Esta es una lista de tubos de vacío o válvulas termoiónicas y tubos llenos de gas de baja presión o tubos de descarga . Antes de la aparición de los dispositivos semiconductores , se utilizaban miles de tipos de tubos en la electrónica de consumo. También se produjeron muchos tubos industriales, militares o profesionales. Hoy en día, solo se utilizan unos pocos tipos, principalmente en aplicaciones de alta potencia y alta frecuencia.
Calificaciones del calentador o filamento
Los tubos receptores tienen calentadores o filamentos diseñados para el funcionamiento directo con batería, el funcionamiento en paralelo con un devanado dedicado en un transformador de suministro o el funcionamiento en serie en conjuntos sin transformador. Los tubos de potencia de RF de alta potencia se calientan directamente; el voltaje del calentador debe ser mucho menor que el voltaje de la señal en la red y, por lo tanto, está en el rango de 5...25 V, consumiendo hasta cientos de amperios de un transformador de calentador adecuado. En algunas series de números de pieza de válvulas, la clase de voltaje del calentador se indica en el número de pieza, y es posible que haya una válvula similar disponible con varios voltajes nominales de calentador diferentes.
FL – Cuerpo elíptico subminiatura totalmente de vidrio y bases planas con "cables voladores" (extremos de cable) en línea largos que se sueldan al circuito.
SL – Cuerpo elíptico subminiatura de vidrio y bases planas con cables en línea cortos que se pueden soldar o acoplar a un zócalo especial. (Los cables flotantes se pueden cortar para que encajen en zócalos en línea).
R8 – Cuerpo y base redondos subminiatura de vidrio con 8 cables voladores o clavijas rígidas dispuestas en un círculo
Sistemas de numeración
Sistemas norteamericanos
Sistema de tubos receptores RETMA
RETMA es el acrónimo de la Asociación de Fabricantes de Radio y Televisión Electrónica, fundada en 1953; sin embargo, el estándar en sí ya se utilizaba desde 1933, cuando RCA/Cunningham introdujo los modelos 1A6, 2A3, 2A5, etc.
El primer grupo de caracteres es un número que representa el voltaje del calentador redondeado al número entero más cercano; 0 indica un tubo de cátodo frío . [1]
Una o dos letras asignadas a los dispositivos en orden de desarrollo.
Un único número que representa el número de elementos activos en el tubo.
Las letras de sufijo distinguen revisiones o variantes:
A , B , C – Versiones compatibles con versiones anteriores mejoradas
E – Versión de exportación
G – Ampolla de vidrio, tamaño ST-12 a ST-16
GT – Ampolla de vidrio, tamaño T-9
GT/G – Ampolla de vidrio, tamaño T-9 intercambiable con tipos G y GT
L – Local
LM – Metal local
LT – Base de bloqueo
M – Sobre metálico
MG – Metal-vidrio
ML – Metal-Loctal
S – Protección contra rociado
W – Resistente o de grado militar
WA , WB : variantes militares/industriales mejoradas y compatibles con versiones anteriores
Y – Base de resina fenólica rellena de mica de baja pérdida ("Micanol") para uso en RF
Por último, los fabricantes pueden decidir combinar dos números de tipo en un único nombre, que su dispositivo puede reemplazar, como: 6DX8/ECL84 (6DX8 y ECL84 son dispositivos idénticos bajo diferentes esquemas de nombres) o 6BC5/6CE5 (dispositivos suficientemente idénticos dentro del sistema de nombres RETMA) e incluso 3A3/3B2, o 6AC5-GT/6AC5-G (donde el número de tipo único, 6AC5-GT/6AC5-G, reemplaza tanto al 6AC5-G como al 6AC5-GT).
A menudo, las designaciones que diferían solo en sus números iniciales serían idénticas excepto por las características del calentador.
Para ver ejemplos, consulte a continuación.
Sistema de tubos profesionales RMA
El sistema se utilizó entre 1942 y 1944 y asignó números con la forma base "1A21", por lo que también se lo conoce como "sistema 1A21". [1]
El primer carácter numérico indicaba la potencia nominal del filamento/calentador, el segundo carácter alfabético era un código para la función y los dos últimos dígitos se asignaban secuencialmente, comenzando con 21.
Para ver ejemplos, consulte a continuación.
Sistema de tubos profesionales EIA
JETEC mantiene un sistema de cuatro dígitos desde 1944 y, posteriormente, EIA desde 1957, para tubos especiales industriales, militares y profesionales de vacío y de gas, y para todo tipo de dispositivos que requieran estar aislados de la atmósfera exterior.
Algunos fabricantes antepusieron al número EIA un código de fabricante:
Eitel/McCullough y otros fabricantes de tubos de RF de alta potencia utilizan el siguiente código desde 1945: [2]
Un dígito inicial que indica el número de electrodos:
2 – Diodo
3 – Triodo
4 – Tetrodo
5 – Pentodo
Hasta 2 letras que indican el tipo de construcción y el método de enfriamiento:
R o un guión (" - ") – Envoltura de vidrio, enfriamiento por radiación
C – Envoltura cerámica
K – Klistrón (reflejo)
P – Principalmente para aplicaciones de pulso
L – Ánodo externo, refrigeración por convección líquida
N – Ánodo externo, refrigeración por aire por convección natural
S – Ánodo externo, refrigeración por conducción
V – Enfriado por vapor (el ánodo se sumerge en agua hirviendo y el vapor se recoge, se condensa y se recicla)
W – Refrigerado por agua (el agua se bombea a través de una cubierta metálica exterior conectada térmicamente al ánodo)
X – Refrigeración por aire forzado (el aire se sopla a través de aletas de enfriamiento conectadas térmicamente al ánodo)
Número que indica la disipación máxima del ánodo en vatios. Se puede superar durante un breve período, siempre que el promedio no supere la constante de tiempo térmica del ánodo (normalmente 0,1 s). En aplicaciones de clase C , la potencia de salida del amplificador entregada a la carga puede ser superior a la disipación del dispositivo.
Una o más letras de propiedad del fabricante que indican la variante de construcción
Un dígito opcional que indica el grupo de ganancia :
1 – ≤10
2 – 11...20
3 – 21...30
4 – 31...50
5 – 51...100
6 – 101...200
7 – 201...500
8 – 501...1000
Opcionalmente, una barra "/" seguida del equivalente de RMA o EIA.
Ejemplos:
3CW5000A3 – Triodo cerámico de 5 kW, refrigerado por agua, variante 'A', grupo de ganancia 3
3CX100A5 – Triodo UHF de cerámica de 100 W, refrigerado por aire forzado, variante 'A', grupo de ganancia 5; utilizado a menudo por radioaficionados para amplificadores de microondas de banda de 23 cm .
3CX1500A7 ( 8877 ): triodo cerámico de 1,5 kW, refrigerado por aire forzado, variante "A", grupo de ganancia 7
3CX2500A3 – Triodo cerámico de 2,5 kW, refrigerado por aire forzado, variante 'A', grupo de ganancia 3
4-125A ( 4D21 , 6155 ) – Tetrodo de haz de vidrio de 125 W
4-250A ( 5D22 , 6156 ) – 110 MHz, 250 W Tetrodo de haz de vidrio
Tetrodo de haz de vidrio de 4-400 A – 400 W
4-1000A ( 8166 ) – Tetrodo de haz de vidrio de 1 kW popular en transmisores de radiodifusión y aficionados.
4CX250B – Tetrodo cerámico de 250 W, refrigerado por aire forzado, versión 'B', preferido por los radioaficionados como amplificador final.
4CX250BC – Tetrodo cerámico de 250 W, refrigerado por aire forzado, versión 'BC'
4CX35000 – Tetrodo cerámico utilizado en numerosos transmisores de transmisión de 50 kW, refrigerado por aire forzado, a menudo en una configuración Doherty como en la serie 317C de Continental Electronics .
5-125B/4E27A – Pentodo de potencia de vidrio de 75 MHz y 125 W
Pentodo de haz radial de vidrio de 5-500 A – 500 W
5CX1500A – Pentodo de haz radial cerámico de 110 MHz y 1,5 kW, refrigerado por aire forzado
5CX3000A – Pentodo de haz radial cerámico de 150 MHz y 4,0 kW, refrigerado por aire forzado
5K70SH – Klistrón de banda S de 30 kW
Sistemas de Europa occidental
Sistema Mullard-Philips
Este sistema es muy descriptivo del tipo de dispositivo (triodo, diodo, pentodo, etc.) al que se aplica, así como del tipo de calentador/filamento y del tipo de base (octal, noval, etc.). [1] [3] Los fabricantes adheridos incluyen AEG (de), Amperex (ee.uu.), CdL (1921, marca Mazda francesa ), CIFTE (fr, marca Mazda-Belvu ), EdiSwan (uk, marca británica Mazda ), Radiotechnique (fr, marcas Coprim , Miniwatt-Dario y RTC ), Lorenz (de), MBLE (fr, nl) (be, marca Adzam ), Mullard (uk), Philips (nl, Miniwatt brand), RCA (us), RFT (de, sv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), Unitra (pl, marcas Dolam , Polam y Telam ) y Valvo (de, it) (de).
Tubos estándar
Esta parte se remonta a la clave de código de válvula conjunta ( en alemán : Röhren-Gemeinschaftsschlüssel ) negociada entre Philips y Telefunken en 1933-34. Al igual que en el sistema norteamericano, el primer símbolo describe el voltaje del calentador; en este caso, se trata de una letra latina en lugar de un número. Otras letras latinas, hasta tres, describen el dispositivo, seguidas de uno a cuatro números asignados en un orden semicronológico de desarrollo del tipo dentro de rangos de números asignados a diferentes tipos básicos.
Si dos dispositivos comparten la misma designación de tipo que no sea la primera letra (por ejemplo, ECL82, PCL82, UCL82), normalmente serán idénticos, excepto por las especificaciones del calentador; sin embargo, hay excepciones, particularmente con los tipos de salida (por ejemplo, tanto el PL84 como el UL84 difieren significativamente del EL84 en ciertas características principales, aunque tienen la misma distribución de pines y una potencia nominal similar). Sin embargo, los números de dispositivo no revelan ninguna similitud entre diferentes familias de tipos; por ejemplo, la sección de triodo de un ECL82 no está relacionada con ninguno de los triodo de un ECC82, mientras que la sección de triodo de un ECL86 sí es similar a las de un ECC83.
Pro Electron mantuvo un subconjunto del sistema MP después de su creación en 1966, con solo las primeras letras E , P para el calentador, solo las segundas letras A , B , C , D , E , F , H , K , L , M , Y , Z para el tipo, y emitiendo solo números de tres dígitos comenzando con 1, 2, 3, 5, 8, 9 para la base. [4]
Notas: Tungsram precedió a la designación MP con la letra T , como en TAD1 para AD1; VATEA Rádiótechnikai és Villamossági Rt.-t. (VATEA Radio Technology and Electric Co. Ltd., Budapest, Hungría) precedió a la designación MP con la letra V , como en VEL5 para EL5.
Primera letra: tipo de calentador/filamento
Las clasificaciones de calentadores para tubos de CA/CC en serie se dan en miliamperios; las clasificaciones de calentadores para tubos en serie en paralelo se dan en voltios.
Calentador A – 4 V para baterías de plomo-ácido de 2 celdas y para transformadores de red de CA
B – Calentador en serie de 180 mA CC
C – Calentador en serie de 200 mA CA/CC
D – Filamento de 1,4 V CC para celdas Leclanché , más tarde filamento/calentador de bajo voltaje/baja potencia:
0,625 V CC calentados directamente para baterías de NiCd , diseños de dos tubos calentados en serie, como los audífonos . Si se rompe uno de los filamentos, se detiene el consumo de todas las baterías [5]
Amplio rango de 0,9 V a 1,55 V CC calentado directamente para pilas secas
1,25 V CC calentado directamente para baterías de NiCd
E – Calentador paralelo de 6,3 V; para baterías de plomo-ácido de 3 celdas para vehículos (equipos móviles) y para transformadores de salida horizontal o de red de CA
F – Calentador paralelo de 12,6 V CC para baterías de plomo-ácido de 6 celdas para vehículos con arranque por cigüeñal
G – Varios calentadores entre 2,5 y 5,0 V CA (excepto 4 V) desde un devanado de calentador separado en un transformador de salida horizontal o de red para el rectificador de voltaje del ánodo
H – Calentador en serie de 150 mA CA/CC
Hasta al menos 1938: batería de 4 V (en contraposición a la A de "4 V CA"; no se conocen ejemplos asignados) [6] : 2
I – Calentador de 20 V
K – Filamento de 2,0 V para baterías de plomo-ácido de 1 celda, más tarde para transformadores de CA
L – Calentador en serie de CA/CC de 450 mA; se cambió aquí desde Y
Y – Rectificador de media onda de vacío (diodo de potencia)
Z – Rectificador de onda completa al vacío (diodo de potencia dual con cátodo común)
Siguientes dígitos: número de modelo y tipo de base
Para los pentodos de señal, un número de modelo impar identificaba con mayor frecuencia un tubo de mu variable ( corte remoto ), mientras que un número par identificaba un tubo de "pendiente alta" (corte brusco).
Para los pentodos de potencia y las combinaciones de triodo-pentodo, los números pares generalmente indican dispositivos lineales (amplificadores de potencia de audio), mientras que los números impares eran más adecuados para señales de video o situaciones donde se podía tolerar más distorsión.
1–9 – Tubos de construcción tipo pinza, principalmente bases de contacto lateral de 8 pines P8A (base P) o de contacto lateral de 5 pines V5A (base V) y varios otros diseños preoctales europeos
10–19 – Base de tubo de acero de 8 pines Y8A , también conocida como "octava metálica alemana"
20–29 – Loctal B8G ; algunos octales; algunos contactos laterales de 8 vías (las excepciones son DAC21, DBC21, DCH21, DF21, DF22, DL21, DLL21, DM21 que tienen bases octales)
40–49 – Rimlok (Rimlock) B8A Tubos en miniatura totalmente de vidrio
41w – Tubo de recipiente calentado por batería [8] ( en alemán : Pressnapfröhre )
50–59 – "Tipos de construcción especiales equipados con bases aplicables a las características de diseño utilizadas"; [9] principalmente bases de bloqueo: "Loctal de 9 pines" (B9G) o Loctal de 8 pines (B8G); pero también se utilizan para Octal y otros (vidrio de 3 pines; sello de disco incl. tubos Lighthouse ; alemán de 10 pines con espiga; mín. 4 pines; B26A; Magnoval B9D)
60–69 – Tubos para lápices : tubos subminiatura totalmente de vidrio, con extremos de alambre (puntas en línea en lugar de clavijas)
—Antes de los años 1950:
60–64 – Tubos totalmente de vidrio equipados con bases Loctal de 9 pines ( B9G )
70–79 – Tubos para lápices con clavijas circulares o minas
90–99 – Botón B7G (miniatura de 7 pines; IEC 67-I-10a)
100–109 – B7G; base de la Wehrmacht; Base PTT alemana
110–119 – Base de tubo de acero de 8 pasadores Y8A ; Rimlock B8A
130–139 – Octal
150–159 – Alemán, de 10 pines con espiga; vidrio de 10 pines con un pin grande; Octal
160–169 – Tubos de lápiz con extremos de alambre en línea ; base de tubo de acero de 8 pines Y8A
170–179 – RFT de 8 pines; RFT de 11 pines, tubo de gnomo de vidrio con un pin desplazado
180–189 – Noval B9A
190–199 – B7G miniatura de 7 pines
200–209 – Calcomanía B10B
230–239 – Octal
270–279 – RFT 11 pines, todo de vidrio, con un pin desplazado
280–289 – Noval B9A
300–399 – Octal
400–499 – Cerradura de sobremarcha B8A
500–529 – Magnoval B9D
600–699 – Tubos de lápiz con extremos de alambre en línea
700–799 – Tubos para lápices con extremos de alambre circulares
800–899 – Noval B9A
900–999 – B7G miniatura de 7 pines
— Calidad especial :
1000– Extremo de alambre redondo; base especial Nuvistor
2000– Calcomanía B10B
3000– Octágono
5000– Magnoval B9D
8000– Noval B9A
Para ver ejemplos, consulte a continuación.
Tubos de calidad especial
Las válvulas de vacío que tenían cualidades especiales de algún tipo, muy a menudo diseños de larga duración, particularmente para uso en computadoras y telecomunicaciones , tenían la parte numérica de la designación ubicada inmediatamente después de la primera letra. Por lo general, eran versiones de calidad especial de los tipos estándar. Así, el E82CC era una versión de larga duración del ECC82 destinada a uso en computadoras y señales generales, y el E88CC una versión de alta calidad del ECC88/6DJ8. Si bien el pentodo E80F era un desarrollo de alta calidad del EF80, no eran compatibles en cuanto a pines y no se podían intercambiar sin recablear el zócalo (el E80F se busca comúnmente como un reemplazo de alta calidad para el tipo similar EF86 en amplificadores de guitarra). Las letras "CC" indicaban los dos triodos y la "F", el pentodo único dentro de estos tipos.
Algunos tubos de calidad especial no tenían un equivalente estándar, por ejemplo, el E55L, un pentodo de potencia de banda ancha utilizado como etapa de salida de amplificadores de osciloscopio y el E90CC, un triodo doble con una conexión de cátodo común y una base de siete pines para su uso en flip-flops acoplados al cátodo en las primeras computadoras. El E91H es un heptodo especial con una tercera rejilla pasivada diseñada para reducir la emisión secundaria; este dispositivo se utilizó como una "puerta", permitiendo o bloqueando pulsos aplicados a la primera rejilla ( de control ) cambiando el voltaje en la tercera rejilla, en los primeros circuitos de computadora (similar en función al US 6AS6).
Muchos de estos tipos tenían pines de base chapados en oro y configuraciones especiales de calentador dentro del tubo de cátodo de níquel diseñadas para reducir la captación de zumbido de la fuente de alimentación del calentador de CA, y también tenían un aislamiento de óxido mejorado entre el calentador y el cátodo para que el cátodo pudiera elevarse a un voltaje mayor por encima de la fuente de alimentación del calentador. (Tenga en cuenta que elevar el voltaje del cátodo por encima del voltaje promedio del calentador, que en un equipo bien diseñado se suministraba desde un transformador con un secundario con toma central conectada a tierra, era menos perjudicial para el aislamiento de óxido entre el calentador y el cátodo que reducir el voltaje del cátodo por debajo del voltaje del calentador, lo que ayudaba a prevenir reacciones químicas electrolíticas pirometalúrgicas donde el óxido tocaba el cátodo de níquel que podrían formar tungstato de aluminio conductor y que en última instancia podría convertirse en un cortocircuito entre el calentador y el cátodo).
Se implementaron captadores mejores, a menudo duales, para mantener un mejor vacío, y se introdujeron soportes de electrodos más rígidos para reducir la microfonía y mejorar la resistencia a la vibración y los golpes. Los espaciadores de mica utilizados en los tipos "SQ" y "PQ" no tenían protuberancias afiladas que pudieran desprenderse y aflojarse dentro del bulbo, posiblemente alojándose entre las rejillas y cambiando así las características del dispositivo. Algunos tipos, en particular el E80F, E88CC y E90CC, tenían una sección estrecha del bulbo para sujetar firmemente los espaciadores de mica sin escamas de forma especial. [10]
Para ver ejemplos , consulte a continuación, comenzando en DC
Los tubos de calidad especial posteriores no tenían base y función intercambiadas, sino que se les asignaba un número de 4 dígitos, [3] como ECC2000 o ED8000, cuyo primer dígito nuevamente denota la base:
1 – Varios
2 – Base de calcomanía de 10 pines ( JEDEC E10-61)
T – Triodo de relé , un triodo tiratrón de baja potencia , un electrodo de arranque, puede necesitar iluminación para un funcionamiento adecuado si no está preparado radiactivamente
U – Tiratrón tetrodo de baja potencia, puede significar:
Tetrodo de disparo , un electrodo de arranque y un electrodo de cebado (de mantenimiento de vida) para la disponibilidad de iones para mantener constante el voltaje de encendido, para temporizadores RC analógicos, disparadores de voltaje, etc.
Relé tetrodo , dos electrodos de arranque para hacer contadores bidireccionales o reiniciables
W – Pentodo disparador , dos electrodos de arranque y un electrodo cebador
X – Pentodo disparador blindado , dos electrodos de arranque, un electrodo cebador y un revestimiento conductor de la envoltura de vidrio en el interior conectado a un pin separado
Para ver ejemplos , consulte más abajo en Z
Tubos profesionales
En uso desde al menos 1961, este sistema fue mantenido por Pro Electron después de su creación en 1966. [4]
R – Rectificador, incluidos los tipos controlados por red [12] [13]
T – Triodo (RF, oscilador)
X – Tiratrón grande (incluye todos los tiratrones de hidrógeno y los tipos de alta corriente)
La letra siguiente indica el tipo de filamento o cátodo, el gas de relleno u otro detalle de construcción. La codificación de los dispositivos de vacío difiere entre Philips (y otros fabricantes de Europa continental) por un lado y su filial Mullard por el otro.
A – Cátodo de antimonio activado con cesio . Se utiliza para fotocátodos de modo reflectante. Rango de respuesta desde ultravioleta hasta visible. Ampliamente utilizado.
C – Cátodo de cesio sobre plata oxidada, también llamado S1 . Modo transmisión, sensible de 300 a 1200 nm. Corriente oscura alta; se utiliza principalmente en el infrarrojo cercano, con el fotocátodo enfriado.
Cátodo de sodio , potasio, antimonio y cesio de trialkali T , respuesta espectral amplia desde el ultravioleta hasta el infrarrojo cercano; el procesamiento especial del cátodo puede extender el rango a 930 nm. Se utiliza en espectrofotómetros de banda ancha .
U – Cátodo de cesio-antimonio con ventana de cuarzo
75B1 – Tubo de referencia de voltaje, base miniatura de 7 pines
75C1 – Tubo de referencia de voltaje, base miniatura de 7 pines
83A1 – Tubo de referencia de voltaje, base miniatura de 7 pines
85A1/0E3 – Tubo de referencia de voltaje, base local B8G
85A2/0G3 – Tubo de referencia de voltaje, base miniatura de 7 pines
90C1 – Tubo de referencia de voltaje, base miniatura de 7 pines
95A1 – Tubo de referencia de voltaje, base miniatura de 7 pines
100E1 – Tubo de referencia de voltaje, base europea de 4 pines A4A
108C1/0B2 – Tubo de referencia de voltaje, base miniatura de 7 pines
150A1 – Tubo de referencia de voltaje, contacto lateral P8A, 8 bases
150B2 – Tubo de referencia de voltaje, base miniatura de 7 pines
150B3 – Tubo de referencia de voltaje, base miniatura de 7 pines
150C1 – Tubo de referencia de voltaje, contacto lateral P8A, 8 bases
150C2/0A2 – Tubo de referencia de voltaje, base miniatura de 7 pines
150C4 – Tubo de referencia de voltaje, base miniatura de 7 pines
Sistema Compagnie des Lampes (1888, "Métal")
La primera encarnación (1888) de La Compagnie des Lampes produjo el tubo TM desde 1915 y definió uno de los primeros sistemas franceses; [1] [14] no debe confundirse con Compagnie des Lampes (1921, "Mazda francesa", ver más abajo).
