En 1957-8, Gilbert A. Hunt publicó una tripleta de artículos [2] [3] [4] que profundizaron esa conexión. El impacto de estos artículos en la comunidad probabilista de la época fue significativo. Joseph Doob dijo que "los grandes artículos de Hunt sobre la teoría del potencial generada por las funciones de transición de Markov revolucionaron la teoría del potencial". [5] Ronald Getoor los describió como "una obra monumental de casi 170 páginas que contenía una enorme cantidad de matemáticas verdaderamente originales". [6] Gustave Choquet escribió que los artículos de Hunt eran "memorias fundamentales que renovaban al mismo tiempo la teoría del potencial y la teoría de los procesos de Markov al establecer un vínculo preciso, en un marco muy general, entre una clase importante de procesos de Markov y la clase de núcleos en la teoría del potencial que los probabilistas franceses acababan de estudiar". [7]
Una de las contribuciones de Hunt fue agrupar varias propiedades que un proceso de Markov debe tener para ser estudiado a través de la teoría de potenciales, a lo que llamó "hipótesis (A)". Un proceso estocástico satisface la hipótesis (A) si se cumplen los tres supuestos siguientes: [2]
Tercer supuesto: ¿es cuasi-izquierda continua en ?
Los procesos que satisfacen la hipótesis (A) pronto se conocieron como procesos de Hunt. Si el tercer supuesto se debilita ligeramente de modo que la continuidad cuasi-izquierda se cumple solo en el tiempo de vida de , entonces se denomina "proceso estándar", un término que fue introducido por Eugene Dynkin . [8] [9]
Ascenso y caída
El libro "Markov Processes and Potential Theory" [10] (1968) de Blumenthal y Getoor codificó los procesos estándar y de Hunt como los procesos de Markov arquetípicos. [11] Durante los siguientes años, la teoría del potencial probabilístico se ocupó casi exclusivamente de estos procesos.
De los tres supuestos contenidos en la hipótesis de Hunt (A), el más restrictivo es la continuidad cuasi-izquierdista. Getoor y Glover escriben: “Al probar muchos de sus resultados, Hunt asumió ciertas hipótesis de regularidad adicionales sobre sus procesos... Poco a poco se hizo evidente que era necesario eliminar muchas de estas hipótesis de regularidad para avanzar en la teoría”. [12] Ya en la década de 1960 se hicieron intentos de asumir la continuidad cuasi-izquierdista sólo cuando fuera necesario. [13]
En 1970, Chung-Tuo Shih amplió dos de los resultados fundamentales de Hunt, [a] eliminando por completo la necesidad de límites izquierdos (y, por lo tanto, también la continuidad cuasi-izquierda). [14] Esto condujo a la definición de procesos derechos como la nueva clase de procesos de Markov para los que la teoría del potencial podría funcionar. [15]
Ya en 1975, Getoor escribió que los procesos de Hunt eran "principalmente de interés histórico". [16]
Cuando Michael Sharpe publicó su libro "Teoría general de los procesos de Markov" en 1988, Hunt y los procesos estándar se consideraban obsoletos en la teoría del potencial probabilístico. [15]
Los matemáticos aún estudian los procesos de Hunt, con mayor frecuencia en relación con las formas de Dirichlet . [17] [18] [19]
Definición
Breve definición
Un proceso de Hunt es un proceso fuerte de Markov en un espacio polaco que es càdlàg y cuasi-izquierdista; es decir, si es una secuencia creciente de tiempos de parada con límite , entonces
Definición verbosa
Sea un espacio de Radon y el álgebra de subconjuntos universalmente medibles de , y sea un semigrupo de Markov en que preserva . Un proceso de Hunt es una colección que satisface las siguientes condiciones: [20]
(vii) (continuidad derecha) Para cada , cada , y cada función -excesiva (con respecto a ) , la función es casi seguramente continua derecha bajo .
(viii) (continuidad cuasi-izquierda) Para cada , si es una secuencia creciente de tiempos de parada con límite , entonces .
Sharpe [20] muestra en el Lema 2.6 que las condiciones (i)-(v) implican mensurabilidad de la función para todo , y en el Teorema 7.4 que (vi)-(vii) implican la propiedad fuerte de Markov con respecto a .
Conexión con otros procesos de Markov
Las siguientes inclusiones se dan entre varias clases de procesos de Markov: [21] [22]
En 1980, Çinlar et al. [23]
demostraron que cualquier proceso de Hunt de valor real es semimartingala si y solo si es un cambio temporal aleatorio de un proceso de Itô. Más precisamente, [24]
un proceso de Hunt en (equipado con el álgebra de Borel ) es una semimartingala si y solo si hay un proceso de Itô y una función medible con tal que , donde
los procesos de Itô se nombraron por primera vez debido a su papel en este teorema, [25]
aunque Itô los había estudiado previamente. [26]
^ Se trata de las proposiciones 2.1 y 2.2 de "Procesos y potenciales de Markoff I". Blumenthal y Getoor las habían ampliado previamente de los procesos de Hunt a los procesos estándar en el teorema III.6.1 de su libro de 1968.
Referencias
^ Blumenthal, Getoor (1968), vii
^ ab Hunt, GA (1957). "Procesos y potenciales de Markoff I". Illinois J. Math . 1 : 44–93.
^ Hunt, GA (1957). "Procesos y potenciales de Markoff II". Illinois J. Math . 1 : 313–369.
^ Hunt, GA (1958). "Procesos y potenciales de Markoff III". Illinois J. Math . 2 : 151–213.
