2 norte {\estilo de visualización 2n} do 1 yo {\displaystyle C_{1\mathrm {h}}} do s {\displaystyle C_{s}} El volumen de un poliedro se puede determinar de diferentes maneras: ya sea a través de su base y altura (como para las pirámides y los prismas ), cortándolo en pedazos y sumando sus volúmenes individuales, o encontrando la raíz de un polinomio que represente al poliedro. [13]

Los 92 sólidos de Johnson
Yo norte Estilo de visualización J_{n} Nombre solidoImagenVérticesBordesCarasGrupo de simetría y su orden [14]Área de superficie y volumen [15]
1Pirámide cuadrada equilátera585 do 4 en Estilo de visualización C_{4v} de orden 8 A = ( 1 + 3 ) a 2 2.7321 a 2 V = 2 6 a 3 0,2357 a 3 {\displaystyle {\begin{aligned}A&=\left(1+{\sqrt {3}}\right)a^{2}\\&\aproximadamente 2,7321a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\aproximadamente 0,2357a^{3}\end{aligned}}}
2Pirámide pentagonal6106 do 5 en Estilo de visualización C_{5v} de orden 10 A = a 2 2 5 2 ( 10 + 5 + 75 + 30 5 ) 3.8855 a 2 V = ( 5 + 5 24 ) a 3 0,3015 a 3 {\displaystyle {\begin{aligned}A&={\frac {a^{2}}{2}}{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\\&\aproximadamente 3,8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}}{24}}\right)a^{3}\\&\aproximadamente 0,3015a^{3}\end{aligned}}}
3Cúpula triangular9158 do 3 en Estilo de visualización C3v de orden 6 A = ( 3 + 5 3 2 ) a 2 7.3301 a 2 V = ( 5 3 2 ) a 3 1.1785 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\frac {5{\sqrt {3}}}{2}}\right)a^{2}\\&\approx 7.3301a^{2}\\V&=\left({\frac {5}{3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1785a^{3}\end{aligned}}}
4Cúpula cuadrada122010 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 7 + 2 2 + 3 ) a 2 11.5605 a 2 V = ( 1 + 2 2 3 ) a 3 1.9428 a 3 {\displaystyle {\begin{aligned}A&=\left(7+2{\sqrt {2}}+{\sqrt {3}}\right)a^{2}\\&\approx 11.5605a^{2}\\V&=\left(1+{\frac {2{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 1.9428a^{3}\end{aligned}}}
5Cúpula pentagonal152512 C 5 v {\displaystyle C_{5v}} de orden 10 A = ( 1 4 ( 20 + 5 3 + 5 ( 145 + 62 5 ) ) ) a 2 16.5798 a 2 V = ( 1 6 ( 5 + 4 5 ) ) a 3 2.3241 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{4}}\left(20+5{\sqrt {3}}+{\sqrt {5\left(145+62{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 16.5798a^{2}\\V&=\left({\frac {1}{6}}\left(5+4{\sqrt {5}}\right)\right)a^{3}\\&\approx 2.3241a^{3}\end{aligned}}}
6Rotonda pentagonal203517 C 5 v {\displaystyle C_{5v}} de orden 10 A = ( 1 2 ( 5 3 + 10 ( 65 + 29 5 ) ) ) a 2 22.3472 a 2 V = ( 1 12 ( 45 + 17 5 ) ) a 3 6.9178 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {10\left(65+29{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 22.3472a^{2}\\V&=\left({\frac {1}{12}}\left(45+17{\sqrt {5}}\right)\right)a^{3}\\&\approx 6.9178a^{3}\end{aligned}}}
7Pirámide triangular alargada7127 C 3 v {\displaystyle C_{3v}} de orden 6 A = ( 3 + 3 ) a 2 4.7321 a 2 V = ( 1 12 ( 2 + 3 3 ) ) a 3 0.5509 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 4.7321a^{2}\\V&=\left({\frac {1}{12}}\left({\sqrt {2}}+3{\sqrt {3}}\right)\right)a^{3}\\&\approx 0.5509a^{3}\end{aligned}}}
8Pirámide cuadrada alargada9169 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 5 + 3 ) a 2 6.7321 a 2 V = ( 1 + 2 6 ) a 3 1.2357 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\sqrt {3}}\right)a^{2}\\&\approx 6.7321a^{2}\\V&=\left(1+{\frac {\sqrt {2}}{6}}\right)a^{3}\\&\approx 1.2357a^{3}\end{aligned}}}