Primera letra: Voltaje del calentador o filamento
A – 1 V
B -2 V
D -4 V
E -5 V
F -6 V
G – 7 V
Segunda letra: Corriente del calentador o filamento
B142 – Triodo de potencia RF de 400 W hasta 50 MHz similar al 833A
B1109 = 3C24 – Triodo de potencia VHF de 25 W hasta 60 MHz
B1135 = 5867 = CV1350 – Triodo de potencia VHF hasta 100 MHz
B1152 – Triodo de potencia RF de 500 W hasta 50 MHz
QT1257 – Tubo de botón táctil , un interruptor táctil de capacitancia iluminado; un tubo de relé de CC de cátodo frío , un arrancador externo (capacitivo) activado al tocar; luego, el resplandor del cátodo es visible. Base octal de 6 pines
XL601 , XL602 , XL603 , XL627 , XL628 , XL631 y XL632 – Fuente de luz lineal de cátodo frío ( tubo modulador de brillo ), diodo de gas con brillo azul-violeta, modulación hasta 1 MHz, base octal de 2 pines, para receptores de FAX de tambor giratorio , etc.
Sistema de tubos de computación ETL
La británica Ericsson Telephones Limited (ETL), de Beeston, Nottingham (que no debe confundirse con la sueca TelefonAB Ericsson ), titular original de la marca ahora genérica Dekatron , utilizó el siguiente sistema:
Una letra inicial que indica el relleno:
G – Lleno de gas noble
V – Vacío
Una letra que indica el tipo:
C – Dekatron de contador de cátodo común que solo hace que los cátodos de acarreo/préstamo estén disponibles por separado para la conexión en cascada
TE – Tetrodo de activación, un electrodo de arranque y un electrodo de mantenimiento (cebador) para la disponibilidad de iones
TR – Triodo de disparo, solo un electrodo de arranque
Un grupo de dígitos:
Dekatrons : recuento de etapas
Indicadores digitales : muestra el recuento de cátodos
Diodos, referencias de tensión : Tensión nominal
Tubos de disparo : voltaje de encendido
Un grupo de dígitos opcional después de una barra: recuento de PIN
Una letra que indica el tipo:
A – Base de plástico
B – Base de plástico
C – Base de plástico
D – Base de plástico
E – Base de plástico
G – Base B26A de 26 pines
H – Base B27A de 27 pines
Base M -B7G
P -Base B7G
Q – Base B7G
W – Extremos de cable
X – Extremos de cables
Y – Extremos de cable
Ejemplos:
GC10/2P – Contador de décadas en miniatura de 1 kHz lleno de neón Dekatron , un tubo contador de décadas bidireccional lleno de gas
GC10A – Contador de décadas lleno de helio Dekatron
GC10B – Contador de décadas Dekatron de larga duración, 4 kHz, relleno de neón
GC10/4B – Contador de computación de décadas de 4 kHz Dekatron con cátodos de acarreo/préstamo "0" y "9" y cátodos intermedios "3" y "5" cableados a pines separados
GC10D – Contador de décadas Dekatron de 20 kHz , para operación de pulso único
GC12/4B – Contador duodecimal de 4 kHz Dekatron con cátodos de acarreo/préstamo 11 y 12 y cátodos intermedios 6 y 8 conectados a pines separados
GCA10G – Contador de décadas Dekatron de 10 kHz máx. con guías de enrutamiento y ánodos auxiliares para accionar directamente tubos Nixie , base B27A sin anillo de clavija interior
GD2V – Tubo de descarga de 2 kV, 16 J , con tachuelas de vidrio
GD90M – Referencia de voltaje de 90 V, base miniatura de 7 pines
GD340X – Referencia de voltaje de corona de 345 V/3...200 μA, con extremos de alambre de vidrio
GD350X, GD350Y – Referencia de voltaje de corona de 350 V/3...200 μA, extremo de cable de vidrio
GD550W – 550 V, 1,5 J Tubo de descarga, p. ej. para osciladores de relajación de potencia , con extremos de alambre de vidrio
GDT120M – Triodo de CC de cátodo frío lleno de gas de 9 mA, un arrancador y un diodo incandescente separado que actúa como cebador óptico, base en miniatura de 7 pines
GR2H – + - Tubo indicador digital relleno de neón, caracteres de 20 x 20 mm, visualización superior
GR4G – 1 ⁄ 4 1 ⁄ 2 3 ⁄ 4 1 Tubo indicador digital relleno de neón, caracteres de 18 x 30 mm, visión lateral
GR7M – + - VA Ω % ~ Tubo indicador digital relleno de neón, altura de caracteres de 15,5 mm, visualización superior
GR10A – Tubo indicador digital lleno de gas con lectura tipo dekatron
GR10G – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital relleno de neón, caracteres de 16,86 x 30 mm, visión lateral
GR10H – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital lleno de neón, caracteres de 12 x 19 mm, visualización superior
GR10J – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital relleno de neón, caracteres de 16,86 x 30 mm, visión lateral
GR10K – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital relleno de neón, caracteres de 12 x 19 mm, visualización superior
GR10M – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital relleno de neón, 10 caracteres de 15,5 mm, visualización superior
GR10W – 0 1 2 3 4 5 6 7 8 9 Tubo indicador digital relleno de neón, caracteres de 8,42 x 15 mm, visión lateral, extremo de alambre de vidrio
GR12G – ABCDEFGHIJKL Tubo indicador digital relleno de neón, caracteres de 16 x 30 mm, visión lateral
GR12H – ELMNPRSTUVWX Tubo indicador digital relleno de neón, caracteres de 16 x 30 mm, visión lateral
Nota: Más tubos Nixie en el estándar - ZM y profesional - ZM
GS10C – Contador/selector de décadas Dekatron de 4 kHz máx. , visualización superior, base duodecal
GS10D – Contador/selector de décadas Dekatron , con base duodecal , de 20 kHz máx., lleno de hidrógeno
GS10H – Contador/selector de décadas Dekatron de 4 kHz máx. con guías de enrutamiento, base B17A
GS12C – Contador/selector duodecimal Dekatron de 4 kHz máx. , con terminales de soldadura
GS12D – Contador/selector duodecimal Dekatron de 4 kHz máx., relleno de neón , base duodecimal con dos extremos de cable adicionales para los electrodos guía
GSA10G – Contador/selector de décadas Dekatron de 10 kHz máx. con guías de enrutamiento y ánodos auxiliares para accionar directamente tubos Nixie , base B27A
GTE120Y – Tetrodo disparador de CC subminiatura de 5 mA, un iniciador y un cebador, con extremos de alambre de vidrio
GTE130T – Tetrodo disparador de CC de 8 mA de pico , un iniciador y un cebador, tolerancia limitada, bajo envejecimiento, operación solo en el cuadrante I, base noval
GTE175M – Tetrodo disparador de CC de 3,5 mA de media y 50 mA de pico , un iniciador y un cebador, base en miniatura de 7 pines, para circuitos de acoplamiento Dekatron
GTR120W – Triodo disparador de CC subminiatura de 9 mA, con extremos de cable de vidrio de 3 pines, para aplicaciones informáticas
La designación británica GEC – Marconi–Osram de la década de 1920 utiliza una o dos letras seguidas de dos números y, a veces, de una segunda letra que identifica diferentes versiones de un tipo particular. [1]
La(s) letra(s) generalmente denotan el tipo o uso:
Nota: La letra M precedente indica un tubo calentado indirectamente con corriente alterna de 4 voltios.
Z77 = 6AM6/EF91 – Pentodo RF de corte agudo, base miniatura de 7 pines.
Designaciones de Mullard antes de 1934
Los tubos Mullard más antiguos se designaban en su mayoría como PM , seguido de un número que contenía el voltaje del filamento.
Muchos de los tubos posteriores se designaban con una o tres letras semiintuitivas, seguidas de un número que contenía el voltaje del calentador. Este método se eliminó gradualmente después de 1934, cuando Mullard adoptó el esquema Mullard-Philips.
Ejemplos: [20]
2D4 – Diodo dual con calentador de 4 V/650 mA y base británica de 5 pines
AP4 = 4676 – Un entodo UHF de maíz de hasta 430 MHz, calentador de 4 voltios
AT4 = 4675 – Un triodo UHF de maíz de hasta 430 MHz, calentador de 4 voltios
FC4 – Convertidor de frecuencia de octode con un calentador de 4 V/650 mA y una base británica de 7 pines; similar al heptodo M-OV/GEC MX40 [21]
Pen20 – Bolígrafo eléctrico con calentador de 20 V/180 mA y base británica de 5 o 7 pines
PM254 = P425 – Triodo "Super Power" con un calentador de batería de 4 V/200 mA y una base británica de 4 pines
TDD4 = MHD4 = AC/HLDD – Tríodo , diodo dual con un calentador de 4 V/550 mA y una base británica de 7 pines
TH21C – Convertidor de frecuencia triodo / hexodo con un calentador en serie de 21 V/200 mA y una base británica de 7 pines
TP4 = AC/TP – Tríodo , Pentodo con un calentador de 4 V/1,25 A y una base británica de 9 pines
VP2 = VP21 = VP215 – Pentodo variable -mu con un calentador de 2 V/180 mA y una base británica de 7 pines
Sistema Philips antes de 1934
El sistema consistía en una letra seguida de tres o cuatro dígitos. Se eliminó gradualmente después de 1934, cuando Philips adoptó el esquema Mullard-Philips.
1ª letra: Corriente del calentador [22] [1]
A – 60...90 mA
B – 100...190 mA (Esta designación se mantuvo como "B" (180 mA) en el sistema Mullard-Philips)
C – 200...390 mA (Esta designación se mantuvo como "C" (200 mA) en el sistema Mullard-Philips)
D – 400...690 mA
E – 700...990 mA
F -1...2 A
1 o 2 dígitos: voltaje del calentador
Últimos 2 dígitos: Tipo
00 – 40 , 99 : Factor de amplificación del triodo
41 – 98 :
Segundo último dígito: asignado secuencialmente, comenzando en 4
Valvo (de, it) fue un importante fabricante alemán de componentes electrónicos entre 1924 y 1989; subsidiaria de Philips desde 1927, Valvo fue uno de los predecesores de NXP Semiconductors .
El sistema consistía en una o dos letras seguidas de tres o cuatro dígitos. Se eliminó gradualmente después de 1934, cuando Valvo adoptó el esquema Mullard-Philips.
La primera letra indica el tipo de tubo, dos letras iguales denotan un tubo doble:
P – Pentodo
Q – Tetrodo
T – Triodo
Un grupo de dígitos representa la disipación máxima de potencia del ánodo en kW.
Una letra opcional especifica el método de enfriamiento:
<ninguno> – Radiación
P – Aire forzado
W – Agua
El primero de los dos dígitos después del signo "/" significa:
1 – Tubo para equipos de radiodifusión y radiocomunicación
2 – Tubo para equipos industriales
3 – Tubo utilizado en equipos de transmisión de televisión
4 – Tubo para equipos de radiocomunicación con modulación desequilibrada
5 – Modulador o tubo de pulso
El segundo dígito después del "/" se asigna secuencialmente.
Ejemplos:
Q01 – Tetrodo de potencia hasta 125 MHz, 0,1 kW (=100 W)
Q3.5 – Tetrodo de potencia hasta 220 MHz, 3,5 kW
QQ-004/11 – Tetrodo de potencia de doble haz hasta 500 MHz, 0,04 kW (=40 W)
T01 – Triodo de potencia hasta 200 MHz, 135 W
T015/21 – Triodo de potencia hasta 150 MHz, 150 W
T02 – Triodo de potencia hasta 60 MHz, 200 W
T05P/31 – Triodo de potencia refrigerado por aire forzado hasta 1 GHz, 1 kW
T2/22 – Triodo de potencia hasta 60 MHz, 3 kW
T6 – Triodo de potencia hasta 30 MHz, 6 kW
T8P/21 – Triodo de potencia refrigerado por aire forzado hasta 120 MHz, 8 kW
T10P/22 – Triodo de potencia hasta 30 MHz, 10 kW
T-25P – Triodo de potencia refrigerado por aire forzado de hasta 30 MHz, 25 kW
T60W/21 – Triodo de potencia refrigerado por agua hasta 30 MHz, 6 kW
Sistema de tubos transmisores RFT
Rundfunk- und Fernmelde-Technik (de, sv) era la marca de un grupo de fabricantes de telecomunicaciones de la República Democrática Alemana. La denominación constaba de un grupo de tres letras y un grupo de tres o cuatro dígitos.
Las dos primeras letras determinan el tipo de tubo:
GR – Tubo rectificador
SR – Tubo transmisor
VR – Tubo amplificador
La tercera letra especifica el método de enfriamiento:
L – Aire forzado
S – Radiación
V – Vapor (el ánodo se sumerge en agua que se evapora y el vapor se recoge, se condensa y se recicla)
W – Agua
El primer dígito (o los dos primeros dígitos en los tubos dobles) indica el número de electrodos:
2 – Diodo
3 – Triodo
4 – Tetrodo
5 – Pentodo
Los dos últimos dígitos se asignan secuencialmente.
Ejemplos:
SRS301 – Triodo refrigerado por radiación hasta 40 MHz, 900 W
SRS464 – Tetrodo de pulsos resistente a vibraciones y refrigerado por radiación de hasta 300 kW
SRS4451 – Tetrodo doble refrigerado por radiación de hasta 500 MHz, 60 W
SRS4452 = QQE03/20 = 6252 – Tetrodo doble refrigerado por radiación de hasta 600 MHz, 20 W
SRS4452 – Tetrodo doble refrigerado por radiación de hasta 600 MHz, 20 W
SRS501 – Pentodo refrigerado por radiación de hasta 50 MHz, 100 W
SRS552N = ГУ-50 – Pentodo refrigerado por radiación de hasta 120 MHz, 50 W
VRS303 : triodo AF refrigerado por radiación, 1 kW
VRS328 : triodo AF refrigerado por radiación, 150 W
VRS331 – Triodo AF refrigerado por radiación, 450 W
Nota: RFT utilizó los esquemas Mullard-Philips y RETMA para sus tubos de baja potencia.
Además del sistema genuino Mullard-Philips, Tesla también utilizó un esquema híbrido MP/RETMA: [1]
Primer número: Voltaje del calentador, como en el sistema RETMA
Próximas letras: Tipo, subconjunto del sistema Mullard–Philips
Siguiente dígito: Base
1 – K8A octal
2 – Local B8G
3 – B7G miniatura de 7 pines
4 – Noval B9A
5 – Especial, en su mayoría 9 de cada 10 pines de 1,25 mm en un círculo de 25 mm de diámetro
6 – B11A submagnético
7 – Duodecal B12A
8 – B14A diheptal
9 – Extremos de cables
Último dígito: Número asignado secuencialmente
Ejemplos:
1M90 (DM70/1M3): tubo indicador subminiatura, filamento de 1,4 V/25 mA, extremo de cable de vidrio
1Y32 – Rectificador miniatura de alto voltaje de 7 pines calentado directamente con filamento WTh de 1,4 V/265 mA. El tipo 1Y32T tiene cátodo de óxido.
4L20 – Pentodo de potencia de RF calentado directamente; filamento de 4,2 V/325 mA con toma central; 4P1L soviético (4П1Л), RL4,2P6 alemán con base Loctal
6B31 – Diodo doble hasta 700 MHz; calentador de 6,3 V/300 mA, base miniatura de 7 pines
6BC32 (6AV6, EBC91): diodo y triodo dual; calentador de 6,3 V/300 mA, base miniatura de 7 pines
6CC31 (6J6, ECC91): triodo doble de 600 MHz; calentador de 6,3 V/450 mA, base miniatura de 7 pines
6CC42 (2C51): triodo doble VHF; calentador de 6,3 V/350 mA, base noval
6F24 – Pentodo de telecomunicaciones, calentador de 6,3 V/450 mA, base local
6F36 (6AH6): pentodo de vídeo/IF de corte brusco, calentador de 6,3 V/450 mA, base miniatura de 7 pines
6H31 (6BE6, EK90): mezclador de heptodos; calentador de 6,3 V/300 mA, base miniatura de 7 pines
6L36 (6AQ5, EL90): pentodo de potencia, calentador de 6,3 V/450 mA, base miniatura de 7 pines
6L41 (5763) – Tetrodo de haz, calentador de 6,3 V/750 mA, base noval
35Y31 – Rectificador de media onda, calentador en serie de 35 V/150 mA; UY1N con base miniatura de 7 pines
Tubos de potencia
Primera letra:
R – Rectificador o tubo RF
U – Rectificador de potencia lleno de gas
Z – Tubo modulador
Próximas letras: Tipo, subconjunto del esquema de Mullard–Philips
Siguiente número: Disipación del ánodo en W (si se enfría por radiación) o kW (en caso contrario)
La siguiente letra especifica el método de enfriamiento:
<ninguno> – Radiación
V – Vapor
X – Aire forzado
Y – Agua
Ejemplos:
RA0007B – Diodo de balasto de emisión saturada calentado directamente . Actúa como una resistencia en serie variable controlada por corriente de calentamiento en circuitos estabilizadores de voltaje/corriente; U Amax 600 VI Amax 700 μA, base noval
RA100A – Rectificador de media onda de 40 kV, 100 mA con base de lámpara de tornillo Edison Goliath E40 y tapa superior de ánodo
RC5B – Triodo de potencia UHF tipo bowl hasta 5 W
RD27AS – Triodo de potencia refrigerado por radiación hasta 25 MHz, 27 W
RD200B – Triodo de potencia refrigerado por radiación hasta 60 MHz, 200 W
RD300S – Triodo de potencia refrigerado por radiación hasta 200 MHz, 300 W
RD150YA – Triodo de potencia refrigerado por agua hasta 3 MHz, 150 kW
RE65A – Tetrodo de haz refrigerado por radiación de hasta 260 MHz, 65 W
RE125C – Tetrodo de haz refrigerado por radiación de hasta 235 MHz, 125 W
RE400C – Tetrodo de haz refrigerado por radiación de hasta 235 MHz, 400 W
RE20XL – Tetrodo de haz refrigerado por aire hasta 220 MHz, 20 kW
REE30A – Tetrodo de doble haz refrigerado por radiación de hasta 250 MHz, 20 W
RL15A – Pentodo de potencia refrigerado por radiación de hasta 60 MHz, 20 W
RL40A – Pentodo de potencia refrigerado por radiación de hasta 120 MHz, 40 W
RL65A – Pentodo de potencia refrigerado por radiación de hasta 15 MHz, 65 W
UA025A – Rectificador de media onda relleno de argón de 10 kV y 250 mA con casquillo de lámpara de rosca Edison E27 y tapa de rosca de ánodo
UA5A – Rectificador de vapor de mercurio de media onda de 11 kV, 5 A con base de 2 pines y tapa de rosca de ánodo
ZD1000F – Triodo de potencia refrigerado por radiación hasta 60 MHz, 1 kW
ZD1XB – Triodo de potencia AF refrigerado por aire de hasta 1,2 kW
ZD3XH – Triodo de potencia refrigerado por aire hasta 60 MHz, 3 kW
ZD8XA – Triodo de potencia refrigerado por aire hasta 20 MHz, 8 kW
ZD12YA – Triodo de potencia AF refrigerado por aire hasta 20 MHz, 12 kW
ZE025XS – Tetrodo de haz refrigerado por aire de hasta 400 MHz, 250 W
Sistema de tubos receptores Tungsram antes de 1934
El sistema Tungsram estaba compuesto por un máximo de tres letras y tres o cuatro dígitos. [25] [24] Fue descontinuado después de 1934 cuando Tungsram adoptó el esquema Mullard-Philips, frecuentemente precediéndolo con la letra T , como en TAD1 para AD1.
Letra: Tipo de sistema:
Nota: La letra A precedente indica un tubo calentado indirectamente.
FH4105 = E449 = RENS1234 – Hexode de corte remoto calentado indirectamente, 4 V, calentador de 1,2 A
HP4101 = E446 = RENS1284 – Pentodo RF, filamento de 4 V y 1 A
HP4106 = E447 = RENS1294 – Pentodo RF de corte remoto calentado indirectamente, 4 V, calentador de 1,1 A
HR406 = A425 = RE034 – Triodo RF, filamento de 4 V, 60 mA (=6×10 mA)
L414 = B409 = RE134 – Triodo, filamento de 4 voltios y 140 mA (=14×10 mA)
MH2018 = B2048 = RENS1824 – Mezclador de hexadecimales, 20 V, 180 mA (=18×10 mA) calentador
MH4100 = E448 = RENS1224 – Cambiador de frecuencia hexadecimal de corte brusco calentado indirectamente, 4 V, calentador de 1,2 A
PP2018D = B2043 = RENS1823D = L2318D – Pentodo de potencia calentado indirectamente, calentador en serie de CC de 20 V y 180 mA
PP4101 = E443H = RES964 = L496D – Pentodo de potencia, calentador de 4 V
PV4200 – Rectificador de onda completa, filamento de 4 V, 2 A (=200×10 mA)
R2018 = B2038 = REN1821 = A2118 – Triodo, calentador de 180 mA
S406 = A442 = RES094 – Tetrodo calentado directamente con rejilla de protección, filamento de 4 V y 60 mA
S2018 = B2042 = RENS1820 = H2018D – Tetrodo de RF, calentador de 180 mA
Sistemas rusos
Los tubos de vacío fabricados en la antigua Unión Soviética y en la actual Rusia se designan en cirílico. Se ha creado cierta confusión al transcribir estas designaciones al latín.
El primer sistema se introdujo en 1929. Consistía en una o dos letras (que designaban el tipo de sistema y, opcionalmente, el tipo de cátodo), un guión y luego un número asignado secuencialmente con hasta 3 dígitos. [24]
En 1937, la Unión Soviética compró una línea de montaje de válvulas a RCA (que en ese momento tenía dificultades para recaudar fondos para sus operaciones básicas), incluidas las licencias de producción y la capacitación inicial del personal, y la instaló en la planta Svetlana/Светлана en San Petersburgo, Rusia. Desde entonces, se produjeron válvulas con licencia estadounidense bajo un esquema RETMA adaptado.
El primer elemento es un número que especifica el voltaje del filamento. El segundo elemento es una letra cirílica que especifica el tipo de dispositivo. El tercer elemento es un número asignado secuencialmente que distingue entre diferentes dispositivos del mismo tipo. El cuarto elemento denota el tipo de envoltura. Un quinto elemento opcional consiste en un guión seguido de uno o más caracteres para designar características especiales del tubo. Esto generalmente implica diferencias de construcción, no solo la selección de una producción de calidad regular.
