Un cristal de Wigner es la fase sólida (cristalina) de electrones predicha por primera vez por Eugene Wigner en 1934. [1] [2] Un gas de electrones que se mueve en un fondo uniforme, inerte y neutralizante (es decir, el modelo Jellium ) cristalizará y formará una red si la densidad de electrones es menor que un valor crítico. Esto se debe a que la energía potencial domina la energía cinética a bajas densidades, por lo que la disposición espacial detallada de los electrones se vuelve importante. Para minimizar la energía potencial, los electrones forman una red bcc ( cúbica centrada en el cuerpo ) en 3 D , una red triangular en 2D y una red espaciada uniformemente en 1D . La mayoría de los cúmulos de Wigner observados experimentalmente existen debido a la presencia del confinamiento externo, es decir, la trampa de potencial externa. Como consecuencia, se observan desviaciones de la red bcc o triangular. [3] También se puede lograr un estado cristalino del gas de electrones 2D aplicando un campo magnético suficientemente fuerte. [ cita requerida ] Sin embargo, todavía no está claro si es la cristalización de Wigner la que ha llevado a la observación del comportamiento aislante en las mediciones de magnetotransporte en sistemas electrónicos 2D, ya que existen otros candidatos, como la localización de Anderson . [ aclaración necesaria ]
En términos más generales, una fase cristalina de Wigner también puede referirse a una fase cristalina que se produce en sistemas no electrónicos a baja densidad. Por el contrario, la mayoría de los cristales se funden a medida que se reduce la densidad. Los ejemplos que se observan en el laboratorio son los coloides cargados o las esferas de plástico cargadas. [ cita requerida ]
Un gas de electrones uniforme a temperatura cero se caracteriza por un único parámetro adimensional, el llamado radio de Wigner-Seitz r s = a / a b , donde a es el espaciamiento medio entre partículas y a b es el radio de Bohr . La energía cinética de un gas de electrones se escala como 1/ r s 2 , esto se puede ver, por ejemplo, considerando un simple gas de Fermi . La energía potencial, por otro lado, es proporcional a 1/ r s . Cuando r s se hace más grande a baja densidad, este último se vuelve dominante y fuerza a los electrones a estar lo más separados posible. Como consecuencia, se condensan en una red compacta . El cristal de electrones resultante se llama cristal de Wigner. [4]
Con base en el criterio de Lindemann, se puede encontrar una estimación del valor crítico r s . El criterio establece que el cristal se funde cuando el desplazamiento cuadrático medio de los electrones es aproximadamente un cuarto del espaciamiento reticular a . Suponiendo que las vibraciones de los electrones son aproximadamente armónicas, se puede utilizar que para un oscilador armónico cuántico el desplazamiento cuadrático medio en el estado fundamental (en 3D) está dado por
con la constante de Planck , m e la masa del electrón y ω la frecuencia característica de las oscilaciones. Esta última puede estimarse considerando la energía potencial electrostática para un electrón desplazado por r desde su punto reticular. Digamos que la celda de Wigner-Seitz asociada al punto reticular es aproximadamente una esfera de radio a /2. El fondo neutralizante uniforme da lugar entonces a una carga positiva difusa de densidad con la carga del electrón . El potencial eléctrico sentido por el electrón desplazado como resultado de esto está dado por
con ε 0 la permitividad del vacío . En comparación con la energía de un oscilador armónico, se puede leer
o, combinando esto con el resultado del oscilador armónico cuántico para el desplazamiento de la raíz cuadrada media
El criterio de Lindemann nos da entonces la estimación de que se requiere r s > 40 para dar un cristal de Wigner estable. Las simulaciones cuánticas de Monte Carlo indican que el gas de electrones uniforme en realidad cristaliza a r s = 106 en 3D [5] [6] y r s = 31 en 2D. [7] [8] [9]
Para los sistemas clásicos a temperaturas elevadas se utiliza la interacción interpartícula promedio en unidades de temperatura: .. La transición de Wigner ocurre en G = 170 en 3D [10] y G = 125 en 2D. [11] Se cree que los iones, como los de hierro, forman un cristal de Wigner en el interior de las estrellas enanas blancas .
En la práctica, es difícil realizar experimentalmente un cristal de Wigner porque las fluctuaciones de la mecánica cuántica superan la repulsión de Coulomb y causan rápidamente desorden. Se necesita una baja densidad de electrones. Un ejemplo notable se da en los puntos cuánticos con bajas densidades de electrones o campos magnéticos altos, donde los electrones se localizarán espontáneamente en algunas situaciones, formando una denominada "molécula de Wigner" rotatoria, [12] un estado similar al cristal adaptado al tamaño finito del punto cuántico.