9Pirámide pentagonal alargada112011 C 5 v {\displaystyle C_{5v}} de orden 10 A = 20 + 5 3 + 25 + 10 5 4 a 2 8.8855 a 2 V = ( 5 + 5 + 6 25 + 10 5 24 ) a 3 2.022 a 3 {\displaystyle {\begin{aligned}A&={\frac {20+5{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}}{4}}a^{2}\\&\approx 8.8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}+6{\sqrt {25+10{\sqrt {5}}}}}{24}}\right)a^{3}\\&\approx 2.022a^{3}\end{aligned}}}
10Pirámide cuadrada giroelongada92013 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 1 + 3 3 ) a 2 6.1962 a 2 V = 1 6 ( 2 + 2 4 + 3 2 ) a 3 1.1927 a 3 {\displaystyle {\begin{aligned}A&=(1+3{\sqrt {3}})a^{2}\\&\approx 6.1962a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+2{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1927a^{3}\end{aligned}}}
11Pirámide pentagonal giroelongada112516 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 15 3 + 5 ( 5 + 2 5 ) ) a 2 8.2157 a 2 V = 1 24 ( 25 + 9 5 ) a 3 1.8802 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(15{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.2157a^{2}\\V&={\frac {1}{24}}\left(25+9{\sqrt {5}}\right)a^{3}\\&\approx 1.8802a^{3}\end{aligned}}}
12Bipirámide triangular596 D 3 h {\displaystyle D_{3h}} de orden 12 A = 3 3 2 a 2 2.5981 a 2 V = 2 6 a 3 0.2358 a 3 {\displaystyle {\begin{aligned}A&={\frac {3{\sqrt {3}}}{2}}a^{2}\\&\approx 2.5981a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\approx 0.2358a^{3}\end{aligned}}}
13Bipirámide pentagonal71510 D 5 h {\displaystyle D_{5h}} de orden 20 A = 5 3 2 a 2 4.3301 a 2 V = 1 12 ( 5 + 5 ) a 3 0.603 a 3 {\displaystyle {\begin{aligned}A&={\frac {5{\sqrt {3}}}{2}}a^{2}\\&\approx 4.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}\right)a^{3}\\&\approx 0.603a^{3}\end{aligned}}}
14Bipirámide triangular alargada8159 D 3 h {\displaystyle D_{3h}} de orden 12 A = 3 2 ( 2 + 3 ) a 2 5.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 5.5981a^{2}\\V&={\frac {1}{12}}\left(2{\sqrt {2}}+3{\sqrt {3}}\right)a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
15Bipirámide cuadrada alargada102012 D 4 h {\displaystyle D_{4h}} de orden 16 A = 2 ( 2 + 3 ) a 2 7.4641 a 2 V = 1 3 ( 3 + 2 ) a 3 1.4714 a 3 {\displaystyle {\begin{aligned}A&=2\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 7.4641a^{2}\\V&={\frac {1}{3}}\left(3+{\sqrt {2}}\right)a^{3}\\&\approx 1.4714a^{3}\end{aligned}}}
16Bipirámide pentagonal alargada122515 D 5 h {\displaystyle D_{5h}} de orden 20 A = 5 2 ( 2 + 3 ) a 2 9.3301 a 2 V = 1 12 ( 5 + 5 + 3 5 ( 5 + 2 5 ) ) a 3 2.3235 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 9.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{3}\\&\approx 2.3235a^{3}\end{aligned}}}
17Bipirámide cuadrada giroelongada102416 D 4 d {\displaystyle D_{4d}} de orden 16 A = 4 3 a 2 6.9282 a 2 V = 1 3 ( 2 + 4 + 3 2 ) a 3 1.4284 a 3 {\displaystyle {\begin{aligned}A&=4{\sqrt {3}}a^{2}\\&\approx 6.9282a^{2}\\V&={\frac {1}{3}}\left({\sqrt {2}}+{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.4284a^{3}\end{aligned}}}
18Cúpula triangular alargada152714 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 2 ( 18 + 5 3 ) a 2 13.3301 a 2 V = 1 6 ( 5 2 + 9 3 ) a 3 3.7766 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(18+5{\sqrt {3}}\right)a^{2}\\&\approx 13.3301a^{2}\\V&={\frac {1}{6}}\left(5{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.7766a^{3}\end{aligned}}}