Sistema de tubos profesional
Existe otro sistema de designación para los tubos profesionales, como los transmisores. [29] [24]
El primer elemento designa la función. Los siguientes elementos varían en interpretación. Para los ignitrones, rectificadores y tiratrones, hay un dígito, luego un guión, luego la corriente del ánodo en amperios, una barra, el voltaje del ánodo en kV. Se puede agregar una letra para designar la refrigeración por agua (ninguna letra designa un dispositivo enfriado por radiación). Para los tubos de transmisión en este sistema, el segundo elemento comienza con un guión, un número asignado secuencialmente y luego una letra opcional que especifica el método de refrigeración. Para los fototubos y fotomultiplicadores, el segundo elemento es un número secuencial y luego un código de letras que identifica el vacío o el llenado de gas y el tipo de cátodo.
Sistemas japoneses
Sistema de numeración más antiguo, década de 1930 y 1940
6M-DE1 – Diodo e indicador de sintonización tipo “Magic Eye”, base miniatura de 7 pines
6M-E4 – Indicador de afinación tipo “Magic Finger”, base miniatura de 7 pines
6M-E5 = 6ME5 – Indicador de sintonización tipo "Magic Eye", base miniatura de 7 pines
6M-E10 – Indicador de sintonización tipo “Magic Eye”, base miniatura de 7 pines
6N-H10 – Nuvistor
6R-A8 – Triodo de potencia
6R-B10 – Tubo de potencia de haz
6R-B11 – Tubo de potencia de haz
Sistemas de nombres militares
Sistemas de denominación de los CV y M8000 británicos
Este sistema antepone un número de tres o cuatro dígitos con las letras "CV", que significan "válvula civil", es decir, común a los tres servicios armados. Se introdujo durante la Segunda Guerra Mundial para racionalizar las nomenclaturas anteriores mantenidas por separado por el Ministerio de Guerra/Ministerio de Suministros, el Ministerio del Almirantazgo y el Ministerio del Aire/Ministerio de Producción Aeronáutica en nombre de los tres servicios armados (por ejemplo, "ACR~", "AR~", "AT~", etc. para los CRT , válvulas receptoras y transmisoras utilizadas en equipos del ejército, "NC~", "NR~" y "NT~" de manera similar para equipos de la marina y "VCR~", "VR~" y "VT~", etc. para equipos de la fuerza aérea), en las que tres designaciones separadas podrían, en principio, aplicarse a la misma válvula (que a menudo tenía también al menos una designación comercial de prototipo). Estos números generalmente tienen equivalentes idénticos tanto en los sistemas norteamericanos, RETMA, como en los europeos occidentales, Mullard–Philips, pero no se parecen en nada al número "CV" asignado.
Ejemplos:
CV1988 = 6SN7 GT = ECC32 (no es un equivalente directo ya que la corriente del calentador es diferente y la bombilla es más grande)
CV2729 = E80F: una versión SQ de EF80 pero con una distribución de pines revisada y una pantalla base sustituida por la pantalla RF
Los números "CV4000" identifican válvulas de calidad especial, aunque las válvulas SQ numeradas CV antes de que entrara en vigor esa regla conservan su número CV original:
El "M8" en el número de pieza indica que fue desarrollado por los militares:
M8083 – Pentodo de corte agudo, base miniatura de 7 pines (versión SQ de EF91 = 6AM6 = Z77)
M8162 = 6060 – Triodo dual de alta mu, para uso como amplificador/mezclador de RF en circuitos VHF, base Noval (versiones SQ de ECC81 = 12AT7 = B309)
El principio detrás del sistema de numeración de las válvulas de control de la calidad también fue adoptado por el sistema de numeración JAN del Ejército y la Marina de los EE. UU., que luego se expandió considerablemente al sistema de números de stock de la Federación de los EE. UU. y luego al sistema de números de stock de la OTAN utilizado por todos los países de la OTAN. Este sistema de identificación de piezas garantiza que cada pieza de repuesto en particular (no solo las válvulas termoiónicas) reciba un número de stock único en toda la OTAN, independientemente de la fuente, y por lo tanto no se mantenga de manera ineficiente en almacenes separados. En el caso de las válvulas de control de la calidad, el número de stock siempre tiene el formato 5960-99-000-XXXX, donde XXXX es el número de la válvula de control de la calidad (con un 0 inicial si el número de la válvula de control de la calidad solo tiene 3 dígitos).
Sistemas de nombres de EE.UU.
Un sistema antepone un número de tres dígitos con las letras "VT", que probablemente significan "tubo de vacío". Otros sistemas anteponen el número con las letras "JHS" o "JAN". Los números que siguen a estos prefijos pueden ser números "especiales" de cuatro dígitos, o números nacionales de dos o tres dígitos o simplemente el sistema de numeración "RETMA" de Norteamérica. Al igual que el sistema militar británico, estos tienen muchos equivalentes directos en los tipos civiles. Confusamente, los británicos también tenían dos nomenclaturas "VT" completamente diferentes, una utilizada por la Royal Air Force (ver la sección anterior) y la otra utilizada por la Oficina General de Correos , responsable del correo y las telecomunicaciones en ese momento, donde puede haber significado "válvula, teléfono"; ninguno de estos esquemas se correspondía de ninguna manera entre sí.
Existen varios sistemas de numeración únicamente. Estos tienden a usarse para dispositivos utilizados en equipos comerciales o industriales. Los sistemas de numeración más antiguos datan de principios de la década de 1920, como un sistema de numeración de dos dígitos, comenzando con el UV-201A , que se consideró como "tipo 01", y se extendió casi continuamente hasta la década de 1980. Los sistemas de numeración únicamente de tres y cuatro dígitos fueron mantenidos por RCA , pero también adoptados por muchos otros fabricantes, y generalmente abarcaban rectificadores y dispositivos de salida de transmisores de radio. Los dispositivos en los 800 inferiores tienden a ser tipos de salida de transmisor, los de los 800 superiores no son tubos de vacío, sino rectificadores llenos de gas y tiratrones , y los de los 900 tienden a ser dispositivos de propósito especial y de alta frecuencia. El uso no fue rigurosamente sistemático: el 807 tuvo variantes 1624, 1625 y 807W.
Otra letra seguida de números
Existen numerosos sistemas de este tipo en diferentes ámbitos geográficos, como los utilizados en dispositivos de producción rusa y china contemporánea. Otros sistemas de numeración compuestos se utilizaban para marcar tipos de mayor fiabilidad utilizados en aplicaciones industriales o comerciales. Los equipos informáticos y de telecomunicaciones también requerían tubos de mayor calidad y fiabilidad que los utilizados en los equipos domésticos y de consumo.
Algunos prefijos de letras son códigos del fabricante:
XD – Fabricantes de equipos electrónicos centrales (Denville, Nueva Jersey, EE. UU.)
Para ver ejemplos, consulte a continuación.
Algunas designaciones se derivan del comportamiento de dispositivos considerados excepcionales.
Mazda/EdiSwan vendió sus primeros tubos para calefacción con transformador de red de CA de 4 voltios (a diferencia de las baterías de almacenamiento domésticas) con el prefijo AC/ ( ver ejemplos a continuación).
Los primeros tetrodos de haz fabricados en el Reino Unido a fines de la década de 1930 por M-OV llevaban el prefijo "KT", que significa " tetrodo sin haz" (para ver ejemplos, consulte más arriba).
Funcionan de manera similar a un diodo Zener , a voltajes más altos. El orden de las letras (ABC) indica voltajes nominales crecientes en los reguladores octales y voltajes nominales decrecientes en los reguladores miniatura.
0A2 – Regulador de 150 voltios, base miniatura de 7 pines
0A3 – Regulador de 75 voltios, base octal, también conocido como VR75
0B2 – Regulador de 105 voltios, base miniatura de 7 pines
0B3 – Regulador de 90 voltios, base octal, también conocido como VR90
0C2 – Regulador de 75 voltios, base miniatura de 7 pines
0C3 – Regulador de 105 voltios, base octal, también conocido como VR105
0D3 – Regulador de 150 voltios, base octal, también conocido como VR150
Otros tubos de cátodo frío
0A4G – 25 mA promedio , 100 mA pico Triodo de gas diseñado para usarse como receptor de control de ondulación ; con el cátodo conectado al punto medio de un circuito LC de resonancia en serie a través de la red eléctrica activa, activaría un relé en su circuito de ánodo mientras haya corriente eléctrica presente
0Y4 – 40 ≤ I ≤ 75 mA Rectificador de gas de media onda con ánodo de arranque, base octal de 5 pines
0Z4 – 30 ≤ I ≤ 90 mA Rectificador de gas de onda completa, relleno de argón, base octal. Ampliamente utilizado en fuentes de alimentación de vibradores en los primeros receptores de radio de automóviles.
Tubos de filamento/calentador de 1 voltio
Tubos subminiatura de filamento de CC de 1,25 voltios
Los siguientes tubos se utilizaron en walkie-talkies y radios portátiles de bolsillo posteriores a la Segunda Guerra Mundial. Todos tienen filamentos de CC de 1,25 voltios y cátodos calentados directamente. Algunos especifican qué extremo del filamento debe ser alimentado por el lado positivo de la fuente de alimentación del filamento (normalmente una batería). Todos tienen cuerpos de vidrio que miden de 0,285 a 0,400 pulgadas (7,2 a 10,2 milímetros) de ancho y de 1,25 a 2,00 pulgadas (32 a 51 milímetros) de longitud total.
1A3 – Diodo de alta frecuencia con cátodo calentado indirectamente. Se utiliza como detector en algunos receptores portátiles de AM/FM.
1A7GT/DK32 – Convertidor pentagrid , versión rediseñada de los tipos 1A6 y 1D7-G , diseñado para su uso en radios portátiles de batería de CA/CC/celda seca introducidas en 1938. Tiene filamento de 1,4 V/50 mA.
1B7-GT : versión rediseñada de los tipos 1C6 y 1C7-G , diseñada para usarse en radios de batería seca con bandas de onda corta. Tiene filamento de 1,4 V/100 mA
1G6-G – Triodo de potencia dual. Versión "GT" también disponible.
1L6 – Variador de frecuencia Pentagrid para radios de batería con filamento de 50 mA
1LA6 (Loctal) y posterior 1L6 (miniatura de 7 pines): convertidor pentagrid de batería para radio de onda corta transoceánica Zenith , filamento de 50 mA
1LB6 – Mezclador superheterodino para radios a batería
1S4 – Amplificador pentodo clase A de salida de potencia , voltaje de ánodo en el rango de 45...90 voltios.
1S5 – Pentodo de corte agudo , amplificador de clase A y diodo, utilizado como detector y primera etapa AF en receptores de radio a batería. Tensión de ánodo en el rango de 67...90 voltios.
1T4/DF91 – Amplificador pentodo clase A de RF con corte remoto, base miniatura de 7 pines, utilizado como amplificador de RF y FI en receptores de radio a batería.
1U4 – Amplificador pentodo clase A de RF de corte agudo, base miniatura de 7 pines, utilizado como amplificador de RF y FI en receptores de radio a batería, características similares al 6BA6.
1U6 – Casi idéntico al tipo 1L6 , pero con un filamento de 1,4 V/25 mA
Prefijo "1" para receptores domésticos
Estos tubos se fabricaron para receptores de baterías de almacenamiento doméstico fabricados entre principios y mediados de la década de 1930; todos tienen filamentos de CC de 2,0 voltios a pesar del prefijo 1, destinado a distinguirlos de los tubos calentados de CA de 2,5 voltios que se enumeran a continuación.
1A4-p – Pentodo de corte remoto
1A4-t – Tetrodo de corte remoto
1A6 – Convertidor pentagrid de hasta sólo 10 MHz debido a la baja potencia del calentador (2 V/60 mA) y la consiguiente baja emisión en la sección del oscilador; también se utiliza ocasionalmente como detector de fugas de red
1B4-p – Pentodo de corte brusco
1B4-t – Tetrodo de corte agudo
1B5 – Diodo detector dual, triodo de mu medio . Suele numerarse 1B5/25S
1C5 – Pentodo de potencia (similar al 3Q5 excepto por el filamento)
1C6 – Convertidor pentagrid; 1A6 , con el doble de potencia de calentamiento y el doble de rango de frecuencia
1C7-G – Versión octal del tipo 1C6 .
1D5-Gp – Versión octal del tipo 1A4-p .
1D5-Gt : versión octal del tipo 1A4-t . ( Nota: se trata de un octal "G" con resalte, no de un octal "GT" cilíndrico).
1D7-G – Versión octal del tipo 1A6 .
1E5-Gp – Versión octal del tipo 1B4-p .
1E5-Gt : versión octal del tipo 1B4-t . ( Nota: se trata de un octal "G" con resalte, no de un octal "GT" cilíndrico).
1E7-G – Pentodo de doble potencia para utilizar como controlador cuando se conecta en paralelo o como salida push-pull. Versión "GT" también disponible
1F4 – Pentodo de potencia
1F5-G – Versión octal de 1F4 .
1F6 – Diodo dúplex, pentodo de corte brusco
1F7-G – Versión octal del tipo 1F6
1G4-GT/G – Triodo octal, mu 8,8
1G5-G – Pentodo de potencia
1H4-G – Triodo de mu medio, se puede utilizar como triodo de potencia. Versión octal del tipo 30 , que es una versión mejorada del tipo 01-A . También está disponible la versión "GT".
1H6-G – Versión octal del tipo 1B5/25S . Versión "GT" también disponible.
1J5-G (950) – Pentodo de potencia AF
1J6-G – Triodo de potencia dual, versión octal del tipo 19. Versión “GT” también disponible.
Rectificadores de ánodo CRT
1G3GT : rectificador octal de alto voltaje. Las mismas características que el 1B3GT. Muchos de ellos figuran y se etiquetan como 1B3GT/1G3GT.
1H2 – Rectificador de alto voltaje Noval con filamento de 1,4 V/550 mA
1J3GT : rectificador octal de alto voltaje. Las mismas características que el 1B3GT. Tiene protección contra cortocircuitos en la placa de filamento. Muchos están listados y etiquetados como 1J3GT/1K3GT.
1K3GT : rectificador octal de alto voltaje. Las mismas características que el 1B3GT. Tiene protección contra cortocircuitos en la placa de filamento. Muchos están catalogados y etiquetados como 1J3GT/1K3GT.
1S2A – Rectificador de alto voltaje Noval con filamento de 1,4 V/550 mA. Similar a DY86, DY87, DY802, 1R10 y 1R12.
1T2 = R16 – Rectificador de alto voltaje subminiatura con filamento de 1,4 V/140 mA. Tiene cables flexibles.
1V2 – Rectificador de alto voltaje con filamento de 0,625 V/300 mA, base miniatura de 7 pines
1X2 – Rectificador de alto voltaje Noval con filamento de 1,25 V/200 mA. 1X2A, 1X2B y 1X2C tienen protección contra la radiación X. Similar a DY80 y R19.
1Y2 – Rectificador de alto voltaje de 4 pines con filamento de 1,5 V/290 mA. 50 KV de voltaje de entrada máximo, 10 mA de pico, 2 mA de promedio. Se puede utilizar hasta 1 MHz.
1Z1 – Rectificador octal de alto voltaje con filamento de 0,7 V/180 mA.
1Z2 – Rectificador de alto voltaje Noval con filamento de 1,25 V/265 mA.
1AD2 – Rectificador Compactron de alto voltaje con filamento de 1,25 V/200 mA. El tipo 1AD2A tiene protección contra la radiación X.
1AJ2 – Rectificador de alto voltaje Compactron con filamento de 1,25 V/200 mA
1AY2 – Rectificador de alto voltaje con base "Duopin" de 2 pines. Tiene características eléctricas similares a las del 1B3GT.
1B3GT – Diodo rectificador octal de alto voltaje con filamento de 1,25 V, común en los receptores de TV monocromáticos de los años 50 y principios de los 60. Tensión inversa máxima de 30 kV. Corriente de ánodo de 2 mA en promedio, pico de 17 mA. Derivado del tipo industrial anterior 8016. Muchos están listados y etiquetados como 1B3GT/1G3GT.
1BC2 – Rectificador de alto voltaje Noval con filamento de 1,25 V/200 mA. Los tipos 1BC2A y 1BC2B tienen protección contra la radiación X.
1BG2 – Rectificador de alto voltaje subminiatura con filamento de 1,4 V/575 mA. Tiene cables flexibles.
1BQ2 – Rectificador de alto voltaje Noval con filamento de 1,4 V/600 mA
1BY2 – Rectificador Compactron de alto voltaje con filamento de 1,25 V/200 mA. El tipo 1BY2A tiene protección contra la radiación X.
Tubos de filamento/calentador de 2 voltios
Tubos calefactores de CA de 2,5 voltios
Tubos utilizados en receptores de radio alimentados por corriente alterna de principios de la década de 1930
2A3 – Triodo de potencia calentado directamente, utilizado para etapas de salida AF en amplificadores de audio y radios de las décadas de 1930 y 1940.
2A5 – Pentodo de potencia (excepto el calentador, electrónicamente idéntico a los tipos 42 y 6F6 )
2A6 – Diodo doble, triodo de alta mu (excepto el calentador, electrónicamente idéntico al tipo 75 )
2A7 – Convertidor pentacristalino de estilo tetrodo doble (excepto el calentador, electrónicamente idéntico a los tipos 6A7 , 6A8 y 12A8 )
2B7 – Pentodo de doble diodo y corte remoto (excepto el calentador, electrónicamente idéntico al tipo 6B7 )
2E5 y 2G5 – Indicadores de rayos electrónicos (“Eye tube”) con triodo de control integrado. (Excepto por el calentador, electrónicamente idénticos a los tipos 6E5 y 6G5 )
3A3/3B2/3AW3 : rectificador de alto voltaje. Tipo octal, utilizado en televisores en color. La potencia del calentador es de 3,15 voltios y 0,22 amperios.
3CA3 - Rectificador de alto voltaje. Tipo octal, utilizado en televisores en color. La potencia del calentador es de 3,6 voltios y 0,225 amperios.
3CN3 - Rectificador de alto voltaje. Tipo octal utilizado en televisores en color. La potencia del calentador es de 3,15 voltios y 0,48 amperios. La gran corriente tiene la ventaja de un calentamiento rápido.
3CU3 - High Voltage rectifier. An octal type used in color television sets. The heater power is 3.15 volts and 0.28 amps.
3CZ3 - High Voltage rectifier. An octal type used in color television sets. The heater power is 3.15 volts and 0.48 amps. The large current is for the advantage of fast warm-up.
3AT2 - High Voltage rectifier. A compactron used in television sets to supply power to the anode of the picture tube. It comes in the variation as the 3AT2B, mainly for color television sets with a large picture tube. The 3AT2B comes with X-radiation shielding on the inside. The heater power is 3.15 volts and 0.22 amps.
3AW2 - High Voltage rectifier. A compactron used for color and black and white television sets. It comes in the variation as the 3AW2A as a replacement for the 3AW2 after the 1967 General Electric X-radiation scandal. The 3AW2A comes with X-radiation shielding on the inside. The heater power is 3.15 volts and 0.22 amps.
3BF2 - High Voltage rectifier. A compactron used in television sets to supply power to the anode of the picture tube. This tube is very rare, and very special, because it implements an indirectly heated cathode, not connected to the filament. No data is found on this tube, except for the filament power (which is 3.6 volts, 0.225 amps) and the base (which is the 12GQ type). The only reason why we know it is a high voltage rectifier is that the base tells us so.
3BL2 - High Voltage rectifier. A compactron used in television sets to supply power to the anode of the picture tube. It comes in the variation as the 3BL2A as a replacement for the 3BL2 after the 1967 General Electric X-radiation scandal. The 3BL2A comes with X-radiation shielding on the inside. The heater power is 3.3 volts and 0.285 amps.
3BM2 - High Voltage rectifier. A compactron used in television sets to supply power to the anode of the picture tube. It comes in the variation as the 3BM2A as a replacement for the 3BM2 after the 1967 General Electric X-radiation scandal. The 3BM2A comes with X-radiation shielding on the inside. The heater power is 3 volts and 0.3 amps.
3BN2 - High Voltage rectifier. A compactron used for color television sets. It comes in the variation as the 3BN2A as a replacement for the 3BN2 after the 1967 General Electric X-radiation scandal. The 3BN2A comes with X-radiation shielding on the inside. The heater power is 3.15 volts and 0.22 amps.
3BS2 - High Voltage rectifier. A compactron used for color television sets. It comes in the variation as the 3BS2A and 3BS2B as a replacement for the 3BN2 after the 1967 General Electric X-radiation scandal. The 3BS2A and 3BS2B tubes are identical, maybe a small difference in ratings and characteristics. We do not know these differences as the 3BS2B tube data is not available. The 3BS2A and 3BS2B comes with X-radiation shielding on the inside. The heater power is 3.15 volts and 0.48 amps. The large current is for the advantage of fast warm-up.
3BT2 - High Voltage rectifier. A compactron used for color television sets. It comes in the variation as the 3BT2A as a replacement for the 3BT2 after the 1967 General Electric X-radiation scandal. The 3BT2A comes with X-radiation shielding on the inside. The heater power is 3.15 volts and 0.48 amps. The large current is for the advantage of fast warm-up.
3BW2 - High Voltage rectifier. A compactron used for color and black and white television sets. The 3BW2 comes with X-radiation shielding on the inside. It also comes with diffusion bonded cathode (a type of cathode that prevents the back-emission of the anode). This tube was designed in December 1970, after the 1967 General Electric X-radiation scandal. All high voltage rectifier tube types that were designed before 1967 had no X-radiation protection internally. That is why all these tubes made during and after 1967 have a suffix showing they had internal X-radiation protection. This is why there is no '3BW2A' type since it was made after 1967. The heater power is 3.15 volts and 0.22 amps.
5 volt heater/filament tubes
5R4 – Full wave rectifier
5U4 – Full wave rectifier
5V4, GZ32 – Full wave rectifier
5Y3 – Full-wave rectifier, octal base version of type 80
5AR4, GZ34 – Full wave rectifier
5AS4 – Full wave rectifier
6 volt heater tubes
6A6 – Dual Power Triode, used as a Class-A audio driver or a Class-B audio output. U7B base. 6.3 volt heater version of type 53 which had a 2.5 volt heater. Octal version – 6N7.
6A7 and 6A8 (PH4, X63) – Pentagrid converter – dual tetrode style. Based on type 2A7, which had a 2.5 volt heater. 6A7 has a UX7 base with top cap connection for control grid (grid 4). 6A8 is octal version with top cap connection for control grid. Loctal version: type 7B8.
6B6-G – Dual Diode, High-mu Triode. Octal version of type 75. Has top-cap connection for triode grid. Later octal version, type 6SQ7, has under-chassis connection for triode grid. Miniature version: 6AV6.