Se predijo (y se observó experimentalmente) [13] que la cristalización de Wigner en un gas de electrones bidimensional bajo campos magnéticos altos se producía para factores de llenado pequeños [14] (menos de ) del nivel de Landau más bajo . Para llenados fraccionales más grandes, se pensaba que el cristal de Wigner era inestable en relación con los estados líquidos de efecto Hall cuántico fraccional (FQHE). Se observó un cristal de Wigner en la vecindad inmediata del gran llenado fraccional , [15] y condujo a una nueva comprensión [16] (basada en la fijación de una molécula de Wigner giratoria) para la interacción entre las fases líquida cuántica y sólida fijada en el nivel de Landau más bajo.
Otra realización experimental del cristal Wigner se produjo en transistores de un solo electrón con corrientes muy bajas, donde se formó un cristal Wigner unidimensional. La corriente debida a cada electrón se puede detectar directamente de manera experimental. [17]
Además, los experimentos que utilizan cables cuánticos (los cables cuánticos cortos a veces se denominan ' contactos puntuales cuánticos ', (QPC)) han llevado a sugerencias de cristalización de Wigner en sistemas 1D. [18] En el experimento realizado por Hew et al ., se formó un canal 1D confinando electrones en ambas direcciones transversales al transporte de electrones, por la estructura de banda de la heterojunción GaAs / AlGaAs y el potencial del QPC. El diseño del dispositivo permitió que la densidad de electrones en el canal 1D variara de forma relativamente independiente de la fuerza del potencial de confinamiento transversal, lo que permitió realizar experimentos en el régimen en el que las interacciones de Coulomb entre electrones dominan la energía cinética. La conductancia a través de un QPC muestra una serie de mesetas cuantificadas en unidades del cuanto de conductancia , 2 e 2 / h Sin embargo, este experimento informó una desaparición de la primera meseta (lo que resultó en un salto en la conductancia de 4 e 2 / h ), que se atribuyó a la formación de dos filas paralelas de electrones. En un sistema estrictamente 1D, los electrones ocupan puntos equidistantes a lo largo de una línea, es decir, un cristal de Wigner 1D. A medida que aumenta la densidad electrónica, la repulsión de Coulomb se vuelve lo suficientemente grande como para superar el potencial electrostático que confina el cristal de Wigner 1D en la dirección transversal, lo que lleva a una reorganización lateral de los electrones en una estructura de doble fila. [19] [20] La evidencia de una doble fila observada por Hew et al . puede apuntar hacia los comienzos de un cristal de Wigner en un sistema 1D.
En 2018, se utilizó un enfoque magnético transversal que combina la detección de carga y espín para investigar directamente un cristal de Wigner y sus propiedades de espín en cables cuánticos unidimensionales con ancho ajustable. Esto proporciona evidencia directa y una mejor comprensión de la naturaleza de la cristalización de Wigner en zigzag al revelar tanto los diagramas estructurales como los de fase de espín. [21]
En 2019 se informó de evidencia directa de la formación de pequeños cristales de Wigner. [22]
En 2024, los físicos lograron obtener una imagen directa de un cristal de Wigner con un microscopio de efecto túnel de barrido . [23] [24]
Algunos materiales de Van der Waals estratificados, como los dicalcogenuros de metales de transición, tienen valores de r s intrínsecamente grandes que superan el límite teórico del cristal de Wigner 2D r s = 31~38. El origen de los grandes r s se debe en parte a la energía cinética suprimida que surge de una fuerte interacción electrón- fonón que conduce al estrechamiento de la banda polarónica, y en parte a la baja densidad de portadores n a bajas temperaturas. El estado de onda de densidad de carga (CDW) en dichos materiales, como 1T-TaS 2 , con una superred √13x√13 escasamente llena y r s = 70~100 puede considerarse mejor descrito en términos de un cristal de Wigner que la onda de densidad de carga más tradicional. Este punto de vista está respaldado tanto por el modelado como por mediciones sistemáticas de microscopía de efecto túnel de barrido. [25] Por lo tanto, las superredes de cristales de Wigner en los denominados sistemas CDW pueden considerarse la primera observación directa de estados ordenados de electrones localizados por interacción mutua de Coulomb. Un criterio importante es la profundidad de modulación de carga, que depende del material, y solo los sistemas donde r s excede el límite teórico pueden considerarse cristales de Wigner.
En 2020, se obtuvo una imagen directa de un cristal de Wigner observado por microscopía en heteroestructuras muaré de diselenuro de molibdeno / disulfuro de molibdeno (MoSe2/MoS2). [26] [27]
Un experimento de 2021 creó un cristal de Wigner cerca de 0 K confinando electrones utilizando una lámina monocapa de diseleniuro de molibdeno . La lámina se colocó entre dos electrodos de grafeno y se aplicó un voltaje. El espaciamiento de electrones resultante fue de alrededor de 20 nanómetros, medido por la apariencia estacionaria de excitones agitados por la luz. [28] [29]
Otro experimento de 2021 informó sobre cristales cuánticos de Wigner en los que las fluctuaciones cuánticas dominan sobre la fluctuación térmica en dos capas acopladas de diseleniuro de molibdeno sin ningún campo magnético. Los investigadores documentaron la fusión térmica y cuántica del cristal de Wigner en este experimento. [30] [31]