19Cúpula cuadrada alargada203618 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 15 + 2 2 + 3 ) a 2 19.5605 a 2 V = ( 3 + 8 2 3 ) a 3 6.7712 a 3 {\displaystyle {\begin{aligned}A&=(15+2{\sqrt {2}}+{\sqrt {3}})a^{2}\\&\approx 19.5605a^{2}\\V&=\left(3+{\frac {8{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 6.7712a^{3}\end{aligned}}}
20Cúpula pentagonal alargada254522 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 60 + 5 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 26.5798 a 2 V = 1 6 ( 5 + 4 5 + 15 5 + 2 5 ) a 3 10.0183 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 26.5798a^{2}\\V&={\frac {1}{6}}\left(5+4{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 10.0183a^{3}\end{aligned}}}
21Rotonda pentagonal alargada305527 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 2 a 2 ( 20 + 5 3 + 5 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) 32.3472 a 2 V = 1 12 a 3 ( 45 + 17 5 + 30 5 + 2 5 ) 14.612 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(20+5{\sqrt {3}}+5{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 32.3472a^{2}\\V&={\frac {1}{12}}a^{3}\left(45+17{\sqrt {5}}+30{\sqrt {5+2{\sqrt {5}}}}\right)\\&\approx 14.612a^{3}\end{aligned}}}
22Cúpula triangular giroelongada153320 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 2 ( 6 + 11 3 ) a 2 12.5263 a 2 V = 1 3 61 2 + 18 3 + 30 1 + 3 a 3 3.5161 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+11{\sqrt {3}}\right)a^{2}\\&\approx 12.5263a^{2}\\V&={\frac {1}{3}}{\sqrt {{\frac {61}{2}}+18{\sqrt {3}}+30{\sqrt {1+{\sqrt {3}}}}}}a^{3}\\&\approx 3.5161a^{3}\end{aligned}}}
23Cúpula cuadrada giroelongada204426 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 7 + 2 2 + 5 3 ) a 2 18.4887 a 2 V = ( 1 + 2 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 6.2108 a 3 {\displaystyle {\begin{aligned}A&=(7+2{\sqrt {2}}+5{\sqrt {3}})a^{2}\\&\approx 18.4887a^{2}\\V&=\left(1+{\frac {2}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 6.2108a^{3}\end{aligned}}}
24Cúpula pentagonal giroelongada255532 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 20 + 25 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 25.2400 a 2 V = ( 5 6 + 2 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 9.0733 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 25.2400a^{2}\\V&=\left({\frac {5}{6}}+{\frac {2}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 9.0733a^{3}\end{aligned}}}
25Rotonda pentagonal giroelongada306537 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 2 ( 15 3 + ( 5 + 3 5 ) 5 + 2 5 ) a 2 31.0075 a 2 V = ( 45 12 + 17 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 13.6671 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(15{\sqrt {3}}+\left(5+3{\sqrt {5}}\right){\sqrt {5+2{\sqrt {5}}}}\right)a^{2}\\&\approx 31.0075a^{2}\\V&=\left({\frac {45}{12}}+{\frac {17}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 13.6671a^{3}\end{aligned}}}
26Girobifastigium8148 D 2 d {\displaystyle D_{2d}} de orden 8 A = ( 4 + 3 ) a 2 5.7321 a 2 V = ( 3 2 ) a 3 0.866 a 3 {\displaystyle {\begin{aligned}A&=\left(4+{\sqrt {3}}\right)a^{2}\\&\approx 5.7321a^{2}\\V&=\left({\frac {\sqrt {3}}{2}}\right)a^{3}\\&\approx 0.866a^{3}\end{aligned}}}
27Ortobicúpula triangular122414 D 3 h {\displaystyle D_{3h}} de orden 12 A = 2 ( 3 + 3 ) a 2 9.4641 a 2 V = 5 2 3 a 3 2.357 a 3 {\displaystyle {\begin{aligned}A&=2\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 9.4641a^{2}\\V&={\frac {5{\sqrt {2}}}{3}}a^{3}\\&\approx 2.357a^{3}\end{aligned}}}
28Ortobicúpula cuadrada163218 D 4 h {\displaystyle D_{4h}} de orden 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