6B7 (UX7 base), 6B8 (EBF32, Octal base) – Dual Diode, Semiremote-cutoff Pentodes with control grid on top cap. Based on type 2B7 which had a 2.5 volt heater. The diode anodes are most commonly used as (second) detectors and AVC rectification in superheterodyne receivers. Because their control grids have both sharp-cutoff and remote-cutoff characteristics, these types were used as I.F. amplifiers with AVC bias to the control grid, and as A.F. amplifiers. These types were also used in reflex radios. In a typical 2B7/6B7/6B8 reflex circuit, the I.F. signal from the converter is injected into the pentode and is amplified. The diodes then act as detectors, separating the A.F. signal from the R.F. signal. The A.F. signal is then re-injected into the pentode, amplified, and sent to the audio output tube.[32]
6C4/EC90 – 3.6 W small-power V.H.F. triode up to 150 MHz; single 12AU7/ECC82 system
6C6 – Sharp-cutoff R.F. Pentode. Most common commercial uses were as a tuned R.F. amplifier, a detector, and an A.F. amplifier. Also used in test equipment. Has UX6 base with top cap. Based on type 57, which had a 2.5 volt heater. Similar to types 1603, 77 and octal types 6J7 and 6SJ7
6C10 – Compactron High-mu triple triode, 12-pin base – not related to the Mazda/EdiSwan 6C10 triode-hexode
6D4 – 25 mAavg, 100 mApeak Indirectly heated, argon triode thyratron, negative starter voltage, miniature 7-pin base; found an additional use as a 0 to 10 MHz noise source, when operated as a diode (starter tied to cathode) in a transverse 375 G magnetic field. Sufficiently filtered for "flatness" ("white noise") in a band of interest, such noise was used for testing radio receivers, servo systems and occasionally in analog computing as a random value source.
6D6 – Remote-Cutoff R.F. Pentode. Most common commercial uses were as an I.F. amplifier or as a superheterodyne mixer, aka 1st detector. Also used in test equipment. Has UX6 base with top cap. Based on type 58, which had a 2.5 volt heater. Similar to type 78. Octal version: 6U7-G.
6D8-G – Pentagrid converter, similar to type 6A8. Octal base with top cap. Has 150 mA heater. Used in pre-war 6-volt farm radios.
6D10 – High-mu triple triode for use as oscillator, mixer, amplifier or AFC tube, 12-pin base
6E5 – "Magic Eye" Tuning indicator. Has incorporated driver triode with sharp-cutoff grid which makes it extremely sensitive to any changes in signal strength. Has UX6 base. Based on type 2E5, which had a 2.5 volt heater.
6F4 – Acorn UHF triode up to 1.2 GHz, for use as an oscillator
6F5 – High-mu triode, equal to triode section of type 6Q7
6F6 (KT63) – Power Pentode. Octal base version of type 42. Moderate power output rating – 9 watts max. (Single-ended Class-A circuit); 11 watts max. (Push-pull Class-A circuit); 19 watts max. (push-pull Class-AB2 circuit). Available in metal (numbered "6F6"), shouldered glass ("6F6-G"), and cylindrical glass ("6F6-GT"). Sometimes used as a transformer-coupled audio driver for types 6L6-GC and 807 when those tubes were used in Class-AB2 or Class-B amplifiers. Also used as a Class-C oscillator/amplifier in transmitters.
6F7 – Remote-cutoff Pentode, Medium-mu Triode. Has UX7 base with top-cap connection for the pentode's control grid (grid 1). Most common uses were as superheterodyne mixer ("first detector") and local oscillator, or as a combination I.F. amplifier (pentode) and (second) detector or A.F. amplifier (triode). Octal version: 6P7-G.
6G5 – "Magic Eye" Tuning indicator. Has incorporated triode with remote-cutoff grid, which makes it less reactive to low-level changes in signal strength. Has UX6 base. Electronically identical to type 6U5 except for indicator. Both types had "pie wedge" shadow indicators. At first, the shadow indicator for type 6G5 was fully closed at zero signal and opened as signal strength increased. For type 6U5, the shadow indicator was fully open at zero signal and closed as signal strength increased. After World War II, type 6G5 was discontinued as a unique tube and all 6U5s were double-branded either as 6G5/6U5 or 6U5/6G5.
6G6-G – Power pentode. Octal base. Low power output – 1.1 watt max. output. Has 150 mA heater. Used in pre-war 6-volt farm radios. Miniature version – 6AK6.
6G8-G – Dual Diode, Sharp-cutoff Pentode (Used as Detector and first A.F. stage in Australian 1940s radios)
6H6, D63, EB34, OSW3109 – Dual diode. Octal base. Most commonly found as a "stubby" metal envelope tube. Glass versions 6H6-G and 6H6-GT are also found.
6J5WGT – Premium version of 6J5GT, identical to 12J5WGT except heater characteristics
6J6 – Dual general purpose VHF triode with common cathodes, operates over much of the UHF band (up to 600 MHz), equivalent to ECC91
6J7, EF37 – Sharp-cutoff Pentode. Most common commercial uses were as a tuned R.F. amplifier, a (second) detector, or an A.F. amplifier. Octal version of type 77. This type included a top-cap connection for the control grid. Later version, type 6SJ7, had its control grid connection on pin 4.
6J8-G – Triode-Heptode (radio local oscillator/mixer)
6K6-G – Power Pentode, octal version of type 41. Low-to-moderate power output rating – 0.35 to 4.5 watts (single-ended Class-A circuit); 10.5 watts max. (push-pull Class-A circuit).
6K7, EF39 – Remote-cutoff R.F. pentode. Most common commercial uses were as an I.F. amplifier or as a superheterodyne mixer, aka 1st detector. Also used in test equipment. Octal version of type 78. This type included a top-cap connection for the control grid. Later version, type 6SK7, had its control grid connection on pin 4.
There are several variations. Except for types 6L6-GC and 6L6-GX, all have the same maximum output ratings:
11.5 watts (single-ended Class-A circuit)
14.5 watts (push-pull Class-A circuit)
34 watts (push-pull Class-AB1 circuit)
60 watts (push-pull Class-AB2 circuit)
6L6 (metal envelope) and 6L6-G (shouldered glass envelope) were used in pre-World War II radios and Public Address amplifiers.
6L6 and 25L6 were introduced in 1935 as the first beam tetrodes. Both types were branded with the L6 ending to signify their (then) uniqueness among audio output tubes. However, this is the only similarity between the two tubes. (Type 6W6-GT is the 6.3 volt heater version of types 25L6-GT and 50L6-GT.)
6L6GA – Post-war version of type 6L6-G, in smaller ST-14 shape with Shouldered Tubular, (ST), shaped bulb, revision A.
6L6GB – Post-war improved version in a cylindrical glass envelope. Similar to type 5881.
6L6GTB – 6L6 with Tubular, (T), shaped bulb, revision B, (higher power rating, as it happens. The 6L6GTB can always replace the 6L6, 6L6G, and 6L6GT, but a 6L6GTB running at maximum rating should not be replaced with another subtype).
6L6-WGB – "Industrial" version of type 6L6GB.
6L6GC – Final and highest-powered audio version of the tube. Max. outputs:
17.5 watts (single-ended Class-A circuit)
32 watts (push-pull Class-A circuit)
55 watts (push-pull Class-AB1 circuit)
60 watts (push-pull Class-AB2 circuit)
6L6-GX – Class-C oscillator/amplifier used in transmitters. Max. output 30 watts. (All versions may be used as a Class-C oscillator/amplifier, but this version is specifically designed for this purpose, has a special ceramic base.)
6L7 – Pentagrid converter often used in console radios of the late 1930s. Similar in structure to pentode-triode pentagrid converters 6SA7 and 6BE6, except that a separate oscillator – usually type 6C5 – is required. Also, grid 1 is remote-cutoff control grid, grid 3 is oscillator input grid. (In types 6SA7 and 6BE6, grid 1 is the internal oscillator grid, grid 3 is the control grid.) Because of low conversion transconductance, radios using type 6L7 typically have either a tuned RF pre-amplifier stage, or at least two stages of I.F. amplification. (A few models have both.)
6M5 – Audio Output Pentode (Used as Class-A or C output stages of 1950s Australian radiograms) similar to 6BQ5
6M11 – Compactron Dual triode and pentode
6N3, EY82 – Half-Wave Rectifier
6N5 – Tuning indicator
6N7 – Dual Power Triode, used as Class-A audio driver or as Class-B power output (also 6N7-G and 6N7-GT). Max. output (Class-B) – 10 watts. Octal version of type 6A6.
6N8, EBF80 – Remote-cutoff pentode, dual diode. (detector plus RF or AF amplifier in radios)
6P5-G/GT – Medium-mu triode, Octal version of type 76, often used as driver for type 6AC5-G.
6P7-G – Rarely seen octal version of type 6F7.
6Q5-G – Triode gas thyratron used in DuMont oscilloscopes as a sweep generator. Identical to type 884.
6Q11 – Medium-mu triple triode, 12-pin base, for use as a sync clipper and gated AGC amplifier in TV receivers
6R3, EY81 – TV "Damper/Efficiency" Diode
6R7 – Dual Diode, Medium-mu Triode (also 6R7-G and 6R7-GT). Octal base with top cap. Miniature version – 6BF6. Amplification factor: 16.
6S7-G – Remote-cutoff RF Pentode, similar to type 6K7. Octal base with top cap. Has 150 mA heater. Used in pre-war 6-volt farm radios.
6S8-GT – Triple Diode, High-mu Triode. Octal tube with top-cap connection to triode grid. Has three identical diodes – two diodes share a cathode with the triode, one has a separate cathode. Used as a combined AM detector/AVC rectifier/FM ratio detector/A.F. amplifier in AM/FM radios. Typically, all sections of this tube are arranged around a single heater.
6T5 – "Magic Eye" Tuning indicator. Has incorporated driver triode with remote-cutoff grid. Has UX6 base. Shadow indicator is fully closed at zero signal. As signal increases, shadow grows outward from the center, covering the entire circumference of the indicator. Electronically identical to types 6G5 and 6U5, which may be used as substitutes.
6T7-G – Dual diode, high-mu triode, similar to type 6Q7. Octal base with top cap. Has 150 mA heater. Used in pre-war farm radios.
6T8 – Triple Diode, High-mu Triode. Has three identical diodes – two have cathodes connected to the triode's cathode, one has a separate cathode. Triode amplification factor: 70. Used as an AM detector/AVC rectifier/FM ratio detector/A.F. amplifier in North American AM/FM radios. Identical to type 6AK8/EABC80, but with a shorter glass envelope.
6U5 (UX6 base), 6U5G (Octal base) – "Magic Eye" Tuning indicator. Has incorporated driver triode with remote-cutoff grid. Has "pie wedge" shadow indicator that is open at zero signal and closes as signal increases. Electronically identical to types 6G5 and 6T5 and may be used as a substitute for those types. After World War II, most new 6U5s were double-branded as either 6G5/6U5 or 6U5/6G5.
6U7-G – Remote-cutoff R.F. Pentode. Most common commercial uses were as an I.F. amplifier or as a superheterodyne mixer, aka 1st detector. Also used in test equipment. Octal version of type 6D6. Most direct substitute: 6K7. Similar to types 58, 78 and 6SK7.
6V4 (EZ80) – Noval-base, indirectly heated, full-wave rectifier. EZ80 rated at 90mA, but 6V4 only rated for 70. Some brands were identical.
6V6 – Beam power tetrode, used in single-ended Class-A audio output stages of radios and sometimes seen in Class-B audio amplifiers (see also: 5V6 and 12V6). Electrically similar to 6AQ5/EL90.
6V6G – 6V6 with Shouldered Tubular, (ST), shaped bulb.
6V6GT – 6V6 with Tubular, (T), shaped bulb.
6V7-G – Dual diode, Medium-mu Triode. Octal version of type 85. Amplification factor: 8.3. Similar to type 6R7.
6W6-GT – Beam power pentode, used most often as a Vertical Deflection Output tube in monochrome TV receivers of the 1950s. Can also be used as an Audio Output tube. This is the 6.3 volt heater version of types 25L6-GT and 50L6-GT.
6X4 (EZ90) and 6X5 (EZ35) – Full-wave rectifiers with indirectly heated common cathode. Type 6X4 has a 7-pin miniature base, the 6X5 has an octal base. Based on type 84/6Z4. No longer in production.
6AB4/EC92 – High-mu triode (Pinout same as 6C4 except for pin 5 not having a connection)
6AD6-G and 6AF6-G – "Magic Eye" tuning indicators. Both have two "pie wedge" shadow indicators, one each on opposite sides of a single circular indicator target. Both shadows may be used in tandem or may be driven by two different signal sources. Type 6AE6-G is specifically made to drive each indicator with different signals. May also be driven by separate pentodes with different characteristics. E.g., a sharp-cutoff pentode like a 6J7 – which would be hyper-sensitive to any signal change – would drive one shadow, while a remote-cutoff pentode like a 6K7 – which would only react to stronger signals – would drive the other shadow. Both tubes have octal bases. Type 6AD6-G, with a target voltage rated from 100 to 150 volt, is designed for AC/DC radios. Type 6AF6-G, with a target voltage rated at 250 volt, is designed for larger AC radios.
6AE6-G – A driver triode specially designed for "Magic Eye" tuning indicator types 6AD6-G and 6AF6-G. Has a common heater and indirectly heated cathode, two internally connected triode grids – one with sharp-cutoff characteristics, one with remote-cutoff characteristics – and two anodes, one for each grid. The sharp-cutoff grid reacts to any signal change, while the remote-cutoff grid reacts only to stronger signal changes.
6AE7-GT – Dual Triode with a common, single anode, for use as a power triode driver
6AF4 – UHF Medium-mu Triode, commonly found in TV UHF tuners and converters.
6AF11 – Compactron High-mu dual triode and sharp-cutoff pentode
6AG11 – Compactron High-mu dual triode and dual diode
6AH5-G – Beam power tube for early TV use. Same as type 6L6-G, but with scrambled pinout. Used in some Philco receivers.
6AK5, EF95, 5654, CV4010, 6J1P (6Ж1П) – Miniature V.H.F. Sharp-cutoff pentode (Used in old Radiosonde weather balloon transmitters, receiver front ends and contemporary audio equipment), Miniature 7-pin base
6AK6 – Power pentode. 7-pin miniature version of type 6G6-G. Unusual low-power consumption output tube with 150 mA heater.
6AK8/EABC80 – Triple Diode, High-mu Triode. Diodes have identical characteristics – two have cathodes connected to the triode's cathode, one has a separate cathode. Used as a combination AM detector/AVC rectifier/FM ratio detector/A.F. amplifier in AM/FM radios manufactured outside of North America. Triode amplification factor: 70. North American type 6T8 is identical (but for a shorter glass envelope) and may be used as a substitute.
6AK9 – Compactron 1x high-mu + 1x medium-mu dual triode and beam power pentode, 12-pin base
6AK10 – Compactron High-mu triple triode for use as NTSC chroma signal demodulator matrix in analog color TV receivers, 12-pin base
6AL6-G – Beam power tube for early TV use. Same as type 6L6-G, but with scrambled pinout and anode connected to top cap.
6AL7-GT – Tuning indicator used in many early AM/FM Hi-Fi radios. Similar in function to "Magic Eye" tubes. Has two bar-shaped shadows; one grows to indicate signal strength, the other moves to indicate center tuning on FM.
6AM6, EF91, Z77 – Sharp-cutoff R.F. pentode used in receiver front ends and test gear such as VTVMs and TV broadcast modulation monitors.
6AN7, – Triode-Hexode Oscillator/Mixer (radio)
6AN8, – Triode-Pentode used in frame timebase circuits for television. Electrically fairly similar to ECL80 but with a different pinout.
6AQ5 – Beam-power pentode, 7-pin miniature similar of type 6V6.
6AQ8/ECC85 – Dual triode with internal shield. Designed for use as oscillator and mixer in FM receivers. The heater to cathode insulation is inadequate for use in cascode operation
6AS6 – Pentode with a fine-pitched suppressor grid which could serve as a second control grid. Used in radar phantastron circuits.
6AS7, 6080 – Dual low-mu Triode, low impedance, mostly used for voltage regulation circuits.
6AS11 – Compactron 1x high-mu + 1x medium-mu dual triode and sharp-cutoff pentode, 12-pin base
6AT6 – Dual Diode, High-mu Triode, miniature version of type 6Q7. Triode amplification factor: 70.
6AU4 – TV "Damper/Efficiency" Diode
6AU6, EF94, 6AU6A – Sharp-cutoff pentode
6AV6 – Dual Diode, High-mu Triode, miniature version of type 75. Triode amplification factor: 100. (Triode section similar in characteristics to one half of a 12AX7.)
6AV11 – Compactron Medium-mu triple triode, 12-pin base
6AX4 – TV "Damper/Efficiency" Diode
6AX5 – Full-wave rectifier. Octal base. Similar in structure to type 6X5, but with higher voltage and current ratings which are comparable to those of types 5Y3 and 80.
6BA6, EF93, W727, 5790 – Semiremote-cutoff R.F. Pentode (Often encountered in car radios)
6BD11 – Compactron 1x high-mu + 1x medium-mu dual triode and sharp-cutoff pentode, 12-pin base
6BE6, EK90, 5750, X727 – Pentagrid Converter (Often encountered in car radios)
6BF6 – Dual Diode, Medium-mu triode. Miniature version of octal type 6R7.
6BF8 – Sextuple diode with a common cathode
6BG6 – Beam tetrode, anode cap. Used in early TV magnetic-deflection horizontal-output stage.
6BH11 – Compactron Medium-mu dual triode and sharp-cutoff pentode
6BK4 – High Voltage beam Triode (30 kV anode voltage). Used as shunt regulator in color TV receivers and measurement equipment such as high voltage meters
6BK7 – Dual Triode with Internal shield between each section, used in RF circuits (Similar to 6BQ7)
6BK11 – Compactron 2x High-mu + 1x medium-mu triple triode preamplifier, 12-pin base; used in some guitar amps made by Ampeg.
6BL6 (5836) – Sutton tube, a reflex klystron used as a 250 mW CW microwave source, 1.6 to 6.5 GHz depending upon an external cavity. 4-pin peewee base with cavity contact rings and top cap
6BL8, ECF80 – General-purpose Triode pentode used in TV, audio and test gear
6BM6 (5837) – Sutton tube used as a 150 mW CW microwave source, 550 MHz to 3.8 GHz depending upon an external cavity. 4-pin peewee base with cavity contact rings and top cap
6BM8, ECL82 – Triode pentode used as the driver and output stages in audio amplifiers, audio output and vertical output stages in TV receivers and has even been seen in an electronic nerve stimulator.
6BN6 – Gated-beam discriminator pentode, used in radar, dual channel oscilloscopes and F.M. quadrature detectors (cf. 6DT6, nonode).
6BQ5, EL84,(N709) – 5.7 Watts AF Power pentode, noval base
6BQ6-GT – Beam Power Pentode, used as a Horizontal Deflection Output tube in monochrome TV receivers of the 1950s. Most commonly used in receivers with diagonal screen sizes less than 19 inches (48 cm). (However, may be found in some larger models.) Larger receivers often used similar type 6DQ6. Later versions of this tube branded as 6BQ6-GTB/6CU6.
6BQ7 – Dual RF/VHF triode with internal screen. The two sections can be used independently or in a cascode stage
6BQ7A – Improved 6BQ7 capable of operation at UHF frequencies
6BU8 – Split Anode TV Sync Separator
6BX6, EF80 – Sharp-cutoff RF/IF/Video pentode, noval base
6BY6 – Similar to type 6CS6, but with higher transconductance. 3BY6 with a different heater
6CA11 – Compactron High-mu dual triode and sharp-cutoff pentode
6CB6 – Remote-cutoff R.F. Pentode used in video I.F. circuits of the 1950s and early 1960s.
6CG7 – Dual Triode (used in TV and some audio amplifiers including modern solid-state designs often as a cathode follower, similar to 6SN7)
6CJ6 – Line Output Pentode
6CL6 – Power pentode
6CM5, EL36, EL360 – Audio and TV Line Output Beam Power Tetrode.
6CS7 – Double Triode with dissimilar triodes. Used in televisions and tube amplifiers. 6CS7 Tube, Double Triode, Data Sheets | Bergholt.net
6CW4 – Nuvistor high-mu VHF triode, most common one in consumer electronics
6CZ5 – Beam pentode for use in vertical deflection or audio amplifier. In certain applications, it can be used in place of a 6973.
6DA6, EF89 – R.F. Pentode used in AM/FM radios manufactured outside North America.
6DJ8, ECC88, E88CC, 6922, 6N23P, 6N11 – Dual Audio and R.F. Triode (often used in TV broadcast equipment, test gear, oscilloscopes and audiophile gear) similar to 6ES8
6DQ6 – Beam Power Pentode, used as a Horizontal Deflection Output tube in monochrome TV receivers of the 1950s. Most often found in receivers with diagonal screen measurements larger than 17 inches (43 cm). Smaller receivers often used similar type 6BQ6-GT. Also used as Audio Output tubes in Standel guitar amplifiers. Later versions branded as 6DQ6-B/6GW6.
6DR8, EBF83 – R.F. pentode which will operate with 12 V anode supply, used as I.F. amplifier in car radios which run directly off the 13.5 volt supply.
6DS4 – Nuvistor VHF triode used in TV tuners immediately prior to the introduction of solid state tuning circuits. (RCA TVs equipped with a 6DS4 tuner bore the trademark "Nu-Vista Vision"); successor of the 6CW4.
6DS8, ECH83 – Triode-heptode Local oscillator-Mixer which will operate with 12 V anode supply, used in car radios which run directly off the 13.5 volt supply.
6DT6 – Quadrature detector used in TV audio circuits of the 1950s and early 1960s; cf. 6BN6, nonode.
6DV4 – Medium-mu Nuvistor triode for UHF oscillators; some versions had a gold-plated envelope
6DX8 – Triode pentode
6EM5 – TV Vertical Output Pentode
6ES6, EF98 – R.F. pentode which will operate with 12 V anode supply, used as tuned R.F. amplifier in car radios which run directly off the 13.5 volt supply.
6ES8, ECC89, E89CC – Dual Triode used as cascode R.F. amplifier in TV tuners and V.H.F. receiver front ends, also used as general-purpose dual triode in test gear, similar to 6DJ8
6EZ8 – High-mu triple triode, Noval base
6FH8 – Medium-mu triode and three-anode sharp-cutoff tetrode for use in TV receivers and complex wave generators
6GK5 – Miniature V.H.F. triode (Used as V.H.F. local oscillator in some T.V. Turret Tuners)
6GM5 – Beam power pentode, identical to 7591 and 7868 with a Noval base
6GV8, ECL85 – Triode Pentode (TV vertical output)
6GW8, ECL86 – Audio Triode Pentode (audio, TV vertical output)
6GY8 – High-mu triple triode for use as oscillator, mixer, RF amplifier or AFC tube, Noval base
6HS8 – Dual-anode pentode for TV receiver sync separation service or as a two-channel VCA
6JU8A – 9 mA, Quad diode, units 1&2 and 3&4 internally series-connected
6KM8 – Diode and three-anode sharp-cutoff tetrode for use in musical instruments, frequency dividers and complex wave generators
6LF6 – Beam power tetrode with a duodecar Compactron base and anode cap, for CRT horizontal-deflection amplifiers
6SB7Y (octal), 6BA7 and 12BA7 (Noval) – VHF pentagrids, 1946
6SC7 – High-mu dual triode (Both sections share a single cathode)
6SK7 – Remote-cutoff pentode (Used in I.F. stages of North American radios) Miniature version: 6BD6
6SL7, ECC35 – Dual triode (Used in TV and general electronics)
6SN7, ECC32, B65, 13D2, CV1986, 6042 – Medium-mu dual triode (Used in Audio Amplifiers, Hammond Organs and Television; extensive use in World War II radar) Each section is equivalent to a 6J5. Miniature version: 12AU7
6SS7 – Remote-cutoff pentode (150 mA heater version of the 6SK7, found in some AA6 radios as both the RF amplifier and first IF). This is the only tube to have a same-letter repetition
"7" prefix Loctal tubes
These tubes all have 6.3 volt AC/DC heaters.