^ Snell, J. Laurie (1997). "Una conversación con Joe Doob". Ciencia estadística . 12 (4): 301–311. doi : 10.1214/ss/1030037961 .
^ Getoor, Ronald (1980). "Revisión: Probabilidades y potencial, por C. Dellacherie y PA Meyer". Bull. Amer. Math. Soc. (NS) . 2 (3): 510–514. doi : 10.1090/s0273-0979-1980-14787-4 .
^ Según cita Marc Yor en Yor, Marc (2006). "La vida y la obra científica de Paul André Meyer (21 de agosto de 1934 - 30 de enero de 2003) "Un modelo para todos nosotros"". Memoriam Paul-André Meyer . Apuntes de clase de matemáticas. Vol. 1874. doi :10.1007/978-3-540-35513-7_2.
^ Blumenthal, Getoor (1968), 296
^ Dynkin, EB (1960). "Transformaciones de procesos de Markov relacionados con funciones aditivas" (PDF) . Berkeley Symp. on Math. Statist. and Prob . 4 (2): 117–142.
^ "Desde la publicación del libro de Blumenthal y Getoor, los procesos estándar han sido la clase central de procesos de Markov en la teoría del potencial probabilístico", pág. 277, Chung, Kai Lai ; Walsh, John B. (2005). Procesos de Markov, movimiento browniano y simetría temporal. Grundlehren der mathematischen Wissenschaften. Nueva York, NY: Springer. doi : 10.1007/0-387-28696-9. ISBN978-0-387-22026-0.
^ Getoor, RK ; Glover, J. (septiembre de 1984). "Descomposiciones de Riesz en la teoría de procesos de Markov". Transactions of the American Mathematical Society . 285 (1): 107–132.
^ Chung, KL ; Walsh, John B. (1969), "Para revertir un proceso de Markov", Acta Mathematica , 123 : 225–251, doi :10.1007/BF02392389
^ Shih, Chung-Tuo (1970). "Sobre la extensión de la teoría del potencial a todos los procesos fuertes de Markov". Ann. Inst. Fourier (Grenoble) . 20 (1): 303–415. doi : 10.5802/aif.343 .
^ ab Meyer, Paul André (1989). "Revisión: "Teoría general de los procesos de Markov" por Michael Sharpe". Bull. Amer. Math. Soc. (NS) . 20 (21): 292–296. doi : 10.1090/S0273-0979-1989-15833-3 .
^ p56, Getoor, Ronald K. (1975). Procesos de Markov: procesos de rayos y procesos de Knight. Apuntes de clase de matemáticas. Berlín, Heidelberg: Springer. ISBN978-3-540-07140-2.
^ Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi (1994). Formas de Dirichlet y procesos simétricos de Markov . De Gruyter. doi :10.1515/9783110889741.
^ Applebaum, David (2009), Procesos de Lévy y cálculo estocástico, Cambridge Studies in Advanced Mathematics, Cambridge University Press, pág. 196, ISBN9780521738651
^ Krupka, Demeter (2000), Introducción a la geometría variacional global, North-Holland Mathematical Library, vol. 23, Elsevier, págs. 87 y siguientes, ISBN9780080954295
^ ab Sharpe, Michael (1988). Teoría general de los procesos de Markov . Academic Press, San Diego. ISBN0-12-639060-6.
^ p55, Getoor, Ronald K. (1975). Procesos de Markov: procesos de rayos y procesos de Knight. Apuntes de clase de matemáticas. Berlín, Heidelberg: Springer. ISBN978-3-540-07140-2.
^ p515, Çinlar, Erhan (2011). Probabilidad y estocástica. Textos de posgrado en matemáticas. Nueva York, NY: Springer. ISBN978-0-387-87858-4.
^ Çinlar, E .; Jacod, J .; Protter, P.; Sharpe, MJ (1980). "Procesos de Semimartingales y Markov". Z. Wahrscheinlichkeitstheorie verw. Gebiete . 54 (2): 161–219. doi :10.1007/BF00531446.
^ Teorema 3.35, Çinlar, E. ; Jacod, J. (1981). "Representación de procesos de Markov de semimartingala en términos de procesos de Wiener y medidas aleatorias de Poisson". Seminario sobre procesos estocásticos, 1981 . págs. 159–242. doi :10.1007/978-1-4612-3938-3_8.
^
p164-5, "Por lo tanto, los procesos cuyos generadores extendidos tienen la forma (1.1) son de importancia central entre los procesos de Markov de semimartingala, y merecen un nombre propio. Los llamamos procesos de Itô". Çinlar, E. ; Jacod, J. ; Protter, P.; Sharpe, MJ (1980). "Semimartingalas y procesos de Markov". Z. Wahrscheinlichkeitstheorie verw. Gebiete . 54 (2): 161–219. doi :10.1007/BF00531446.
^ Itô, Kiyosi (1951). Sobre ecuaciones diferenciales estocásticas . Memorias de la Sociedad Matemática Estadounidense. Sociedad Matemática Estadounidense. doi :10.1090/memo/0004. ISBN978-0-8218-1204-4.
Fuentes
Blumenthal, Robert M. y Getoor, Ronald K. "Procesos de Markov y teoría del potencial". Academic Press, Nueva York, 1968.
Hunt, GA "Procesos y potenciales de Markoff. I, II, III.", Illinois J. Math. 1 (1957) 44–93; 1 (1957), 313–369; 2 (1958), 151–213.