29Girobicúpula cuadrada163218 D 4 d {\displaystyle D_{4d}} de orden 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
30Ortobicúpula pentagonal204022 D 5 h {\displaystyle D_{5h}} de orden 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
31Girobicúpula pentagonal204022 D 5 d {\displaystyle D_{5d}} de orden 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
32Ortocupularrotonda pentagonal255027 C 5 v {\displaystyle C_{5v}} de orden 10 A = ( 5 + 1 4 1900 + 490 5 + 210 75 + 30 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {1}{4}}{\sqrt {1900+490{\sqrt {5}}+210{\sqrt {75+30{\sqrt {5}}}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
33Rotonda girocupular pentagonal255027 C 5 v {\displaystyle C_{5v}} de orden 10 A = ( 5 + 15 4 3 + 7 4 25 + 10 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {15}{4}}{\sqrt {3}}+{\frac {7}{4}}{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
34Ortobirotonda pentagonal306032 D 5 h {\displaystyle D_{5h}} de orden 20 A = ( ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 29.306 a 2 V = 1 6 ( 45 + 17 5 ) a 3 13.8355 a 3 {\displaystyle {\begin{aligned}A&=\left((5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 29.306a^{2}\\V&={\frac {1}{6}}(45+17{\sqrt {5}})a^{3}\\&\approx 13.8355a^{3}\end{aligned}}}
35Ortobicúpula triangular alargada183620 D 3 h {\displaystyle D_{3h}} de orden 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
36Girobicúpula triangular alargada183620 D 3 d {\displaystyle D_{3d}} de orden 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
37Girobicúpula cuadrada alargada244826 D 4 d {\displaystyle D_{4d}} de orden 16 A = 2 ( 9 + 3 ) a 2 21.4641 a 2 V = ( 4 + 10 2 3 ) a 3 8.714 a 3 {\displaystyle {\begin{aligned}A&=2(9+{\sqrt {3}})a^{2}\\&\approx 21.4641a^{2}\\V&=\left(4+{\frac {10{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 8.714a^{3}\end{aligned}}}
38Ortobicúpula pentagonal alargada306032 D 5 h {\displaystyle D_{5h}} de orden 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
39Girobicúpula pentagonal alargada306032 D 5 d {\displaystyle D_{5d}} de orden 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
40Ortocupularotunda pentagonal alargada357037 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
41Rotonda girocupular pentagonal alargada357037 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
42Ortobirotonda pentagonal alargada408042 D 5 h {\displaystyle D_{5h}} de orden 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
43Girobirotunda pentagonal alargada408042 D 5 d {\displaystyle D_{5d}} de orden 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
44Bicúpula triangular giroelongada184226 D 3 {\displaystyle D_{3}} de orden 6 A = ( 6 + 5 3 ) a 2 14.6603 a 2 V = 2 ( 5 3 + 1 + 3 ) a 3 4.6946 a 3 {\displaystyle {\begin{aligned}A&=\left(6+5{\sqrt {3}}\right)a^{2}\\&\approx 14.6603a^{2}\\V&={\sqrt {2}}\left({\frac {5}{3}}+{\sqrt {1+{\sqrt {3}}}}\right)a^{3}\\&\approx 4.6946a^{3}\end{aligned}}}
45Bicúpula cuadrada giroelongada245634 D 4 {\displaystyle D_{4}} de orden 8 A = ( 10 + 6 3 ) a 2 20.3923 a 2 V = ( 2 + 4 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 8.1536 a 3 {\displaystyle {\begin{aligned}A&=\left(10+6{\sqrt {3}}\right)a^{2}\\&\approx 20.3923a^{2}\\V&=\left(2+{\frac {4}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 8.1536a^{3}\end{aligned}}}