7A4 – Medium-mu triode, Loctal version of type 6J5, often numbered 7A4/XXL
7A5 – Beam power pentode, Loctal version of type 6U6GT
7A6 – Dual detector diode, similar to type 6H6
7A7 – Remote-cutoff pentode, Loctal version of type 6SK7
7C5 – Beam power pentode, Loctal version of type 6V6
7C6 – High-mu triode, dual detector diode
7C7 – Sharp-cutoff pentode
7E5 – Medium-mu high-frequency triode
7E6 – Medium-mu triode, dual detector diode, Loctal version of types 6R7 and 6SR7, electronically identical to miniature type 6BF6.
7E7 – Semiremote-cutoff pentode, dual detector diode, similar to types 6B7 and 6B8
7F7 – High-mu dual triode, Loctal version of type 6SL7-GT
7F8 – Medium-mu VHF triode, used as amplifier or converter
7G7 – Sharp-cutoff pentode
7G8 – Sharp-cutoff dual tetrode
7H7 – Semiremote-cutoff pentode
7J7 – Triode-heptode converter, similar to type 6J8-G
7K7 – High-mu triode, dual detector diode, similar to types 6AT6 and 6Q7
7L7 – Sharp-cutoff pentode
7N7 – Dual medium-mu triode, Loctal version of type 6SN7-GT
7Q7 – Pentagrid converter, similar to type 6SA7
7R7 – Remote-cutoff pentode, dual detector diode
7S7 – Triode-heptode converter
7T7 – Sharp-cutoff pentode
7V7 – Sharp-cutoff pentode; 7W7 but with the suppressor grid on pin 4, an internal shield on pin 5, and the cathode on pin 7
7W7 – Sharp-cutoff pentode; 7V7 but with the suppressor grid and internal shield on pin 5, and the cathode on pins 4 and 7
Note: When substituting a 7V7 for a 7W7 or vice versa, verify connections on socket pins 4 and 7; pin 5 is usually connected to the chassis
7X6 – Dual rectifier diode
7X7 – High-mu triode, dual detector diodes on separate cathodes, used as FM discriminator and AF amplifier, often numbered 7X7/XXFM
7Y4 – Full-wave rectifier
7Z4 – Full-wave rectifier
7AB7 – Sharp-cutoff pentode
7AD7 – Power pentode
7AF7 – Dual medium-mu triode
7AG7 – Sharp-cutoff pentode
7AH7 – Remote-cutoff pentode
7AJ7 – Sharp-cutoff pentode
7AK7 – Sharp-cutoff, dual control pentode for computer service. Perhaps the first active device specifically designed for computer use.
12 volt heater tubes
12A5 – Power pentode. UX7 base. Center-tapped 12.6 V/300 mA resp. 6.3 V/600 mA heater. Mostly used in pre-war car radios.
12A7 – Power pentode, rectifier diode. Pentode section is similar to type 38. Diode has a low power rating – 120 volt, 30 mA – that limits the number of tubes that can be tied to its B+ circuit. Used in one-tube portable phonographs and a few two- and three-tube radios. Forerunner of such types as 32L7-GT, 70L7-GT and 117L7-GT. UX7 base with top cap. Not related to types 2A7 and 6A7.
12AE10 – Compactron Beam power tube and sharp-cutoff pentode
12AL5 – Dual diode (similar to 6AL5 except for heater)
12AT6 – Dual diode/triode (Commonly replaced by 12AV6 in consumer radios)
12AT7, ECC81, 6060, B309, M8162 – High-mu dual triode. Commonly used as R.F. amplifier/mixer in VHF circuits.
12AU7, ECC82, 6067, B329, M8136 – Medium-mu dual triode. Two 6C4/EC90s in one envelope;[34] however, it is only specified as an audio frequency device. Commonly used in audio applications and TV receivers.
12AV6 – Dual diode/High-mu triode (see also: 6AV6)
12AV7, 5965 – Medium-mu dual triode. Principally designed for VHF amplifier/mixer operation.[35]
12AX7, ECC83, 6057, B327, M8137 – High-mu dual triode. Very similar to triode section of 6AV6. Commonly used in high-gain audio stages and as power inverters in class A/B amplifiers.
12AW7 – See 12DW7 below. Called AW by some, but proper name is DW.
12AY7 – Dual Triode. Medium gain but low noise, intended for low-level/preamplifier use.
12AZ7 – Dual Triode. Medium-mu, AF Amplifier, or combined oscillator and mixer, Noval base.[36]
12BA6 – Remote-cutoff pentode, 6BA6/EF93 with a different heater
50X6 – Dual Diode (Loctal, commonly used as a rectifier-doubler)
50DC4 – Rectifier diode (Similar to 35W4 except for heater)
50EH5 – Beam Power tube, (Similar to 50C5 but with higher gain, some radios that use this tube do not have an audio amplifier section.)
50HK6 – Power pentode (Filament is tapped for use with a dial lamp)
117 volt heater tubes
All of the following tubes are designed to operate with their heaters connected directly to the 117 volt (now 120 volt) electrical mains of North America. All of them use indirectly heated cathodes. All of them incorporate at least one rectifier diode.
Rectifier diode – Beam power pentode combinations
117L7GT
117M7GT
117N7GT
117P7GT
Rectifier tubes
117Z3 – Single diode, 7-pin miniature version of 117Z4GT
117Z4GT
117Z6GT – Dual diode, can be used as a voltage doubler
Other tubes with nonstandard heater voltages
The tubes in this list are most commonly used in series-wired circuits.
5J6 – General purpose RF dual triode with common cathodes, a 6J6 with a 4.7 volt/600 mA controlled warm-up heater[39]
8B10 – Compactron Dual triode and dual diode
2AF4 – UHF triode oscillator
2BN4 – VHF triode
2CW4 – Nuvistor high-mu VHF triode, 6CW4 with a 2.1 volt/450 mA heater; used in TV receivers with series heater strings
2H21 – Phasitron, a magnetically controlled beam-deflection phase modulator tube[41] similar to the 5593, used in early FM broadcast transmitters[42][43][44]
6C21 – Triode radar modulator for "hard tube" pulsers.
7C23 – 120 kW Power triode for high voltage pulse operation.
8D21 – Internally water cooled dual tetrode used in early VHF TV transmitters.
9C21 – 100 kW Water-cooled power triode, directly heated, 4-pin base with dual top caps for grid and anode
List of EIA professional tubes
Note: Most of these are special quality versions of the equivalents given. Some manufacturers preceded the EIA number with a manufacturer's code, as explained above.
5000s
5331, 5332, 5514 – Directly heated power triodes, 4-pin base with anode top cap
5556 – Directly heated power triode, 4-pin base
5593 – Phasitron, a magnetically controlled beam-deflection phase modulator tube[46] similar to the 2H21, used in early FM broadcast transmitters[42][43][44]
5608 – Dual power triode, designed for use with AC anode voltage and critical grid leak requirements
5651 – 86-volts, cold-cathode, glow-discharge voltage reference, 7-pin miniature base
5654, CV4010, 408A – VHF pentode; common in vintage radar IF amplifiers; premium version of 6AK5, EF95, 6J1P (6Ж1П)
5729 – Beam-deflection, 30-channel analog multiplexer for telecomms transmitting channel banks, internal electrostatic focusing and deflection to determine through which one out of 30 grids the electron beam passes to the common anode.[47] Cf. 5738, 6090, 6091, 6170, 6324
5731 – Narrow-tolerance selected 955Acorn triode for use in Radiosonde weather balloon transmitters
5734 – Mechano-electronic displacement sensor; a vacuum triode with its anode mounted on a shaft that extends through a thin, flexible metal diaphragm; shaft movement is reflected in anode current; Fres = 12 kHz[48][49]
5738 – Beam-deflection, secondary emission, 25-channel analog multiplexer, internal electrostatic focusing and deflection to determine which one out of 25 individually controllable dynodes receives the electron beam controlled by a common grid.[50] Cf. 5729, 6090, 6091, 6170, 6324
5749– RF pentode; premium version of 6BA6, EF93, W727
5750 – Heptode mixer; premium version of 6BE6, EK90, X727
5751 – Low-noise avionics dual triode with separate cathodes
5814A – Industrial, computer-rated version of 12AU7/ECC82
5836, 6BL6 – Sutton tube, a reflex klystron used as a 250 mW CW microwave source, 1.6 to 6.5 GHz depending upon an external cavity. 4-pin peewee base with cavity contact rings and top cap
5837, 6BM6 – Sutton tube used as a 150 mW CW microwave source, 550 MHz to 3.8 GHz depending upon an external cavity. 4-pin peewee base with cavity contact rings and top cap
5845 – Dual directly heated saturated-emission diode. Acts as a heating current-controlled, variable series resistor in voltage/current stabilizer circuits.
5876A – Glass pencil-type disk-seal UHF power triode up to 2 GHz
5963, 5964, 5965 – Dual triode, designed for high speed digital computers, has a high zero-bias anode current, industrial/computer-rated versions of 12AV7
5998, 6336A, 6394, 6520, 6528, 7802 – Dual power triodes, designed for series voltage regulator applications
6000s
6047 – Additron, a triple-control grid, split-anode tetrode for use as a single-bit digital full adder[51] (technically a hexode)
6057, M8137 – High-mu dual triode; premium version of 12AX7, ECC83, B339
6059 – Low-microphonics pentode; premium version of 6BR7
6060, M8162 – High-mu dual triode; premium version of 12AT7, ECC81, B309
6064, M8083 – R.F. pentode; premium version of 6AM6, EF91, Z77
6067, M8136 – Medium-mu dual triode; premium version of 12AU7, ECC82, B329
6080 – Very-low impedance dual power triode, designed for series voltage regulator applications, now popular for output transformerless audio amplifiers; premium version of 6AS7
6082 – Ruggedized, indirectly heated power triode, octal base
6090 – Beam-deflection, 18-channel analog demultiplexer for telecomms receiving channel banks, internal electrostatic focusing and deflection to determine which one out of 18 anodes receives the electron beam controlled by a common grid.[52] Cf. 5729, 5738, 6091, 6170, 6324
6091 – Beam-deflection, 25-channel analog multiplexer for telecomms transmitting channel banks, internal electrostatic focusing and deflection to determine through which one out of 25 grids the electron beam passes to the common anode.[53] Cf. 5729, 5738, 6090, 6170, 6324
6146 – 60 MHz, 120 W AF/RF/VHF beam power pentode
6146B (8298A) – Improved version of 6146, 6146A and 8298.
6170 and 6324 – Beam-deflection, 25-channel analog multiplexer for telecomms transmitting channel banks, external focusing and deflection by a multiphase, rotating magnetic field to determine through which one out of 25 grids the electron beam passes to the common anode.[54] Cf. 5729, 5738, 6090, 6091
6173 – Pencil-type disk-seal UHF diode up to 3.3 GHz
6196 – Directly heated dual, compensating electrometer tetrode with space charge grids for use in the 2 branches of a differential-in, differential-out bridge circuit[55]
6218/E80T (CV5724) – Modulated, single-anode beam deflection tube for pulse generation up to 375 MHz; shock resistant up to 500 g[56][57]
6263 – Pencil-type disk-seal UHF power triode up to 500 MHz, Panode = 8 W
6351 – Secondary emission pentode for wide band RF amplifiers
6361 – Convectron, an inclinometer tube that senses tilt from the vertical by means of different gas convections around a heating wire in a glass envelope, of two 6361s aligned in a 90° V-shaped position to each other and the heating wires connected in a bridge circuit
6441 – 650 V, 100 mAavg, 300 mAsurgeTacitron, a grid turn-off hydrogen thyratron with a grid that forms a shield around both the cathode and anode and separates the two by a wire mesh, so the arc discharge can be extinguished by a negative grid that surrounds the positive anode with a field of opposing polarity and inhibits conduction, taking over part of the anode current during deionisation – similar to today's GTOs; Octal base[58]
6462 – Magnetic pickup tube, a 1-axis beam-deflectionmagnetometer with approx. 1 G (100 μT) resolution; an electron beam is electrostatically centered between two anodes while no magnetic field is present; the magnetic field to be detected will then deflect the beam more towards one of the anodes, resulting in an imbalance between the two anode currents[59]
6762 – Wamoscope, a TWT/CRT combination used to directly visualize an incoming microwave signal by electron velocity-sorting[64]
6835, 7570, 7571 – Single-electron gunrecording storage tube, an analog videoframe freezer tube. This was achieved by a CRT that writes the video image onto a thin, dielectric target and subsequently can read the generated charge pattern up to 30000 times from that target, producing a video signal containing a static shot that resembles a still photograph[65][66][67]
6877, 7233 – Power triodes, designed for series voltage regulator applications
6900 – Dual power triode for pulse applications in missiles, avionics and industrial systems; noval base
6922 (E88CC, industrial version of 6DJ8/ECC88)
6973 – Power pentode similar in shape, size, and base to the EL84/6BQ5, but with a high gain for more than double the output range. Popular in some makes of 1960s era guitar amplifiers, though rarely implemented in modern times.
7000s
7025 – Low-hum, noise and microphonics version of 12AX7
7027 – AF Power pentode, improved 6L6 with a 25 Watt anode and different pinout
7199 – Triode-pentode, noval base. Similar to 6U8.
7229,[69]7230,[70]7231,[71]7232,[72]7439, 7440, 7441, 7595, 7596, 7597, 7598, 7599, 7600, 7602 – Krytrons, cold-cathode gas-filled trigger tubes with a primer electrode for use as a very high-speed, high-surge current switch[73] – second source to EG&G
7236 – Dual power triode for use as long-life power amplifier in computer applications
7241, 7242 – Triple-cathode power triodes, designed for hi-rel cathode follower series voltage regulator applications where the cathode is split into 3 sections connected together via balancing resistors to equalize the emission along the cathode
7360 – Beam deflection tube, used as balanced modulator/mixer up to 100 MHz[74][75][76]
7414 – Time Totalizer, a metal-vapor coulometer, a cold-cathode gas-discharge tube where metal is constantly sputtered off the cathode and deposited on a collector element whose resistance therefore decreases with elapsed time[77]
7430 – Flat-envelope version of the 6AK5/EF95 sharp-cutoff pentode for use on PCBs in Radiosonde weather balloon transmitters
7548 – Secondary emission hexode for pulse generator and pulse amplifier applications
7551 – Noval-base beam power pentode with 12-15 volt heater. 6.3 volt heater version was 7558. Used in telephony, RF amplification, and more rarely AF amplification.
7554 – Ceramic/metal pencil-type disk-seal SHF power triode up to 5 GHz
7572, 7575, 7702 – Dual-electron gunrecording storage tube, a realtime analog videoframe freezer tube with simultaneous R/W, and storing capability. This was achieved by a CRT/camera tube combination; the CRT part writes the video signal onto a thin, dielectric target, which can hold the generated charge pattern for many hours; the camera part reads the charge pattern from the back side of this target, producing a video signal containing a static shot that resembles a still photograph[78][79][80]
7586 – First Nuvistor available on the market, medium-mu triode
7587 – Nuvistor Sharp cutoff tetrode
7591 – Beam power pentode, octal base. Found in many guitar amps made by Gibson and Ampeg.
7763 – Beam deflection tube, used as IF amplifier/limiter where a constant phase shift over a wide range of input signal amplitudes is required[81]
7768 – Miniature ceramic/metal disk-seal planar SHF triode up to 4 GHz
7868 – Beam power pentode, B9E Novar base version of 7591. Found in many of the once popular Challenger series PA amps made by Bogen Communications, also found in some guitar amplifiers made by Ampeg.
8514 – 1 kV/10...800 μA Corona voltage reference, 7-pin with anode top cap
8515 – 1.6 kV/20...950 μA Corona voltage reference, 7-pin with anode top cap
8526 – Nuvistor-type medium-mu dual triode
8873 – 500 MHz, 200 W anode dissipation power triode
8874 – 500 MHz, 400 W anode dissipation power triode
8875 – 500 MHz, 300 W anode dissipation power triode
8877 = 3CX1500A7 – Ceramic, forced air cooled, 1.5 kW power triode
8974 (X-2159) – Giant water-cooled megawatt-class tetrode used for very high-power broadcast and industrial service; possibly the most powerful tube ever commercially produced
XP1010 – 10-stage photomultiplier for r-ray and gamma ray scintillation spectrometry, selected 150AVP for low noise and resolution, blue-sensitive Sb-Cs cathode, Ag-Mg-O-Cs dynodes, duodecal (12-pin) base
XP1011 – 10-stage photomultiplier, blue-sensitive Sb-Cs cathode, Ag-Mg-O-Cs dynodes, shock and vibration-proof, duodecal base
XP1120 – 17-stage photomultiplier for x-ray (λ > 200 pm) or UV (λ < 150 nm) photon counting in a high-vacuum environment, Nickel cathode, Cu-Be-O dynodes, coaxial outputs, built-in resistor ladder
XP1121 – 17-stage photomultiplier for ion (> 10 keV) or electron (0.1...10 keV) photon counting in a high-vacuum environment, Cu-Be-O cathode and dynodes, coaxial outputs, built-in resistor ladder
XP1122 – 17-stage photomultiplier for x-ray (λ > 200 pm) or UV (λ < 150 nm) photon counting in a high-vacuum environment, Nickel cathode, Cu-Be-O dynodes, coaxial outputs, built-in resistor ladder
XP1123 – 17-stage photomultiplier for ion (> 10 keV) or electron (0.1...10 keV) photon counting in a high-vacuum environment, Cu-Be-O cathode and dynodes, coaxial outputs, built-in resistor ladder
XP1130 – 17-stage photomultiplier for x-ray (λ > 200 pm) or UV (λ < 150 nm) photon counting in a high-vacuum environment, Nickel cathode, Cu-Be-O dynodes, coaxial outputs, built-in resistor ladder
XP1131 – 17-stage photomultiplier for ion (> 10 keV) or electron (0.1...10 keV) photon counting in a high-vacuum environment, Cu-Be-O cathode and dynodes, coaxial outputs, built-in resistor ladder
XX1190 – 1. Gen. inverter, 1-stage image intensifier
XX1192 – 1. Gen. inverter, 1-stage image intensifier
XX1200 – 1. Gen. inverter, 1-stage image intensifier
XX1211 – 1. Gen. inverter, 3-stage image intensifier
XX1270 – 1. Gen. inverter, 2-stage image intensifier
XX1400 – 2. Gen. inverter, 1-stage image intensifier
XX1430 – 1. Gen. inverter, 1-stage image intensifier
XX1510 – 1. Gen. 3-stage image intensifier
XX1610 – 2. Gen. image intensifier
XX1800 – 2. Gen. proximity focused, 1-stage image intensifier
Y - Vacuum tubes
YA
YA1000 – 5 kV, 5mA, Directly heated saturated-emission diode with pure-metal cathode for use in RMS converters of AC voltage/current stabilizer circuits, noval base[83]
YD
YD1000 – 45 kW, Water-cooled RF power triode
YD1001 – 35 kW, Air-cooled RF power triode
YD1012 – 360 kW, Vapor-cooled RF power triode
YD1130 – 400 W, Air-cooled, linear RF/AF power triode
YD1342 – 30 MHz, 530 kW, Water-cooled RF power triode
YD1352S (8867, DX334) – 5 MHz, 2 kW, Water-cooled Neotron, a gridless field-effect tube where a magnetically focused electron beam is modulated by varying the voltage of a gate electrode surrounding it. Used as RF power amplifier or oscillator
YG
YG1000 – Directly heated electrometer tetrode with an oxide cathode and a space charge grid, grid current ≤600 fA, magnoval base with input grid on top cap
ZA1001 – Neon-filled, coaxial, tritium-primed, sputtered-molybdenum cold-cathode switching diode with traces of heavy gas (krypton/xenon) for slow de-ionization, e.g. for low-frequency relaxation oscillators; meshed cylinder anode, all-glass wire-ended
ZA1002 – Neon-filled, coaxial, tritium-primed, sputtered-molybdenum cold-cathode switching diode, large difference between burning and ignition voltage, meshed cylinder anode, 3-pin all-glass wire-ended
ZA1003 – Neon-filled, coaxial, tritium-primed, sputtered-molybdenum cold-cathode switching diode for use as indicator tube in transistorized circuits, meshed cylinder anode, 3-pin all-glass wire-ended
ZA1004 – Neon-filled, coaxial, tritium-primed, sputtered-molybdenum cold-cathode switching diode, small difference between burning and ignition voltage, for use as indicator tube in transistorized circuits or as 86.4 V Voltage reference, meshed cylinder anode, 3-pin all-glass wire-ended
ZA1005 – Neon-filled, coaxial, tritium-primed, sputtered-molybdenum cold-cathode switching diode for use like a DIAC in thyristor circuits, meshed cylinder anode, 2-pin all-glass wire-ended
ZC
ZC1010 (Z661W) – 8 mAavg, 50 mApeak, Gas-filled, cold-cathode AC trigger pentode, two starters and a primer electrode, positive starter voltage, 5-pin all-glass wire-ended, envelope inside radioactively coated for a constant ignition voltage, for use in bidirectional counters
ZC1040 – 25 mA, Gas-filled, cold-cathode AC trigger tetrode, one starter and a primer electrode, positive starter voltage, noval base
ZC1050 – 2 mA, Gas-filled, cold-cathode, luminescent trigger tetrode, one starter and a primer, 300 mlm light output[85] for use as self-displaying shift register cells in large-format, crawling-text dot-matrix displays;[86] all-glass wire-ended
ZC1060 – 20 mAavg, 5 kApeak, Gas-filled, cold-cathode, high-current trigger triode for e.g. capacitor discharge circuits. One external (capacitive) starter electrode
ZM1020 (Z520M) – ZM1022 with a red contrast filter coating
ZM1021 (Z521M) – ZM1023 with a red contrast filter coating, for use with ZM1020
ZM1022 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH top-viewing, no decimal point
ZM1023 – A V Ω % + - ~ Neon-filled digital indicator tube, 15.5mmCH top-viewing, for use with ZM1022 in digital multimeters
ZM1024 – ZM1025 with a red contrast filter coating, for use with ZM1020
ZM1025 – c/s Kc/s Mc/s μs ms ns s Neon-filled digital indicator tube, 15.5mmCH top-viewing, for use with ZM1022 in digital frequency counters
ZM1030 – ZM1032 with a red contrast filter coating
ZM1031 – ZM1031/01 without the ~
ZM1031/01 – ZM1033/01 with a red contrast filter coating, for use with ZM1030
ZM1032 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH side-viewing, no decimal point, 5 dual cathodes and separate odd/even anode compartments for biquinary multiplexing
ZM1033/01 – + - ~ Neon-filled digital indicator tube, 15.5mmCH side-viewing, separate anode compartment for + , for use with ZM1032
ZM1040 (Z522M) – ZM1042 with a red contrast filter coating
ZM1041 – ZM1043 with a red contrast filter coating, for use with ZM1040
ZM1041S – ZM1043S with a red contrast filter coating, for use with ZM1040
ZM1042 (Z5220M) – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 30mmCH side-viewing, no decimal point
ZM1043 – + - Neon-filled digital indicator tube, 30mmCH side-viewing, for use with ZM1042
ZM1043S – Y X + W U Z - Neon-filled digital indicator tube, 30mmCH side-viewing, for use with ZM1042
ZM1047 – ZM1049 with a red contrast filter coating, for use with ZM1040
ZM1049 – T F S N Z Y G H M X Neon-filled digital indicator tube, side-viewing, for use with ZM1042 in numerical control systems
ZM1050 (Z550M, 8453) – Neon-filled digital indicator tube, top-viewing, dekatron-type readout with common anode and common cathodes, pulsating anode voltage, controlled by 5-volts sensitive starter electrodes, for transistorized circuits
ZM1130 – ZM1132 with a red contrast filter coating
ZM1131 – ZM1133 with a red contrast filter coating, for use with ZM1080
ZM1132 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, side-viewing, left and right decimal point
ZM1133 – + - ~ Neon-filled digital indicator tube, side-viewing, for use with ZM1132
ZM1136L/R – ZM1138L/R with a red contrast filter coating
ZM1137 – ZM1139 with a red contrast filter coating, for use with ZM1136L/R
ZM1138L/R – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 13mmCH side-viewing, left or right decimal points (specify)
ZM1139 – + - ~ Ω Neon-filled digital indicator tube, 13mmCH side-viewing, for use with ZM1138 in digital multimeters
ZM1162 – 0 1 2 3 4 5 6 7 8 9 Long-life neon-filled digital indicator tube, 15.5mmCH top-viewing, no decimal point, rectangular envelope for close stacking in both axes
ZM1170 – ZM1172 with a red contrast filter coating
ZM1172 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH side-viewing, no decimal point
ZM1174 – ZM1175 with a red contrast filter coating
ZM1175 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH side-viewing, left decimal point
ZM1176 – ZM1177 with a red contrast filter coating
ZM1177 – ZM1175, but right decimal point
ZM1180 – ZM1182 with a red contrast filter coating
ZM1181 – ZM1183 with a red contrast filter coating, for use with ZM1180
ZM1182 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 16mmCH top-viewing, no decimal point, semi-rectangular envelope for close horizontal stacking
ZM1183 – + - ~ Ω Neon-filled digital indicator tube, top-viewing, 13mmCH for use with ZM1182 in digital multimeters
ZM1184D – ZM1185D with a red contrast filter coating
ZM1185A (GR1420) – 1 2 3 4 5 6 U K E R Neon-filled digital indicator tube, 16mmCH top-viewing
ZM1185D (GR1430) – ∇ Δ Neon-filled digital indicator tube, 16mmCH top-viewing, for use in elevators
ZM1185E (GR1472) – 0 1 2 3 4 5 - t kg + Neon-filled digital indicator tube, 16mmCH top-viewing
ZM1200 – Pandicon, multiplexed 14-digit display tube with decimal points and punctuation marks, pin connections on both ends
ZM1202 – 12-Digit Pandicon
ZM1204 – 10-Digit Pandicon
ZM1206 – 8-Digit Pandicon
ZM1210 – ZM1212 with a red contrast filter coating
ZM1212 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH side-viewing, left decimal point, all-glass wire-ended
ZM1220 – ZM1222 with a red contrast filter coating
ZM1222 – 0 1 2 3 4 5 6 7 8 9 Large neon-filled digital indicator tube, 40mmCH side-viewing
ZM1230 – ZM1232 with a red contrast filter coating
ZM1232 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 15.5mmCH upside-down side-viewing, no decimal point
ZM1240 – ZM1242 with a red contrast filter coating
ZM1241 – ZM1243 with a red contrast filter coating, for use with ZM1240
ZM1242 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 16mmCH side-viewing, right decimal point
ZM1243 – + - ~ Ω Neon-filled digital indicator tube, 16mmCH side-viewing, for use with ZM1242 in digital multimeters
ZM1330 – ZM1332 with a red contrast filter coating
ZM1331 – ZM1333 with a red contrast filter coating, for use with ZM1330
ZM1332 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 13.1mmCH side-viewing, left and right decimal points, all-glass wire-ended
ZM1333 – + - ~ Ω Neon-filled digital indicator tube, 13.1mmCH side-viewing, all-glass wire-ended, for use with ZM1332 in digital multimeters
ZM1334 – ZM1336 with a red contrast filter coating
ZM1335 – ZM1337 with a red contrast filter coating, for use with ZM1334
ZM1336 – 0 1 2 3 4 5 6 7 8 9 Neon-filled digital indicator tube, 13.1mmCH side-viewing, left and right decimal points, multiplex-capable
ZM1337 – + - ~ Ω Neon-filled digital indicator tube, 13.0mmCH side-viewing, right decimal point (!), all-glass wire-ended, red contrast filter coating, for use with ZM1336 in digital multimeters
ZP1600 – Halogen-quenched Geiger-Müller tube, 19.8 mm diameter mica window, X-rays, 6.0 to 20 keV energy, 60 to 200 pm wavelength range
ZP1610 – Side window, organically quenched Geiger-Müller tube. 7 x 18 mm mica window; X-rays, 2.5 to 40 keV energy, 30 to 500 pm wavelength range
ZP1700 – Halogen-quenched, cosmic-ray guard counter tube for low-background measurements; to be used with another radiation counter tube in an anticoincidence circuit
ZP1800 – Halogen-quenched Geiger-Müller tube for use at temperatures up to 200 °C, γ
ZP1810 – Halogen-quenched Geiger-Müller tube for use at temperatures up to 200 °C, γ, low sensitivity, up to 40 mGy/h
ZP1860 – Halogen-quenched Geiger-Müller tube, β and γ
QE05/40 (6146) – 40 W Radiation-cooled output beam-tetrode, popular amongst radio amateurs as a final RF amplifier
QE08/200 – 200 W Beam-tetrode
QEL
QEL1/150 – Air-cooled 150 W beam-tetrode
QEL1/250 – Air-cooled 250 W beam-tetrode
QEP
QEP20/18 – 18 W Beam-tetrode for use as a pulse modulator
QQC
QQC03/14 – 14 W Dual beam-tetrode
QQE
QQE02/5 (6939) – 5 W Dual beam-tetrode
QQE03/12 (6360) – 12 W Dual beam-tetrode
QQE03/20 (6252) – 20 W Dual beam-tetrode
QQE04/5 (7377) – 5 W Dual beam-tetrode
QQE06/40 (5894, YL1060) – 40 W dual beam-tetrode, internally neutralized, Septar base with dual anode top cap
QQV
QQV02/6 – 6 W dual beam-tetrode
QQV03/20A – 20 W Radiation-cooled split-anode tetrode made by Mullard and used in the 1940s, 1950s and 1960s as a VHF frequency-doubling output stage with balanced output.
QQV07/50 – 50 W Dual beam-tetrode
QQZ
QQZ03/20 (8118, YL1020) – 20 W Dual beam-tetrode
QQZ06/40 (YL1030) – 40 W Dual beam-tetrode
QV
QV04/7 – 7 W Beam-tetrode
QV05/25 (807) – 25 W Radiation-cooled output beam-tetrode made by Mullard.
QV2/250C – 250 W Beam-tetrode
QY
QY3/65 – 65 W Beam-tetrode
QY5/3000A – 3 kW Beam-tetrode
QY5/3000W – Water-cooled version of QY5-3000A
QYS
QYS50/P40 – Pulsed power tetrode, Silica envelope, 50 kV anode voltage, considerable x-radiation, 810 °C anode temperature at 700 W anode dissipation, 40 A anode current at duty factor 0.0005, Vg1Cut-off (IA=1 mA@VA=55 kV): > -3.4 kV, gm: 38 mS
TD03/5 – Indirectly heated disk-seal UHF power triode up to 2 GHz
TD03/10 – Indirectly heated disk-seal UHF power triode up to 2.8 W, 3.75 GHz
TD03/10F – TD03/10 with internal feedback for use as an oscillator
TD04/20 – Indirectly heated disk-seal UHF power triode up to 13.5 W, 1 GHz
TD1/100C = 2C39BA – Indirectly heated, ceramic disk-seal UHF power triode up to 24 W, 3.5 GHz[87]
TD2/400 – Directly heated, ceramic disk-seal UHF power triode up to 600 W, 900 MHz
TD2/500 – Directly heated, ceramic disk-seal UHF power triode up to 500 W, 940 MHz
TE
TE05/10 – RF power triode up to 150 MHz
TX
TX12/12W – Water-cooled RF power triode
TX12/20W – Water-cooled RF power triode
TX10/4000 – Power triode, Silica envelope, 12 kV anode voltage, 4 kW anode dissipation, 1.6 A cathode current, gm: 4.5 mS, for use as self-excited high-power oscillator in induction heating equipment.
TY
TY2/125 – 135 W VHF power triode up to 200 MHz
TY12/50A – Forced-air cooled 45 kW RF power triode up to 30 MHz
TY12/50W – Water-cooled 50 kW RF power triode up to 30 MHz
TYS
TYS2/250 – Power triode, Silica envelope, 2.5 kV anode voltage, 250 W anode dissipation
TYS4/500 – Power triode, Silica envelope
TYS5/1000 – Power triode, Silica envelope
TYS5/2000 – Power triode, Silica envelope
TYS5/3000 – Power triode, Silica envelope, 6 kV anode voltage, 950 °C anode temperature at 3.5 kW anode dissipation, 2.8 A cathode current, gm: 15 mS. Used in RF generators for induction hardening.
X - Thyratron
XGQ
XGQ2/6400 – 2 kV, 6.4 kW Mercury-vapor tetrode thyratron with anode and grid1 top caps
XR
XR1/1600 (5545) – 1 kV, 1.6 kW Inert gas-filled triode thyratron with anode top cap
XR1/6400 – 1 kV, 6.4 kW Inert gas-filled triode thyratron with anode top cap
Compagnie des Lampes (1921, "French Mazda") and Mazda-Belvu
Not to be confused with Compagnie des Lampes (1888, see above) nor with British Mazda (see above).
The 1921 incarnation of La Compagnie des Lampes (since 1953 as Lampe Mazda) made light bulbs and electronic tubes under the French Mazda brand. Many of their tubes were also available from Compagnie Industrielle Française des Tubes Electroniques (CIFTE)[88] under their Mazda-Belvu brand, which otherwise used mostly EIA, RETMA and Mullard–Philips tube designations.
Examples:
Before 1949:[89]
1883 – Indirectly heated, 350 V/125 mA full-wave rectifier, 5 V/1.6 A heater
TGI1-270/12 ТГИ1-270/12 – 12 kV, 270 A Hydrogen thyratron
Indicator tubes
IN-33 ИН-33 – Neon-filled, planar, dual 105-segment linear glow-transfer plasma bar graph display with three cathode strings, for use in VU meters etc.; similar to BG16101
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
⚫
ITM2-M ИТМ2-М – Four-color phosphored-thyratronlatchingpixel; 4x4 array of 4 subminiature dual-starter luminescent thyratrons each for the colors red, yellow, green and blue (thus, 5 intensities per color yields 54 = 625 colors), 4x4 matrix of 10-volts sensitive starter electrodes, cubic envelope for easy stacking in both axes, 12-pin all-glass wire-ended,[95] similar to today's RGBA LEDs
ITS1 ИТС1 – Green phosphored-thyratron latching seven-segment display, no decimal point, 5-volts sensitive starter electrodes, all-glass wire-ended, rectangular envelope for easy stacking in both axes
MTX-90 МТХ-90 – Small neon-filled thyratron for use as a latching single-dot indicator, top-viewing, top of envelope acts as a magnifier, all-glass wire-ended, comes with a blob of solder on the end of each wire for rapid installing, like today's ball grid arrays
1602 – Directly heated power triode used for A.F. amplification with low microphonics. 7.5 volt filament. 12 watts of A.F. operating in Class-A. 15 watts of low R.F. operating in Class-C. Similar to type 10.
1603 – Indirectly heated pentode used for A.F. amplification with low microphonics. Similar to types 6U7, 57, 6D6 and 6C6. UX6 Base.
1608 – Directly heated triode giving 20 watts at up to 45 MHz. 2.5 volt heater/filament. UX base.
1609 – Directly heated pentode used for A.F. amplification with low microphonics. American 5-Pin(UY)base.
1610 – Directly heated pentode specially designed for use as a crystal oscillator. 2.5 volt heater/filament, American 5-Pin base.
1612 – Pentagrid converter; low-microphonics version of type 6L7. Both control grids (1 and 3) are sharp-cutoff.
1619 – Beam Power Tetrode, similar to 6L6 with directly heated filament, common in World War II battle tank transmitters.
1624, 1625 – Very similar to the 807, but with different heater voltage
1626 – RF triode, very similar to 6J5 but with 12.6 volt filament
29C1 – Directly heated saturated-emission diode; acts as a heating current-controlled, variable series resistor in voltage/current stabilizer circuits.
200s
203A – 100 W, Directly heated RF transmitter power triode, 4-pin base, anode on top cap
204A – 250 W, Directly heated RF transmitter power triode, 3-pin base, anode on top cap
205D – 14 W, Directly heated AF or modulator power triode, 4-pin base
4598, 7539, 7828, 8087, 8098 – Graphechon dual-electron gun scan conversion tubes, analog video transcoders with simultaneous R/W capability for realtime resolution and frame rate transcoding between different analog video standards. This was achieved by a CRT/camera tube combination; the CRT part writes onto a thin, dielectric target; the camera part reads the generated charge pattern at a different scan rate from the back side of this target.[102][103][104][105][106] The setup could also be used as a genlock
4205E = 205E – Directly heated power triode, 4-pin bayonet base with offset pin
4270A = 270A = 3C/350E – Directly heated power triode, 3-pin base
4275A = 275A – Directly heated power triode, 4-pin base
4300A = 300A – Directly heated power triode, 4-pin base
4307A = 307A – Power pentode similar to the output beam-tetrode type 807. It differs from an 807 by being a directly heated pentode rather than an indirectly heated beam-tetrode. Both types are contained in an ST-16 bulb with an anode cap and 5-pin "American" UY base
The SY4307A is historically notable because a pair of them in parallel Class-C was used as the output stage in a transmitter built in secret by Australian soldiers in Japanese-occupied Portuguese Timor during World War II in 1942. This transmitter, now reconstructed and on display at the Australian War Memorial in Canberra, was called "Winnie the War Winner".[107]
7JP4 – Monochrome cathode ray tube common in early postwar TV receivers. Electrostatic deflection, P4 white, medium-persistence phosphor, 7-inch (180 mm) screen.
7JP7 – Monochrome cathode ray tube for use in early postwar radar displays. Electrostatic deflection, P7 blue-white, long-persistence phosphor, 5+1⁄2-inch (140 mm) screen.
700s
703A – Directly heated Doorknob UHF power triode up to 1.5 GHz
713A – Indirectly heated Little Doorknob UHF pentode, Bakelite Octal base
800 – Directly heated V.H.F. power triode, giving 35 watts up to 60 MHz and 18 watts at 180 MHz. American 4-Pin(UX)base with side locating pin.
801 – Directly heated power triode, used in pairs in Class-B in A.M. modulation sections of transmitters giving up to 45 watts of power at 60 MHz and 22 watts at 120 MHz.
802 – Indirectly heated H.F. power pentode, giving 8 watts up to 30 MHz and 4 watts at 110 MHz.
803 – Directly heated H.F. power pentode, giving 50 watts up to 20 MHz and 25 watts at 70 MHz.
804 – Directly heated H.F. power pentode, giving 20 watts up to 15 MHz and 10 watts at 10 MHz.
805 – Directly heated H.F. high-mu triode, giving 140 watts up to 30 MHz and 70 watts at 85 MHz.
806 – Directly heated H.F. high-mu triode, giving 390 watts up to 30 MHz 195 watts at 100 MHz.
807 – Indirectly heated H.F. beam power tetrode, giving 25 watts up to 30 MHz and 12 watts at 125 MHz. A variation of type 6L6 originally designed as a Class-C transmitter tube. Later used in pairs as push-pull outputs for high-wattage Class-AB2 audio amplifiers. Also used as a horizontal output tube in early TV receivers. One of the first commercial tubes that used the top cap to connect the anode (instead of the control grid) to the circuit.
808 – Directly heated H.F. high-mu triode, giving 140 watts up to 30 MHz and 70 watts at 130 MHz.
809 – Directly heated H.F. high-mu triode, giving 55 watts up to 27 MHz and 30 watts at 100 MHz.
810 – Directly heated H.F. triode, 10 volt filament and Zirconium Carbide anode. Base fits R.C.A. UT-541A Socket.
813 – Beam Power Tetrode possessing about 5 times the Anode dissipation of an 807.
814 – A directly heated Beam Power Tetrode giving about 130 watts at 30 MHz and 65 watts at 100 MHz operating in Class-C.
815 – An indirectly heated dual beam power pentode. Octal base.
825 – First commercially available klystrode, a VHF/UHF linear-beam transmitting tube, similar to a klystron
829 – A dual indirectly heated beam power tetrode. Two 6.3 volt heaters sharing a common tap.
830 – A directly heated triode giving about 50 watts at 15 MHz and 7.5 watts at 60 MHz operating in Class-C.
831 – A directly heated triode giving about 400 watts at 20 MHz and 200 watts at 60 MHz operating in Class-C. 11 volt heater/filament.
833 – A larger directly heated high-mu triode giving about 1 kW at 30 MHz and 500 watts at 45 MHz operating in Class-C. Usable up to 100 MHz at reduced power, (400 W). 10 volt heater/filament drawing 10 A. The anode of this device is fabricated from tantalum. Anode current of 800 mA with an anode voltage of 3 kV and grid voltage of zero. Anode current of 4.3 A at a voltage of 750 with 350 volt on the grid. Uses two-part R.C.A socket assembly UT-103.[109]
834 – A directly heated triode giving 58 watts at 100 MHz and 25 watts at 350 MHz operating in Class-C. 7.5 volt heater/filament. Fitted with an American 4-Pin, (UX4), base with side locating pin.
836 – An indirectly heated high vacuum rectifier with a peak inverse voltage of 5 kV and peak anode current of 1 ampere. 2.5 volt heater.
837 – An indirectly heated pentode giving 11 watts at 20 MHz and 5 watts at 80 MHz. operating in Class-C. 12.6 volt heater.
838 – A directly heated triode giving about 100 watts at 30 MHz operating in Class-C. 10 volt heater/filament.
841 – A directly heated high-mu triode giving about 10 watts at 6 MHz and 5 watts at 170 MHz operating in Class-C. 7.5 volt heater/filament.
842 – A directly heated triode giving about 3 watts at 6 MHz operating in Class-C. 7.5 volt heater/filament.
843 – An indirectly heated tetrode giving gain at 6 MHz and usable up to 200 MHz operating in Class-C. 2.5 volt heater/filament.
844 – A directly heated triode giving gain at 6 MHz and usable up to 155 MHz operating in Class-C. 2.5 volt heater/filament.
845 – A directly heated triode giving up to 24 watts of undistorted power in Class-A at audio frequency with an anode voltage of 1250. 10 volt heater/filament.
849 – A directly heated triode giving gain at 3 MHz operating in Class-C. Two 849s, working in push-pull Class-B are capable of delivering 1.1 kW of audio output with an anode voltage of 3 kV. Usable up to 30 MHz. 11 volt filament/heater.
850 – A directly heated tetrode giving 120 watts of power gain up to 13 MHz and 50 watts at 100 MHz, operating in Class-C. 10 volt heater/filament.
851 – A directly heated triode giving 1.5 kW of power up to 3 MHz operating in Class-C. 11 volt heater/filament.
852 – A directly heated triode giving 75 W of power up to 30 MHz operating in Class-C. 10 volt heater/filament.
857B – Large mercury-vapor rectifier used in 50 kW class broadcast transmitters. 22 kV anode voltage, 10 A anode current. Filament 5 V @ 30 A
860 – A directly heated tetrode giving 105 W of power up to 30 MHz and 50 watts at 120 MHz operating in Class-C. 10 volt heater/filament.
861 – A directly heated triode giving 400 W of power up to 20 MHz and 200 watts at 60 MHz operating in Class-C. 11 volt heater/filament.
862 – Large water-cooled triode for broadcast/industrial applications. Used in experimental 500 kW transmitter at WLW.
864 – A directly heated general-purpose, low-microphonics triode with a maximum anode voltage of 135 volts and anode current of 3.5 mA. 1.1 volt heater/filament.
865 – A directly heated tetrode giving 30 W of power up to 15 MHz 15 watts at 70 MHz operating in Class-C. 7.5 volt heater/filament.
866 – A mercury-vapor rectifier with a peak inverse voltage of 5 kV and peak anode current of 1 ampere. Average anode current, 250 mA, forward drop, 15 volt. Heater voltage and current, 2.5 at 5 A. American 4-Pin(UX) base.
866A – Improved 866 with a peak inverse voltage of 10 kV and a forward drop of 10 volt.
872 – A mercury-vapor rectifier with a peak inverse voltage of 5 kV and peak anode current of 5 amperes. Average anode current, 1250 mA, forward drop, 15 volt. Heater voltage, 5.0 at 10 A. Base fits R.C.A. UT-541A Socket.
872A – Improved 872 with a peak inverse voltage of 10 kV, a forward drop of 10 volt and a heater current of 6.25 A.
879 – A high vacuum rectifier with a peak inverse voltage of ca. 15 kV and peak anode current of ca. 5 mA. 2.5 volt heater and American 4-Pin, (UX) base. Used as half wave rectifier for high voltage cathode ray tube supplies. Similar to type 2X2.
884 – An indirectly heated triode thyratron. 6.3 volt heater/filament, Octal base. Electrically similar to type 885. Once commonly used as a sawtooth horizontal sweep waveform generator in recurrent-sweep oscilloscopes. Marketed by DuMont under the type number 6Q5.
885 – An indirectly heated triode thyratron. 2.5 volt heater/filament, American 5-Pin (UY) base. Otherwise similar to type 884.
898 – Large water-cooled triode for broadcast/industrial applications. Updated version of 862, with 3-phase filament structure.