46Bicúpula pentagonal giroelongada307042 D 5 {\displaystyle D_{5}} de orden 10 A = 1 2 ( 20 + 15 3 + 25 + 10 5 ) a 2 26.4313 a 2 V = ( 5 3 + 4 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 11.3974 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 26.4313a^{2}\\V&=\left({\frac {5}{3}}+{\frac {4}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 11.3974a^{3}\end{aligned}}}
47Cupularotunda pentagonal giroelongada358047 C 5 {\displaystyle C_{5}} de orden 5 A = 1 4 ( 20 + 35 3 + 7 25 + 10 5 ) a 2 32.1988 a 2 V = ( 55 12 + 25 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 15.9911 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+35{\sqrt {3}}+7{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 32.1988a^{2}\\V&=\left({\frac {55}{12}}+{\frac {25}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 15.9911a^{3}\end{aligned}}}
48Birotunda pentagonal giroelongada409052 D 5 {\displaystyle D_{5}} de orden 10 A = ( 10 3 + 3 25 + 10 5 ) a 2 37.9662 a 2 V = ( 45 6 + 17 6 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 20.5848 a 3 {\displaystyle {\begin{aligned}A&=\left(10{\sqrt {3}}+3{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 37.9662a^{2}\\V&=\left({\frac {45}{6}}+{\frac {17}{6}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 20.5848a^{3}\end{aligned}}}
49Prisma triangular aumentado7138 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 ( 4 + 3 3 ) a 2 4.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(4+3{\sqrt {3}})a^{2}\\&\approx 4.5981a^{2}\\V&={\frac {1}{12}}(2{\sqrt {2}}+3{\sqrt {3}})a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
50Prisma triangular biaumentado81711 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 ( 2 + 5 3 ) a 2 5.3301 a 2 V = 59 144 + 1 6 a 3 0.9044 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(2+5{\sqrt {3}})a^{2}\\&\approx 5.3301a^{2}\\V&={\sqrt {{\frac {59}{144}}+{\frac {1}{\sqrt {6}}}}}a^{3}\\&\approx 0.9044a^{3}\end{aligned}}}
51Prisma triangular triaumentado92114 D 3 h {\displaystyle D_{3h}} de orden 12 A = 7 3 2 a 2 6.0622 a 2 V = 2 2 + 3 4 a 3 1.1401 a 3 {\displaystyle {\begin{aligned}A&={\frac {7{\sqrt {3}}}{2}}a^{2}\\&\approx 6.0622a^{2}\\V&={\frac {2{\sqrt {2}}+{\sqrt {3}}}{4}}a^{3}\\&\approx 1.1401a^{3}\end{aligned}}}
52Prisma pentagonal aumentado111910 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 ( 8 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 9.173 a 2 V = 1 12 233 + 90 5 + 12 50 + 20 5 a 3 1.9562 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(8+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 9.173a^{2}\\V&={\frac {1}{12}}{\sqrt {233+90{\sqrt {5}}+12{\sqrt {50+20{\sqrt {5}}}}}}a^{3}\\&\approx 1.9562a^{3}\end{aligned}}}
53Prisma pentagonal biaumentado122313 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 a 2 ( 6 + 4 3 + 5 ( 5 + 2 5 ) ) 9.9051 a 2 V = 1 12 a 3 257 + 90 5 + 24 50 + 20 5 2.1919 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(6+4{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 9.9051a^{2}\\V&={\frac {1}{12}}a^{3}{\sqrt {257+90{\sqrt {5}}+24{\sqrt {50+20{\sqrt {5}}}}}}\\&\approx 2.1919a^{3}\end{aligned}}}
54Prisma hexagonal aumentado132211 C 2 v {\displaystyle C_{2v}} de orden 4 A = ( 5 + 4 3 ) a 2 11.9282 a 2 V = 1 6 ( 2 + 9 3 ) a 3 2.8338 a 3 {\displaystyle {\begin{aligned}A&=(5+4{\sqrt {3}})a^{2}\\&\approx 11.9282a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 2.8338a^{3}\end{aligned}}}
55Prisma hexagonal parabiaumentado142614 D 2 h {\displaystyle D_{2h}} de orden 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
56Prisma hexagonal metabiaumentado142614 C 2 v {\displaystyle C_{2v}} de orden 4 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