9
900s
934 – Vacuum Phototube, spectral S4 response (maximum sensitivity at 400±50 nm), 3-pin Small-Shell Peewee base
935 – Vacuum Phototube, spectral S5 response (maximum sensitivity at 340±50 nm), 4-pin octal base
950 – Power pentode with directly heated cathode, used in storage battery home radios with 2.0 volt filament supply. Similar to types 1F4 and 1J5G
951 – Sharp-cutoff pentode with directly heated cathode, used in storage battery home radios with 2.0 volt filament supply. Similar to type 1B4P
954 (4672/E1F) – Indirectly heated Acorn-type sharp-cutoff pentode giving gains of 2...3 up to 300 MHz operating in Class-A and usable up to 600 MHz with careful stage design; 6.3 V heater
955 (4671/E1C) – Indirectly heated Acorn-type triode giving a power of 135 mW up to 600 MHz operating in Class-A and 500 mW in Class-C with careful stage design; 6.3 V heater
956 (4695/E2F) – Indirectly heated Acorn-type remote-cutoff pentode giving gains of 3...4 up to 600 MHz operating in Class-A with careful stage design; 6.3 V heater
957 (D1C) – Directly heated Acorn-type UHF receiving triode; 1.25 V filament for portable equipment
958 (D2C) – Directly heated Acorn-type UHF transmitting triode with dual, paralleled 1.25 V filaments for increased emission, for portable equipment
958A – 958 with tightened emission specs
959 (D3F) – Directly heated Acorn-type sharp-cutoff UHF pentode; 1.25 V filament for portable equipment
BG08220-K – 120-Segment circular with five cathode strings plus a Reset cathode, 1-in-5 major/minor graduation, for use e.g. in direction-finding equipment
BG12201 = DalePBG12201 – Dual 201-segment linear with three cathode strings plus a Reset cathode,[110] for use in VU meters etc.
BG12203 = PBG12203 – Dual 203-segment linear bidirectional with three cathode strings plus two Reset cathodes
BG12205 = PBG12205 – Dual 201-segment linear with five cathode strings plus a Reset cathode,[111] for use in VU meters etc.
BG16101 = PBG16101 – Dual 101-segment linear with three cathode strings plus a Reset cathode, for use in VU meters etc.; cf. ИН-33
CH1027 – Curristor – Four types of nitrogen-filled, radioactive constant-current tubes with a current plateau from 25 to 500 V, all-glass wire-ended, active material is 226Ra with a half-life of 1601 years, for linear capacitor charging and draining in missile and ordnance mine timing circuits, instrumentation biasing, as current reference, etc.:
CK1366, CK1367, CK1368, CK1369 – CRTs with an unphosphored front glass but with fine wires embedded in it for use as electrostatic print heads; the wires would pass the electron beam current through the glass onto a sheet of paper where the desired content was therefore deposited as an electrical charge pattern. The paper was then passed near a pool of liquid ink with the opposite charge. The charged areas of the paper attract the ink and thus form the image.[113][114]
CK1383 – Dual-electron gunrecording storage tube, a realtime polar, radar PPI-to-rectangular, TV-type analog videotranscoder similar to the 7702, with simultaneous R/W, and storing capability. This was achieved by a CRT/camera tube combination; the CRT part writes the PPI-format image onto a thin, dielectric target; the camera part reads the generated charge pattern in TV format from the back side of this target.[115]
CL40 and CL41 – Indirectly heated, linear light source (glow modulator tube), mercury/argon-filled gas diode with primer electrode, Octal base, for rotating-drum FAX receivers, film soundtrack recording, etc.
CL42 and CL43 – Indirectly heated, low-noise linear light source, helium-filled gas diode with primer electrode, Octal base, for film soundtrack recording, interferometers, etc.
CL44 – Indirectly heated, low-noise linear light source, neon-filled gas diode with primer electrode, Octal base
CL50 and CL52 – Indirectly heated, linear light source, gas-filled diode with primer electrode, Miniature 7-pin base, for rotating-drum FAX receivers, film soundtrack recording, etc.
CL55 – Indirectly heated, spectrally pure light source, helium-filled gas diode with primer electrode, Miniature 7-pin base with anode top cap
CL56 – Indirectly heated, spectrally pure light source, krypton-filled gas diode with primer electrode, Miniature 7-pin base with anode top cap
CL57 – Indirectly heated, spectrally pure light source, neon-filled gas diode with primer electrode, Miniature 7-pin base with anode top cap
CL58 – Indirectly heated, spectrally pure light source, xenon-filled gas diode with primer electrode, Miniature 7-pin base with anode top cap
EN10 – Neostron, 400 Apk Gas-filled, cold-cathode tetrode thyratron, differential trigger electrodes, Octal base, for use as a relay or as a reddish 700 Cdstroboscope lamp
EN15 – 80 Aavg Neon-filled, cold-cathode tetrode thyratron, differential trigger electrodes, Noval base, for use as a stroboscope lamp
EN30 – 250 Apk Gas-filled, arc-discharge cold-cathode tetrode thyratron, differential trigger electrodes, miniature 7-pin base with anode cap, for use as a relay or as a stroboscope lamp
EN40 – 250 Apk Gas-filled, cold-cathode tetrode thyratron, differential trigger electrodes, Octal base, for use as a whitish stroboscope lamp with a high actinism for photographic film
EN55 (Single), EDN10 (dual) – Xenon-filled, arc-discharge cold-cathode tetrode thyratron, external (capacitive) trigger, 12-pin base, for use as a white 140 kCd stroboscope lamp
EN60 – Gas-filled, arc-discharge cold-cathode tetrode thyratron, external (capacitive) trigger, Edison screw lamp base with anode cap, for use as a white 900 klm@10μF@800V stroboscope lamp
GE10 – Directly heated saturated-emission diode. Acts as a heating current-controlled, variable series resistor in voltage/current stabilizer circuits. It has two shorted pins that can be used to disable the circuit if the tube is removed from its socket
GK
Cerberus:
GK11 – Touch button tube, an illuminated capacitance touch switch; a cold-cathode DC relay tube, external (capacitive) starter activated by touching; then the cathode glow is visible as an orange ring. 2-pin all-glass wire-ended
GN10 – 250 Amps pulse-current, cold-cathode tetrode thyratron. Octal base
GR
Cerberus:
GR15 – 15 mA Gas-filled cold-cathode DC tetrode, one starter and one electrical primer and tritium-primed (half-life: 12.32 years), noval base, for voltage triggers, RC timers etc.
GR16 – 20 mA Gas-filled, cold-cathode, tritium-primed AC/DC triode, one starter and an EM shield, noval base, for voltage triggers, RC timers etc.
GR17 – 15 mA Gas-filled cold-cathode AC triode, one starter and an EM shield, noval base, for voltage triggers, RC timers etc.
GR31 – 15 mA Gas-filled cold-cathode DC tetrode, one starter and one electrical primer plus a tritium primer, noval base
GR44 – 12 mA Subminiature gas-filled cold-cathode DC pentode, two starters and one primer electrode plus a tritium primer, 5-pin all-glass wire-ended
GR46 – 12 mA Subminiature gas-filled cold-cathode DC tetrode, one starter and one primer electrode, 4-pin all-glass wire-ended
KN2 – 4 kV, 500 AsurgeKrytron, a cold-cathode gas-filled tube with a primer electrode, for use as a very high-speed, high-surge current switch; similar to a thyratron, lifespan 107 shots, 4-pin all-glass wire-ended[119]
KN4 – 5 kV, 2.5 kAsurge Krytron with a primer electrode, lifespan 25000 shots, 4-pin all-glass wire-ended
KN6 – 5 kV, 3 kAsurge Krytron with a primer electrode, lifespan 35000 shots, 4-pin all-glass wire-ended
KN6B – 8 kV, 3 kAsurge Krytron with a primer electrode, lifespan 35000 shots, 4-pin all-glass wire-ended
KN9 – 4 kV, 500 Asurge Krytron with a primer electrode, lifespan 1.5×107 shots, 4-pin all-glass wire-ended
KN22 – 5 kV, 100 Asurge Krytron with a primer electrode, lifespan 2×107 shots, 4-pin all-glass wire-ended, for laser pumping, to drive Pockels cells, also for educational purposes[120]
KN26 – 5 kV, 3 kAsurge Krytron with a primer electrode, lifespan 75000 shots, 4-pin all-glass wire-ended
RK61 – Miniature, gas-filled, directly heated thyratron designed specifically to operate like a vacuum triode below its ignition voltage, allowing it to both amplify analog signals and work as a relaxation oscillator, for use as a self-quenching superregenreative detector up tp 100 MHz in radio control receivers, activating a relay in its anode circuit when a carrier wave is received; 4-pin all-glass wire-ended, 1.4 V, 45 mA filament, Ua=45 V, Ia=1.5 mA.[125]
RK62 – RK61's predecessor, marketed since 1938;[126] this was the major technical development which led to the wartime development of radio-controlled weapons and the parallel development of radio controlled modelling as a hobby.[127]
TuneOn – Early neon-filled bar graph tuning indicator, a glass tube with a short wire anode and a long wire cathode that glows partially; the glow length is proportional to the tube current[130]
TuneOn Button – Early glow modulator used as a budget-priced tuning indicator – a neon lamp whose brightness is proportional to the tube current[131]
Tunograph – Precursor of the "Magic Eye" tuning indicator first introduced in 1933; a tiny CRT with 1-axis electrostatic deflection and a phosphored target at 45° to the electron beam, so the projected green dot can be observed from the side[132]
TH9503 – Scripticon, a character generatormonoscope for text mode video rendering in early computer monitors, with a square target having letters, digits and symbols patterned on it in an (optionally customer-supplied) 8x8 array. An electron beam selects and scans a character, both by appropriate magnetic deflection, and generates an analog video signal;[133] cf. 4560, CK1414
TM – Vacuum triode for amplification and detection of radio signals, developed in France and made since 1915.[134][135][136][137] It became the standard receiving and amplifying tube of the Entente countries during World War I, and the first mass-produced radio tube. TM's production volume in France alone is estimated at 1.1 million units; in addition, the production of TM and/or improved versions was started in the UK (Marconi–OsramR tube), the Netherlands (PhilipsE tube), the United States and the Soviet Union (R-5, Russian: Р-5).(ru)
The TM was developed in 1914–15 by the French military telecommunications service Télégraphie Militaire on the initiative of their technical director Gustave-Auguste Ferrié. He and his assistant, physicist Henri Abraham, visited the American laboratories on a number of occasions and were aware of the works of Lee de Forest, Reginald A. Fessenden and Irving Langmuir. They knew that de Forest's Audion and Henry Round's British tube were unreliable and imperfect, and Langmuir's Pliotron was too complex for mass production. They also knew about the latest German developments: Soon after the outbreak of the war, Ferrié received extensive information from a former Telefunken employee, the Frenchman Paul Pichon, who, upon return from a mission from his German employer to gather samples of the latest triodes from the USA, had to surrender himself and the samples to the French. The samples Pichon brought performed poorly due to insufficient vacuum. Following the ideas of Langmuir, Ferrié required the industry to guarantee a high vacuum in series production.
In October 1914, Ferrié, Abraham and François Péri from the radiotelegraph centre in Lyon/La-Doua(fr) went to the light bulb department of Société des Téléphones E.C.&Alexandre Grammont in Lyon to develop with them a triode suitable for mass production. The first prototypes, mere copies of de Forest's Audion, proved to be unreliable and unstable; the next ones were rejected for being too complex. Only the fourth prototype developed in December 1914, with a vertical coaxial system, an Edison screw lamp base for the filament and additional side terminals for anode and grid, was deemed suitable for series production, which started in February 1915 and stopped in October 1915 when it became clear that the vertical structure of "Abraham's Lamp" was too fragile and too many tubes were damaged during transport. Ferrié asked Péri to resolve the problem, and two days later Péri and Jacques Biguet came up with a horizontal coaxial system on the latest four-pin type European 4-pin base. The series production of the Péri/Biguet tubes, named TM after Ferrié's service unit, began in November 1915 under Grammont's Radio Fotos brand; this variant became highly successful, and when demand started to exceed Grammont's production capacity, Compagnie des Lampes (1888) in Ivry-sur-Seine also started production under their Métal brand. Ferrié and Abraham were nominated for the 1916 Nobel Prize in Physics for their work in the field of radio communications.
The TM is a cylindrical/coaxial triode; the directly-heated cathode is a filament made of pure tungsten with a diameter of 60 μm, the anode is a nickel cylinder with a diameter of 10 mm and a length of 15 mm. The dimensions and material of the grid depend on the place of production – the Grammont plant in Lyon used molybdenum wire, the CdL plant in Ivry-sur-Seine used nickel. The diameter of the grid spiral is 4 resp. 4.5 mm. The filament required 4 V and 700 mA to bring it up to white heat; the bright glow prompted Grammont in 1923 to start producing TM tubes with dark blue glass envelopes to protect the eyes of radio operators from the blinding glare, and hide the harmless, but unsightly plaque of metal particles inevitably deposited on the inner wall of the bulb while evacuating during production – but also prevented the triodes' previous, secondary use as light sources, which had earned them their nickname Loupiote ("little lamp").
The TM could be used for their intended purpose, amplifying and detecting signals in radio receivers, or as power oscillators in low-power radio transmitters, and also, by paralleling of several tubes, as AF power amplifiers. The Soviet analogue of the TM, the triode R-5, could withstand anode voltages of up to 500...800 V, and was able to deliver a power of up to 1 W in Class-C mode, but only 40 mW in Class-A mode. A typical single-TM radio receiver of World War I ran at Ua=40 V, Ug=0 V, Ia≈2 mA, gm=400 μS, Ri=25 kΩ, μ=10. With an anode voltage of 160 V and a grid bias of -2 V, the anode current was 3...6 mA, while the reverse grid current reached 1 μA.[138]
The problem of TM tubes was their short service life of 100 hours maximum – if the tube was manufactured in strict accordance with the specifications. In wartime, this was not always possible; due to raw materials supply problems, plants sometimes had to use substandard materials. Such tubes were marked with a cross; they differed from the standard by a higher noise level and were prone to catastrophic failures due to cracks in the glass envelope.
FM1000 – Unusual pentagrid for use as oscillator and coincidence-type phase detector in a PLL FM quadrature detector. The anode signal is loosely coupled into the oscillator tank and pulls it to stay quadrature-phase-locked with the IF; manufactured by Sylvania and used in Philco AM/FM radios of the late 1940s and early 1950s. Predecessor of the nonode approach
XXB – Medium-mu twin triode, also numbered 3C6/XXB
XXD – Medium-mu twin triode, also numbered 14AF7/XXD
XXFM – High-mu triode, twin diode (one shares its cathode with the triode, one with separate cathode), also numbered 7X7/XXFM
XXL – Medium-mu triode, also numbered 7A4/XXL
List of tubes used in 1920s and 1930s radio receivers
[139]
Directly heated
Used with AC, DC or home-based storage battery power supplies (1927–31)
1.1 Volt DC filament
Used in 1920s home radios. Filaments powered by 1.5 volt dry cells, anodes powered by storage batteries.
Used in 1930s home radios powered by storage batteries.
19 – Dual power triode – also used in farm radios with 6-volt vibrator power supplies. Early version of octal type 1J6G.
20 – Power triode – Early versions numbered UX-120.
22 – Sharp-cutoff tetrode – Early versions numbered UX-222 or CX-322.
25S – Dual detector diode, medium-mu triode. Identical to type 1B5. Usually numbered 1B5/25S.
30 – Medium-mu triode, An upgraded version of type 01-A – Early versions numbered RCA-230 or CX-330. Can also be used as a power triode. The type 30 was popular amongst amateurs of the day. Early UX4 based version of octal type 1H4G.
31 – Power triode, UX4 based – Early versions numbered RCA-231 or CX-331.
32 – Sharp-cutoff tetrode – Early versions numbered RCA-232 or CX-332.
33 – Power pentode – Early versions numbered RCA-233 or C-333.
34 – Remote-cutoff tetrode – Early versions numbered RCA-234 or CX-334.
49 – Dual-grid power triode, similar to type 46
3.3 Volts DC filament
Used in 1920s home radios powered by dry cells (filaments) and storage batteries (B-plus voltage).
V99 – Low-mu triode. Except for stub-pin bayonet base and pinout, electronically similar to X99
X99 – Similar to V99, but with standard pins and different basing arrangement (pinout).
4 Volts DC filament
3NF – Tube-based "integrated circuit" with 3 triodes and passive components in the same envelope. 4V heater
5 Volts DC filament
Used in 1920s home radios powered by storage batteries.
00-A – Detector triode with a trace of argon. "00-A" is the number used in most tube manuals. Numbers for earlier versions include UX-200-A and CX-300-A (long pins, push-in socket) and UV-200-A (stub pins, bayonet socket).
01-A – All-purpose low-mu triode, used as RF amplifier, detector, AF amplifier and power triode. The most popular tube of the 1920s. "01-A" is the number used for replacements manufactured after 1930 and in tube manuals. Numbers for early versions include UX-201-A and CX-301-A (long pins, push in socket) and UV-201-A (stub pins, bayonet socket).
Note: There were four tubes in the "01" series, each with different current ratings for their filaments. Type 01-A was the most commonly used.
Types UV 201 and UX 201 – 1.0 ampere
Type 01-A (UV 201-A, UX 201-A, etc.) – 250 milliampere
Type UX 201-B – 125 milliampere
Type UX 201-C – 60 milliampere
12-A – Medium-mu triode, often used as detector, audio driver or audio output, but not as an RF amplifier. This type is listed in tube manuals after 1930 for replacements purposes. Also referred to as type 112-A. Many early versions are marked UX-112-A or CX-112-A.
40 – Medium-mu triode – Early versions numbered UX-240. Introduced in 1927, this was an upgraded version of the "01" series. The "01" series had an amplification factor of 8, while type 40 had an amplification factor of 30. (By comparison, the two AC triodes introduced in the same time period – types 26 and 27 – had amplification factors of 8.3 and 9, respectively.) Because this was the highest-amplification triode available, advertising literature of the time lists it as a high-mu triode, although it is now classified as a medium-mu triode. Type 40 had the highest amplification factor of any triode until the introduction in 1932 of diode/triode complex type 2A6, which had an amplification factor of 100. It also had the highest amplification factor of any DC filament triode until the introduction in 1939 of complementary diode/triode complex types 1H5GT (octal) and 1LH4 (Loctal), which both had amplification factors of 65.
Directly AC-heated power tubes
10 – Power triode – Early versions numbered UX-210 or CX-310.
26 – Medium-mu triode, used in early AC radio receivers manufactured in the late 1920s. Used as an RF or AF amplifier, but not as a detector or power output tube – Early versions numbered UX-226 or CX-326.
45 – Power triode – Early versions numbered UX-245 or CX-345.
46 – Dual grid power triode – Grids 1 and 2 connected together for use as push-pull Class-B outputs, Grid 2 and anode connected together for use as single-tube audio driver.
47 – Power pentode – Early versions numbered RCA-247 or C-347.
50 – Power triode – Early versions numbered UX-250 or CX-350.
71-A – Power triode – This type listed in tube manuals after 1930 for replacements purposes. Also referred to as 171-A. Many early versions numbered as UX-171-A or CX-371-A.
Directly AC-heated rectifier tubes
80 – Full-wave rectifier used in early power supplies or battery eliminators (electronically similar to 5Y3G) – Early versions numbered UX-280 or CX-380; derived from the 13 (UX-213)
81 – Half-wave rectifier – Early versions numbered UX-281 or CX-381; derived from the 16-B (UX-216-B)
83-V – High-vacuum version of type 83, Early UX4 based version of octal type 5V4G.
Indirectly heated
DC heater
15 – Sharp-cutoff pentode, used in farm radios, in autodyne circuits requiring a separate cathode.
48 – Power tetrode, used in 32-volt farm radios. When two are parallel-connected, they can operate with anode and screen voltages as low as 28 volt.
2.5 Volts heater
Powered by an AC transformer
24 – Sharp-cutoff tetrode, UX5 based, Early versions numbered UY-224 and C-324
24-A – an upgraded version of type 24, see type 24 above. Early versions numbered UY-224A and C-324A
27 – Medium-mu triode, UX5 based, Early versions numbered UY-227 and C-327. The first North American tube with an indirectly heated cathode, which is necessary for detector circuits in AC powered tube radios.
35 – Remote-cutoff tetrode, UX5 based, (Commonly branded as 35/51). Early versions numbered UY-235 or C-335
51 – Similar to 35, see type 35 above. (Commonly branded as 35/51)
53 – Dual power triodes, Class-B, UX7 based, (Except for heater, electronically similar to 6A6 and octal based 6N7)
55 – Dual diode, medium-mu triode, UX6 based, (Except for heater, electronically similar to type 85, and octal based 6V7G, but not to 75)
56 – Medium-mu triode, UX5 based, (Except for heater, electronically similar to 76, and octal based 6P5G)
57 – Sharp-cutoff pentode used in cabinet and mantel radio receivers, UX6 based, (Except for heater, electronically similar to 6C6 and octal based 6J7G, and somewhat similar to type 77)
58 – Remote-cutoff pentode, UX6 based, (Except for heater, electronically similar to 6D6 and octal based 6U7G, but not to 78)
59 – Power pentode, UX7 based.
90 – Wunderlich detector
95 – Original number of type 2A5
4 Volts heater
2HF – Tube-based "integrated circuit" with 2 tetrodes and passive components in the same envelope
6.3 Volts heater
Powered by an AC transformer or a vehicle crank battery
1-V – Half-wave rectifier, UX4 based, (often branded as type 1V/6Z3). Early version was KR-1.
36 – Sharp-cutoff tetrode, UX5 based. Early versions numbered RCA-236 or C-336
37 – Medium-mu triode, UX5 based. Early versions numbered RCA-237 or C-337
38 – Power pentode, UX5 based. Early versions numbered RCA-238
39 – Remote-cutoff pentode, UX5 based (Commonly branded as 39/44).
41 – Power pentode, Early UX6 based version of octal type 6K6G, and Loctal type 7B5.
42 – Power pentode, Early UX6 based version of octal type 6F6G, Except for heater, similar to types 2A5 and 18.
44 – Similar to type 39, see type 39 above. (Commonly branded as 39/44).
64 – Sharp-cutoff tetrode (Except for 400 milliampere heater, similar to 36)
65 – Remote-cutoff pentode (Except for 400 milliampere heater, similar to 39)
67 – Medium-mu triode (Except for 400 milliampere heater, similar 37)
68 – Power pentode (Except for 400 milliampere heater, similar to 38)
69 – Wunderlich detector
70 – Wunderlich detector used in Mission Bell model 19 car radio. Listed in early Philco tube lists.
75 – Dual diode, high-mu triode. Early UX6 based version of octal types 6B6G & 6SQ7GT, and Loctal type 7B6, and 7-pin miniature type 6AV6. Also except for heater, electronically similar to 2A6.
76 – Medium-mu triode, Early UX5 based version of octal type 6P5G.
77 – Sharp-cutoff pentode, Early UX6 based version of octal type 6J7G.
78 – Remote-cutoff pentode, Early UX6 based version of octal type 6K7G.
79 – Dual power triode, Early UX6 based version of octal type 6Y7G.
84 – Full-wave rectifier, often branded as type 84/6Z4. Early UX5 based version of octal type 6X5GT, and Loctal 7Y4, and 7-pin miniature 6X4.
85 – Dual diode, medium-mu triode. Early UX6 based version of octal type 6V7G, except for heater voltage similar to type 55. Also somewhat similar to octal type 6SR7GT and 7-pin miniature types 6BF6.
89 – Power pentode, UX6 based.
92 – Wunderlich detector
AC/DC series heater
14 – Similar to 24-A but with a 14 volt, 300 milliampere heater. Used in Philco models 46 and 46E
17 – Similar to 27 but with a 14 volt, 300 milliampere heater. Used in Philco models 46 and 46E
18 – Similar to 2A5 and 42 but with a 14 volt, 300 milliampere heater. No known commercial use.
43 – Power pentode, Early UX6 based version of octal type 25A6G
WG38 – Tube-based "integrated circuit" with 2 pentodes, a triode and passive components in the same envelope
Shielded tubes for Majestic radios
In the early 1930s, the Grigsby-Grunow Company – makers of Majestic brand radios – introduced the first American-made tubes to incorporate metal shields. These tubes had metal particles sprayed onto the glass envelope, copying a design common to European tubes of the time. Early types were shielded versions of tube types already in use. (The shield was connected to the cathode.) The Majestic numbers of these tube types, which are usually etched on the tube's base, have a "G" prefix (for Grigsby-Grunow) and an "S" suffix (for shielded). Later types incorporated an extra pin in the base so that the shield could be connected directly to the chassis.
Replacement versions from other manufacturers, such as Sylvania or General Electric, tend to incorporate the less expensive, form-fitting Goat brand shields that are cemented to the glass envelope.
Grigsby-Grunow did not shield rectifier tubes (except for type 6Y5 listed below) or power output tubes.
Early types based on existing tubes. (Non-shielded versions may be used, but add-on shielding is recommended.)
G-25-S – Medium-mu triode, dual detector diode for 2.0 volt storage battery radios. Glass type 1B5/25S used for replacement.
G-51-S – Remote-cutoff tetrode
G-55-S – Medium-mu triode, dual detector diode
G-56-S – Medium-mu triode
G-56A-S – Medium-mu triode, original version of type 76, but with 400 milliampere heater. (Not to be confused with types 56 or G-56-S, which has a 2.5 volt, 1.0 ampere heater.)
G-57-S – Sharp-cutoff pentode
G-57A-S – Sharp-cutoff pentode, original version of type 6C6, but with 400 milliampere heater. (Not to be confused with types 57 or G-57-S, which has a 2.5 volt, 1.0 ampere heater.)
G-58-S – Remote-cutoff pentode
G-58A-S – Remote-cutoff pentode, original version of type 6D6, but with 400 milliampere heater. (Not to be confused with types 58 or G-58-S, which has a 2.5 volt, 1.0 ampere heater.)
G-85-S – Similar to G-55-S, but with 6.3 volt heater.
Later types
6C7 – Medium-mu triode, dual detector diode, similar to later octal types 6R7 and 6SR7. Seven pin base. (Shield to pin 3.)
6D7 – Sharp-cutoff pentode, identical to type 6C6, but with 7-pin base. (Shield to pin 5.)
6E7 – Remote-cutoff pentode, identical to type 6D6, but with 7-pin base. (Shield to pin 5.)
6Y5 – Dual rectifier diode, similar to type 84/6Z4, but with 6-pin base. (Shield to pin 2.)
Other tubes unique to Majestic radios
G-2-S and G-4-S – Dual detector diodes with common cathodes. The first detector diodes packaged in a separate tube. Forerunners of octal type 6H6. Spray-shielded. Both tubes have 2.5 volt heaters. G-2-S is larger and has a 1.75 ampere heater. Type G-4-S has a 1.0 ampere heater. Later Sylvania replacement type 2S/4S has a 1.35 ampere heater.
2Z2/G-84 – Half-wave rectifier diode with 2.5 volt indirectly heated cathode. A lower-voltage version of type 81. Not interchangeable with type 6Z4/84.
6Z5 – Full-wave rectifier, similar to types 6Z4/84 and 6X5, but with 12.6 volt center-tapped heater.
Rarely used tubes
52 – Dual grid power triode similar to types 46 and 49. Has 6.3 volt filament. Most commonly used in early car radios[citation needed]
181 – Power triode
182-B – Similar to 482-B below.
183 – Similar to 483 below.
482-B – Power triode with directly heated cathode. Used in Sparton AC radios, circa 1929. Replacements often numbered 182-B/482-B. Similar to type 71-A, but with higher anode voltage.
483 – Power triode with directly heated cathode. Used in Sparton AC radios, circa 1929. Replacements often numbered 183/483. Similar to type 45, but with a 5.0 volt, 1.25 ampere heater.
485 – Medium-mu triode with indirectly heated cathode. Used in Sparton AC radios, circa 1929. Similar to types 56 and 76, but with a 3.0 volt, 1.25 ampere heater, and lower anode voltage.
References and footnotes
Specific items
^ a b c d e f g h iSee "Decoding type numbers" ff.
^"Eimac power grid tubes - Quick Reference Catalog 175" (PDF). Eitel McCullough. 1975. Retrieved 1 May 2017.
^ a b"Preferred Types of Electron Tubes 1967" (PDF). Archived from the original (PDF) on 8 June 2012. Retrieved 17 May 2013.
^ a b"European Type Designation Code System for Electronic Components" (PDF) (15 ed.). Pro-Electron, Brussels, Belgium. June 2008. Archived from the original (PDF) on 29 December 2013. Retrieved 25 December 2013.
^"Akumed Berlin" hearing-aid eyeglasses schematic
^"Philips Miniwatt 1938" (PDF). Retrieved 31 January 2016.
^Roschy, Jacob (7 October 2007). "Mysterious P-, O- and U- tube-series". Retrieved 23 September 2022.
^"Tabelle der Heeres-Batterie-Spezialröhren" (PDF) (in German). Lorenz. Retrieved 21 December 2015.
^Miniwatt Technical Data, 6th Edition; 1958; Published by the "Miniwatt" Electronics Division of Philips Electrical Industries Pty. Limited, 20 Herbert Street, Artarmon, N,S,W., Australia
^"Miniwatt" Premium Quality and Special Purpose Tubes, Philips Electrical Industries Pty. Ltd., Australia, November 1957.
^"Cold cathode tubes ZnnnA". Archived from the original on 4 March 2016. Retrieved 17 May 2013.
^ a b"Sende-, Verstärker-, Gleichrichter-Röhren und Spezialfassungen (Transmitting, Amplifier, Rectifier Tubes and Special Sockets, 38MB)" (PDF) (in German). Telefunken. 1944. Retrieved 19 November 2022.
^ a b"Mullard Gas-filled Rectifiers" (PDF). Mullard. 1962. Retrieved 19 November 2022.
^"Les lampes" (PDF) (in French). Retrieved 1 May 2017.
^BW604 data sheet
^BW1010 data sheet
^"Belvu tubes electroniques, Licence R.C.A" (PDF) (in French). Retrieved 25 April 2017.
^"Vade-mecum ADZAM" (PDF) (in French). 1957. Retrieved 1 May 2017.
^"EEV Valve data book" (PDF). March 1966. Retrieved 1 May 2017.
^"Master Valve Guide" (PDF). Mullard. 1935. Retrieved 12 February 2016.
^FC4 on r-type.org
^"Philips radio-artikelen 1927" (PDF) (in Dutch). Retrieved 1 May 2017.p. 15
^ a b cДроздов, К. И. (1948). "Справочник по западно-европейским приёмным лампам (West-European receiving tubes)" (PDF) (in Russian). Retrieved 1 May 2017.
^ a b c dGeorgescu, Aurel; Golea, Ion (1956). "Catalog De Tuburi Electronice" (PDF) (in Romanian). Editura Tehnikă Bukurești. Retrieved 10 September 2017.
^"TUNGSRAM ELECTRON TUBE NUMBERING SYSTEM" (PDF). 2004. Retrieved 1 May 2017.
^МЕТАЛЛИЧЕСКИЕ ЛАМПЫ (METAL TUBES)
^ЭНЦИКЛОПЕДИЯ ЛАМПОВОЙ РАДИОАППАРАТУРЫ[permanent dead link] (Encyclopedia of tubes for radio equipment)
^А.Л. Булыев; В.И. Галкин; В.А. Прохоренко (1982). "СПРАВОЧНИК ПО ЗЛЕКТРОВАКЧЧМНЫМ ПРИБОРАМ (HANDBOOK ON ELECTRONIC DEVICES)" (PDF) (in Russian). БЕЛАРУСЬ. pp. 10ff. Retrieved 1 May 2017.
^5J6 data sheet - this particular Tung-Sol datasheet contains a copy/paste error in the description where it cites 6J6's 450 mA heater current when it should read 5J6's 600 mA.
^RCA: Receiving Tube Manual RC30, p.397
^"GL-2H21 Phasitron data sheet" (PDF). General Electric. September 1945. Retrieved 25 December 2016. (as JPGs) • RMA Release #486, 25 April 1946
^ a bAdler, Robert (January 1947). "A New System of Frequency Modulation" (PDF). Institute of Radio Engineers. Retrieved 25 December 2016.
^ a bRider, John. F.; Seymour D. Uslan (1948). "FM Transmission and Reception" (PDF). John F. Rider Publisher, Inc. pp. 130–135. Retrieved 25 December 2016.
^ a bDave Hershberger (W9GR): PHASITRON vacuum tube web page
^"Tungar bulb data manual" (PDF). General Electric. Retrieved 12 February 2016.
^RMA Release #600, 2 September 1947
^"5729 30 channel radial beam tube - collector type data sheet" (PDF). National Union Electric Corporation. 9 April 1951. Retrieved 1 May 2017.
^"5734 Mechano-electronic transducer, triode type data sheet" (PDF). R.C.A. Manufacturing Company. November 15, 1948. Retrieved 1 May 2017.
^"5734A Mechano-electronic transducer data sheet" (PDF). Toshiba Corp. March 14, 1964. Retrieved 1 May 2017.
^"5738 Commutator tube data sheet" (PDF). Federal communication laboratories, Inc., Nutley, New Jersey, USA. 6 October 1948. Retrieved 1 May 2017.
^"6047 Additron data sheet, RTMA Engineering Dept. Release #954" (PDF). Rogers Majestic Corp. March 20, 1951. Retrieved 14 August 2016.
^"6090 18 channel radial beam tube - multiple anode type data sheet" (PDF). National Union Electric Corporation. January 1956. Retrieved 15 June 2013.
^"6091 25 channel radial beam tube - multiple grid type data sheet" (PDF). National Union Electric Corporation. January 1956. Retrieved 1 May 2017.
^"6170 & 6324 25 channel radial beam tube - multiple grid type data sheet" (PDF). National Union Electric Corporation. December 1955. Retrieved 15 June 2013.
^"6218 data sheet, RTMA Engineering Dept. Release #1115" (PDF). Rogers Majestic Corp. 25 August 1952. Retrieved 1 May 2017.
^"E80T data sheet" (PDF). Philips. 4 April 1956. Retrieved 1 May 2017.
^Richard G. Cumings (8 June 1956). "NRL Memorandum Report 606: Application of Tacitron Type RCA 6441 to Pulse Circuitry" (PDF). United States Naval Research Laboratory. Retrieved 19 November 2017.[dead link]
^"6462 Magnetic pick-up tube data sheet" (PDF). National Union Electric Corporation. 9 May 1956. Retrieved 1 May 2017.
^"6571 Computer storage tube data sheet" (PDF). RCA Electron Tube Division. 21 March 1955. Retrieved 1 May 2017.
^"6577 Typotron, 5" character-writing CRT-type storage tube data sheet" (PDF). Hughes Aircraft Corporation. 24 November 1954. Retrieved 29 August 2017.
^"6700 Magnetron Beam Switching Tube data sheet" (PDF). Burroughs Corporation. August 1956. Archived (PDF) from the original on 4 March 2014. Retrieved 4 March 2014.
^"6701 Magnetron Beam Switching Tube data sheet" (PDF). Burroughs Corporation. August 1956. Archived (PDF) from the original on 4 March 2014. Retrieved 4 March 2014.
^M. B. Knight (1960). "A new miniature beam deflection tube" (PDF). RCA Electron Tube Division. Retrieved January 22, 2017.
^H. C. Vance (1960). "SSB Exciter Circuits Using a New Beam-Deflection Tube" (PDF). QST. Retrieved May 30, 2013.
^"7414 Subminiature Time Totalizer data sheet" (PDF). Bendix Corporation. 14 March 1959. Retrieved 1 May 2017.
^"CK7572 Recording storage tube data sheet" (PDF). Raytheon Company. 15 December 1959. Retrieved 1 May 2017.
^"CK7575 Recording storage tube data sheet" (PDF). Raytheon Company. 15 December 1959. Retrieved 1 May 2017.
^"CK7702 Recording storage tube data sheet" (PDF). Raytheon Company. 15 March 1960. Retrieved 1 May 2017.
^"7763 Sheet Beam Tube data sheet" (PDF). General Electric. 5 March 1962. Retrieved 1 May 2017.
^This tube's designation is inconsistent with the scheme
^Wechselspannungs- und Wechselstrom-Stabilisierungsschaltungen mit der Diode YA1000. Telefunken Laborbuch (in German). Vol. IV. Ulm: AEG-Telefunken. 1967. pp. 189–195.
^"The ZA100x series switching tubes from Philips". Retrieved 19 August 2013.
^"ZC1050 data sheet" (PDF). Philips. February 1968. Retrieved 21 December 2013.
^Thaens, J. G. M.; van Vlodrop, P. H. G. "Electronic Applications Vol. 27 No. 3: Running Text Display with Cold-Cathode Trigger Tubes" (PDF). Philips Elcoma Division, Central Application Laboratory, Eindhoven, The Nederlands. Retrieved 21 December 2013.
^"Disc Seal Triodes" (PDF). Mullard. 1965. Retrieved 12 February 2016.
^La Compagnie des Lampes on radiomuseum.org
^French Mazda datasheets before 1949: 18MA4 by CdL • 1883 (July 1948) by CdL, BELVU • 2XM400 (September 1947) by CdL • 2XM600 (September 1947) by CdL • 4Y25 (February 1949) by CdL, BELVU • 5Y35 (July 1948) by CdL • 6H8G (September 1947) by CdL • 879 (September 1947) by CdL • 884 (January 1949) by CdL • 8SAx by CdL • C75S (June 1947) by CdL • C95S (June 1947) by CdL
^French Mazda datasheets 1949–53: 2E30 (November 1949) by CdL • 31MA4 (February 1950) by CdL • 3T20 (July 1949) by CdL • 3T100 (July 1949) by CdL, BELVU • 4Y50 (November 1950) by CdL, BELVU • C30S (January 1950) by CdL • C127S (January 1950) by CdL • C220MW1 (January 1950) by CdL • E1 (April 1950) by CdL • E2 (April 1950) by CdL • ST130 (September 1949) by CdL
^French Mazda datasheets 1953–59: 2G21 (October 1953) by CdL, BELVU • 4Y100 (September 1960) by CdL, BELVU • 43MG4 (December 1954) by CdL • 43MH4 (March 1954) by CdL • 43MR4 (December 1954) by CdL • 54MS4 (June 1955) by CdL • 829 (June 1955) by CdL • 832 (June 1955) by CdL • 927 (July 1954) by CdL • 929 (June 1957) by CdL • 6196 (November 1959) by CdL • 6250 (November 1959) by CdL, BELVU • E5 (September 1960) by CdL • JA10 (September 1960) by CdL, BELVU
^French Mazda datasheets since 1959: 3T50 (February 1966) by CdL, BELVU • 4Y75 (February 1964) by CdL, BELVU • 6K8 (June 1964) by CdL • 78A (September 1966) by CdL, BELVU • 7233 (April 1962) by CdL • 7242 (April 1965) by CdL • 7377 (April 1962) by CdL • 8418 (February 1963) by CdL, BELVU • E6 (February 1964) by CdL • E7 (June 1965) by CdL • E9 (September 1965) by CdL • ECF202 (April 1967) by CdL, BELVU • ECL802 (December 1966) by CdL, BELVU • ED501 (February 1966) by CdL • EF816 (April 1967) by CdL • EL183 (June 1959) by CdL, BELVU • EL503 (June 1966) by CdL, BELVU • EY81F (April 1967) by CdL, BELVU • EY802 (April 1967) by CdL, BELVU • F7024x (April 1967) by CdL, BELVU • F9102 (April 1965) by CdL, BELVU • F9116 (December 1965) by CdL • GY86 (June 1966) by CdL • GY802 (April 1967) by CdL • K25000A1 (June 1961) by CdL • PY81F (April 1967) by CdL, BELVU
^GU-81M datasheet (English translation)
^"Линейный Трохотрон Типа ЛП-4 data sheet" (PDF) (in Russian). Moscow Electric Lamp Plant (МЭЛЗ/MELZ). Archived (PDF) from the original on 9 March 2014. Retrieved 8 March 2014.
^"ИНДИКАТОР ИТМ2-М data sheet" (PDF) (in Russian). Moscow Electric Lamp Plant (МЭЛЗ/MELZ). 1944. Archived (PDF) from the original on 12 October 2013. Retrieved 9 May 2013.
^ a b cMcNally, J.O.; Metson, G.H.; Veazie, E.A.; Holmes, M.F. (January 1957). "Electron tubes for the transatlantic cable system" (PDF). The Bell system technical journal. pp. 163ff. Retrieved 9 February 2016.
^"1636 U-H-F Beam deflection mixer" (PDF). RCA Electron Tube Division. 3 November 1944. Retrieved 1 May 2017.
^ a b"368A, 368AS and 388A data sheet" (PDF). Western Electric. Retrieved 19 January 2016.
^"450TH data sheet" (PDF). Eitel McCullough. 8 January 1950. Retrieved 29 May 2021.
^Holdaway, V.L.; Van Haste, W.; Walsh, E.J. (July 1964). "Electron tubes for the SD submarine cable system" (PDF). The Bell system technical journal. pp. 1311ff. Retrieved 9 Feb 2016.
^"4560 Custom-built, 2" diameter, Electrostatic-Focus, Electrostatic-Deflection Monoscope Tubes For Use As Alphanumeric Character Generators data sheet" (PDF). RCA Electronic Components. May 1969. Retrieved 27 September 2017.
^"4598 Graphechon Tube data sheet" (PDF). RCA Electronic Components. February 1971. Retrieved 1 May 2017.
^"7539 Graphechon Tube data sheet" (PDF). RCA Electronic Components. March 1960. Retrieved 1 May 2017.
^"GEC 7828 Scan conversion tube data sheet" (PDF). General Electric Corporation. 10 April 1961. Retrieved 1 May 2017.
^"8087 Scan-Conversion Storage Tube data sheet" (PDF). Machlett Laboratories, Inc. 16 September 1963. Retrieved 1 May 2017.
^"Rauland 8098 Signal Storage Tube data sheet" (PDF). Rauland Corporation. 8 January 1962. Retrieved 1 May 2017.
^"Fall of Timor: 'badly need boots, quinine, money and Tommy-gun ammunition'". Archived from the original on 2009-05-16. Retrieved 2009-03-30.
^"The Cathode ray Tube site. Television CRT's".
^"RCA Air-Cooled Transmitting Tube Manual TT3" (PDF). R.C.A. Manufacturing Company, Harrison, New Jersey, USA. 1938. Retrieved 17 October 2013.
^"Plasma Panel Displays - Dual Linear Bar Graph" (PDF). Vishay Dale, Columbus, Nebraska, USA. November 2000. Retrieved 8 March 2014.
^201-element dual linear bar graph display
^C. E. Wynn-Williams (2 May 1932). "Proceedings of the Royal Society of London: A Thyratron "Scale of Two" Automatic Counter" (PDF). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Containing Papers of a Mathematical and Physical Character. 136 (829). Royal Society: 312–324. doi:10.1098/rspa.1932.0083. Retrieved 1 May 2017.
^"CK1366 CK1367 Printer-type cathode ray tube data sheet" (PDF). Raytheon Company. 1 November 1960. Retrieved 1 May 2017.
^"CK1368 CK1369 Printer-type cathode ray tube data sheet" (PDF). Raytheon Company. 1 November 1960. Retrieved 1 May 2017.
^"CK1383 Recording storage tube data sheet" (PDF). Raytheon Company. 15 February 1963. Retrieved 1 May 2017.
^"CK1414 Symbolray character generating cathode ray tube data sheet" (PDF). Raytheon Company components division, industrial components operation. 15 April 1966. Retrieved 1 May 2017.
^"Symbolray application note" (PDF). Raytheon Company components division, industrial components operation. Retrieved 1 May 2017.
^"DDR100 Accelerometer double diode data sheet" (PDF). Mullard. Retrieved 1 May 2017.
^"Krytrons - Cold Cathode Switch Tubes data sheet K5500B-1" (PDF). EG&G Electro-Optics Division, Salem, Massachusetts, USA. September 1973. Archived from the original (PDF) on 18 September 2016. Retrieved 11 September 2016.
^Wahl, Günter. "Hightech-Elektronik-Experimente" (PDF) (in German). Franzis Verlag. Retrieved 26 Dec 2014.
^Miller, Joseph A.; Soltes, Aaron S.; Scott, Ronald E. (February 1955). "Wide-band Analog Function Multiplier" (PDF). Electronics. Retrieved 15 June 2013.
^Wyse, Barry (2000). "Extracts from "The Saga of Marconi Osram Valves", part 1" (PDF). The British Vintage Wireless Society. p. 12ff. Retrieved 1 May 2017.
^R-type tube on The National Valve Museum
^Lankshear, Peter (July 1996). "Valve filament/heater voltages" (PDF). Electronics Australia. Retrieved 1 May 2017.
^"Subminiature gas triode type RK61 data sheet" (PDF). Raytheon Company. Retrieved 1 May 2017.
^"Ed Lorenz Mystery Tube". Retrieved 1 May 2017.
^George Honnest-Redlich Radio Control for Models (1950) p. 7
^"SB256 Selective Electrostatic Storage Tube data sheet" (PDF). RCA Electron Tube Division. November 1951. Retrieved 4 November 2017.
^Charles S. Osborne Archived 2018-02-28 at the Wayback Machine • lampes-et-tubes.info
^TuneOn data sheet
^TuneOn Button data sheet
^BRIMAR (STC) Tunograph, Visual Tuning Indicator on lampes-et-tubes • Tunograph data sheet
^"TH9503 Scripticon character generating cathode ray tube data sheet" (PDF). Compagnie Française Thomson-Houston, division tubes electroniques, Paris (France). January 1968. Retrieved 27 September 2017.
^Van Bergen, Fons (2000). "About the French TM valve" (PDF). The British Vintage Wireless Society. p. 20ff. Retrieved 1 May 2017.
^Champeix, Robert. "Grande et Petite Histoire de la Lampe TM" (in French). Les Anciens de la Radio et de l'Électronique. Retrieved 1 May 2017.
^TM tube; Horned tube on The National Valve Museum
^Gerald Garratt G5CS. "Why the French R valve?". Retrieved 1 May 2017.{{cite web}}: CS1 maint: numeric names: authors list (link)
^Grid-anode curves for the Soviet R-5 triode, a licensed clone of the French TM triode made by La Compagnie des Lampes (1888)
^Lankshear, Peter (August 1988). "The Methuselah of valves" (PDF). Electronics Australia. Retrieved 1 May 2017.
General literature and data sheets
Frank Philipse's Tube Datasheet Archive
Mirrors in Brazil • Brazil searchable • Germany • Germany • Romania • Romania searchable • Sweden • USA • US • US