57Prisma hexagonal triaumentado153017 D 3 h {\displaystyle D_{3h}} de orden 12 A = 3 ( 1 + 2 3 ) a 2 13.3923 a 2 V = ( 1 2 + 3 3 2 ) a 3 3.3052 a 3 {\displaystyle {\begin{aligned}A&=3\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 13.3923a^{2}\\V&=\left({\frac {1}{\sqrt {2}}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 3.3052a^{3}\end{aligned}}}
58Dodecaedro aumentado213516 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 5 3 + 11 5 ( 5 + 2 5 ) ) a 2 21.0903 a 2 V = 1 24 ( 95 + 43 5 ) a 3 7.9646 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.0903a^{2}\\V&={\frac {1}{24}}\left(95+43{\sqrt {5}}\right)a^{3}\\&\approx 7.9646a^{3}\end{aligned}}}
59Dodecaedro parabiaumentado224020 D 5 d {\displaystyle D_{5d}} de orden 20 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
60Dodecaedro metabiaumentado224020 C 2 v {\displaystyle C_{2v}} de orden 4 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
61Dodecaedro triaumentado234524 C 3 v {\displaystyle C_{3v}} de orden 6 A = 3 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 21.9795 a 2 V = 5 8 ( 7 + 3 5 ) a 3 8.5676 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.9795a^{2}\\V&={\frac {5}{8}}\left(7+3{\sqrt {5}}\right)a^{3}\\&\approx 8.5676a^{3}\end{aligned}}}
62Icosaedro metabidisminuido102012 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 ( 5 3 + 5 ( 5 + 2 5 ) ) a 2 7.7711 a 2 V = 1 6 ( 5 + 2 5 ) a 3 1.5787 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 7.7711a^{2}\\V&={\frac {1}{6}}\left(5+2{\sqrt {5}}\right)a^{3}\\&\approx 1.5787a^{3}\end{aligned}}}
63Icosaedro tri-disminuido9158 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 7.3265 a 2 V = ( 5 8 + 7 5 24 ) a 3 1.2772 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 7.3265a^{2}\\V&=\left({\frac {5}{8}}+{\frac {7{\sqrt {5}}}{24}}\right)a^{3}\\&\approx 1.2772a^{3}\end{aligned}}}
64Icosaedro tridisminuido aumentado101810 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 4 ( 7 3 + 3 5 ( 5 + 2 5 ) ) a 2 8.1925 a 2 V = 1 24 ( 15 + 2 2 + 7 5 ) a 3 1.395 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(7{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.1925a^{2}\\V&={\frac {1}{24}}\left(15+2{\sqrt {2}}+7{\sqrt {5}}\right)a^{3}\\&\approx 1.395a^{3}\end{aligned}}}
65Tetraedro truncado aumentado152714 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 2 ( 6 + 13 3 ) a 2 14.2583 a 2 V = 11 2 2 a 3 3.8891 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+13{\sqrt {3}}\right)a^{2}\\&\approx 14.2583a^{2}\\V&={\frac {11}{2{\sqrt {2}}}}a^{3}\\&\approx 3.8891a^{3}\end{aligned}}}
66Cubo truncado aumentado284822 C 4 v {\displaystyle C_{4v}} de orden 8 A = ( 15 + 10 2 + 3 3 ) a 2 34.3383 a 2 V = ( 8 + 16 2 3 ) a 3 15.5425 a 3 {\displaystyle {\begin{aligned}A&=(15+10{\sqrt {2}}+3{\sqrt {3}})a^{2}\\&\approx 34.3383a^{2}\\V&=\left(8+{\frac {16{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 15.5425a^{3}\end{aligned}}}
67Cubo truncado biaumentado326030 D 4 h {\displaystyle D_{4h}} de orden 16 A = 2 ( 9 + 4 2 + 2 3 ) a 2 36.2419 a 2 V = ( 9 + 6 2 ) a 3 17.4853 a 3 {\displaystyle {\begin{aligned}A&=2\left(9+4{\sqrt {2}}+2{\sqrt {3}}\right)a^{2}\\&\approx 36.2419a^{2}\\V&=(9+6{\sqrt {2}})a^{3}\\&\approx 17.4853a^{3}\end{aligned}}}
68Dodecaedro truncado aumentado6510542 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 20 + 25 3 + 110 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 102.1821 a 2 V = ( 505 12 + 81 5 4 ) a 3 87.3637 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+110{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 102.1821a^{2}\\V&=\left({\frac {505}{12}}+{\frac {81{\sqrt {5}}}{4}}\right)a^{3}\\&\approx 87.3637a^{3}\end{aligned}}}
69Dodecaedro truncado parabiaumentado7012052 D 5 d {\displaystyle D_{5d}} de orden 20 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
70Dodecaedro truncado metabiaumentado7012052 C 2 v {\displaystyle C_{2v}} de orden 4 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
71Dodecaedro truncado triaumentado7513562 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 4 ( 60 + 35 3 + 90 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) a 2 104.5648 a 2 V = 7 12 ( 75 + 37 5 ) a 3 92.0118 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+35{\sqrt {3}}+90{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 104.5648a^{2}\\V&={\frac {7}{12}}\left(75+37{\sqrt {5}}\right)a^{3}\\&\approx 92.0118a^{3}\end{aligned}}}
72Rombicosidodecaedro girado6012062 C 5 v {\displaystyle C_{5v}} de orden 10 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
73Parabigirato rombicosidodecaedro6012062 D 5 d {\displaystyle D_{5d}} de orden 20 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
74rombicosidodecaedro metabigirato6012062 C 2 v {\displaystyle C_{2v}} de orden 4 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
75Rombicosidodecaedro trigirado6012062 C 3 v {\displaystyle C_{3v}} de orden 6 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
76Rombicosidodecaedro disminuido5510552 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
77Paragira rombicosidodecaedro disminuido5510552 C 5 v {\displaystyle C_{5v}} de orden 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
78Rombosidodecaedro disminuido metagirado5510552 C s {\displaystyle C_{s}} de orden 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
79Bigirato rombicosidodecaedro disminuido5510552 C s {\displaystyle C_{s}} de orden 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
80Rombicosidodecaedro parabidisminuido509042 D 5 d {\displaystyle D_{5d}} de orden 20 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
81Rombicosidodecaedro metabidisminuido509042 C 2 v {\displaystyle C_{2v}} de orden 4 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
82Rombicosidodecaedro bidisminuido girado509042 C s {\displaystyle C_{s}} de orden 2 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
83Rombicosidodecaedro tridisminuido457532 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 4 ( 60 + 5 3 + 30 5 + 2 5 + 9 5 ( 5 + 2 5 ) ) a 2 55.732 a 2 V = ( 35 2 + 23 5 3 ) a 3 34.6432 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+30{\sqrt {5+2{\sqrt {5}}}}+9{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 55.732a^{2}\\V&=\left({\frac {35}{2}}+{\frac {23{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 34.6432a^{3}\end{aligned}}}
84Disfenoides chato81812 D 2 d {\displaystyle D_{2d}} de orden 8 A = 3 3 a 2 5.1962 a 2 V 0.8595 a 3 {\displaystyle {\begin{aligned}A&=3{\sqrt {3}}a^{2}\\&\approx 5.1962a^{2}\\V&\approx 0.8595a^{3}\end{aligned}}}
85Antiprisma cuadrado chato164026 D 4 d {\displaystyle D_{4d}} de orden 16 A = 2 ( 1 + 3 3 ) a 2 12.3923 a 2 V 3.6012 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+3{\sqrt {3}}\right)a^{2}\\&\approx 12.3923a^{2}\\V&\approx 3.6012a^{3}\end{aligned}}}
86Esfenocorona102214 C 2 v {\displaystyle C_{2v}} de orden 4 A = ( 2 + 3 3 ) a 2 7.1962 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 1.5154 a 3 {\displaystyle {\begin{aligned}A&=(2+3{\sqrt {3}})a^{2}\\&\approx 7.1962a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}\\&\approx 1.5154a^{3}\end{aligned}}}
87Esfenocorona aumentada112617 C s {\displaystyle C_{s}} de orden 2 A = ( 1 + 4 3 ) a 2 7.9282 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 + 1 3 2 1.7511 a 3 {\displaystyle {\begin{aligned}A&=(1+4{\sqrt {3}})a^{2}\\&\approx 7.9282a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}+{\frac {1}{3{\sqrt {2}}}}\\&\approx 1.7511a^{3}\end{aligned}}}
88Esfenomegacorona122818 C 2 v {\displaystyle C_{2v}} de orden 4 A = 2 ( 1 + 2 3 ) a 2 8.9282 a 2 V 1.9481 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 8.9282a^{2}\\V&\approx 1.9481a^{3}\end{aligned}}}
89Hebesfenomegacorona143321 C 2 v {\displaystyle C_{2v}} de orden 4 A = 3 2 ( 2 + 3 3 ) a 2 10.7942 a 2 V 2.9129 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+3{\sqrt {3}}\right)a^{2}\\&\approx 10.7942a^{2}\\V&\approx 2.9129a^{3}\end{aligned}}}
90Disfenocingulum163824 D 2 d {\displaystyle D_{2d}} de orden 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V 3.7776 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&\approx 3.7776a^{3}\end{aligned}}}
91Bilunabirotunda142614 D 2 h {\displaystyle D_{2h}} de orden 8 A = ( 2 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 12.346 a 2 V = 1 12 ( 17 + 9 5 ) a 3 3.0937 a 3 {\displaystyle {\begin{aligned}A&=\left(2+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 12.346a^{2}\\V&={\frac {1}{12}}\left(17+9{\sqrt {5}}\right)a^{3}\\&\approx 3.0937a^{3}\end{aligned}}}
92Hebesfenorrotunda triangular183620 C 3 v {\displaystyle C_{3v}} de orden 6 A = 1 4 ( 12 + 19 3 + 3 5 ( 5 + 2 5 ) ) a 2 16.3887 a 2 V = ( 5 2 + 7 5 6 ) a 3 5.1087 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(12+19{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 16.3887a^{2}\\V&=\left({\frac {5}{2}}+{\frac {7{\sqrt {5}}}{6}}\right)a^{3}\\&\approx 5.1087a^{3}\end{aligned}}}

Referencias

  1. ^ Meyer (2006), pág. 418.
  2. ^
    • Litchenberg (1988)
    • Boissonnat y Yvinec (1989)
  3. ^
    • Diudea (2018), pág. 39
    • Todesco (2020), pág. 282
    • Williams y Monteleone (2021), pág. 23
  4. ^
    • Johnson (1966)
    • Zalgaller (1969)
  5. ^
    • Cromwell (1997), pág. 86-87, véase la figura de la pág. 89
    • Johnson (1966)
  6. ^
    • Rajwade (2001), págs. 84-88
    • Slobodan, Obradović y Ðukanović (2015)
    • Berman (1971), pág. 350
  7. ^ Uehara (2020), pág. 62.
  8. ^
    • Powell (2010), pág. 27
    • Solomon (2003), pág. 40
  9. ^ Flusser, Suk y Zitofa (2017), pág. 126.
  10. ^
    • Flusser, Suk y Zitofa (2017), pág. 126
    • Hergert y Geilhufe (2018), pág. 56
  11. ^ Walsh (2014), pág. 284.
  12. ^ Parker (1997), pág. 264.
  13. ^
    • Cromwell (1997), pág. 36
    • Berman (1971)
    • Timofeenko (2009)
  14. ^ Johnson (1966).
  15. ^ Berman (1971).

Bibliografía

  • Hart, George W. "Sólidos Johnson".
  • "Poliedros de Johnson". – Imágenes de los 92 sólidos Johnson clasificados
  • "Sólidos Johnson". – Visualizaciones de los 92 sólidos de Johnson
  • Bulatov, Vladimir. "Sólidos de Johnson". – Modelos VRML de sólidos de Johnson
  • Gagnon, Sylvain (1982). "Les polyèdres convexes aux faces régulières" [Poliedros convexos de caras regulares] (PDF) . Topologie Structurale [ Topología estructural ] (en francés) (6): 83–95.
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_Johnson_solids&oldid=1247731752"