Expresión del flujo iónico a través de una membrana celular
La ecuación de flujo de Goldman-Hodgkin-Katz (o ecuación de flujo GHK o ecuación de densidad de corriente GHK) describe el flujo iónico a través de una membrana celular como una función del potencial transmembrana y las concentraciones del ion dentro y fuera de la célula. Dado que tanto el voltaje como los gradientes de concentración influyen en el movimiento de los iones, este proceso es una versión simplificada de la electrodifusión . La electrodifusión se define con mayor precisión mediante la ecuación de Nernst-Planck y la ecuación de flujo GHK es una solución a la ecuación de Nernst-Planck con los supuestos que se enumeran a continuación.
Origen
El estadounidense David E. Goldman, de la Universidad de Columbia , y los premios Nobel ingleses Alan Lloyd Hodgkin y Bernard Katz derivaron esta ecuación.
Suposiciones
Para derivar la ecuación de flujo de GHK se hacen varias suposiciones (Hille 2001, p. 445):
- La membrana es una sustancia homogénea.
- El campo eléctrico es constante, por lo que el potencial transmembrana varía linealmente a través de la membrana.
- Los iones acceden a la membrana instantáneamente desde las soluciones intra y extracelulares.
- Los iones permeables no interactúan
- El movimiento de iones se ve afectado tanto por la concentración como por las diferencias de voltaje.
Ecuación
La ecuación de flujo GHK para un ion S (Hille 2001, pág. 445):
dónde
- S es la densidad de corriente (flujo) que sale a través de la membrana transportada por el ion S, medida en amperios por metro cuadrado (A·m −2 ).
- P S es la permeabilidad de la membrana para el ion S medida en m·s −1
- z S es la valencia del ion S
- V m es el potencial transmembrana en voltios
- F es la constante de Faraday , igual a 96,485 C·mol −1 o J·V −1 ·mol −1
- R es la constante del gas , igual a 8,314 J·K −1 ·mol −1
- T es la temperatura absoluta , medida en kelvin (= grados Celsius + 273,15)
- [S] i es la concentración intracelular del ion S, medida en mol·m −3 o mmol·l −1
- [S] o es la concentración extracelular del ion S, medida en mol·m −3
Definición implícita de potencial de inversión
Se ha demostrado que el potencial de inversión está contenido en la ecuación de flujo GHK (Flax 2008). La prueba se reproduce a partir de la referencia (Flax 2008) aquí.
Queremos demostrar que cuando el flujo es cero, el potencial transmembrana no es cero. Formalmente se escribe que es equivalente a escribir , que establece que cuando el potencial transmembrana es cero, el flujo no es cero.
Sin embargo, debido a la forma de la ecuación de flujo de GHK cuando , . Esto es un problema ya que el valor de es indeterminado .
Recurrimos a la regla de L'Hôpital para encontrar la solución del límite:
donde representa la diferencial de f y el resultado es:
De la ecuación anterior se desprende claramente que cuando , si y por tanto
cual es la definición del potencial de inversión.
Mediante el ajuste también podemos obtener el potencial de inversión:
Lo que se reduce a:
y produce la ecuación de Nernst :
Rectificación
Dado que una de las suposiciones de la ecuación de flujo de GHK es que los iones se mueven independientemente unos de otros, el flujo total de iones a través de la membrana es simplemente igual a la suma de dos flujos en direcciones opuestas. Cada flujo se aproxima a un valor asintótico a medida que el potencial de membrana diverge de cero. Estas asíntotas son
y
donde los subíndices 'i' y 'o' denotan los compartimentos intra y extracelulares, respectivamente. Intuitivamente, uno puede entender estos límites de la siguiente manera: si un ion solo se encuentra fuera de una célula, entonces el flujo es óhmico (proporcional al voltaje) cuando el voltaje hace que el ion fluya hacia dentro de la célula, pero ningún voltaje podría hacer que el ion fluya hacia fuera de la célula, ya que no hay iones dentro de la célula en primer lugar.
Manteniendo todos los términos excepto V m constantes, la ecuación produce una línea recta al graficar S contra V m . Es evidente que la relación entre las dos asíntotas es simplemente la relación entre las dos concentraciones de S, [S] i y [S] o . Por lo tanto, si las dos concentraciones son idénticas, la pendiente será idéntica (y constante) en todo el rango de voltaje (que corresponde a la ley de Ohm escalada por el área de superficie). A medida que aumenta la relación entre las dos concentraciones, también lo hace la diferencia entre las dos pendientes, lo que significa que la corriente es mayor en una dirección que en la otra, dada una fuerza impulsora igual de signos opuestos. Esto es contrario al resultado obtenido si se utiliza la ley de Ohm escalada por el área de superficie, y el efecto se llama rectificación .
La ecuación de flujo GHK es utilizada principalmente por electrofisiólogos cuando la relación entre [S] i y [S] o es grande y/o cuando una o ambas concentraciones cambian considerablemente durante un potencial de acción . El ejemplo más común es probablemente el calcio intracelular , [Ca 2+ ] i , que durante un ciclo de potencial de acción cardíaco puede cambiar 100 veces o más, y la relación entre [Ca 2+ ] o y [Ca 2+ ] i puede alcanzar 20.000 o más.
Referencias
- Hille, Bertil (2001). Canales iónicos de membranas excitables , 3.ª ed., Sinauer Associates, Sunderland, Massachusetts. ISBN 978-0-87893-321-1
- Flax, Matt R. y Holmes, W. Harvey (2008). Modelos de células ciliadas cocleares Goldman-Hodgkin-Katz: una base para la mecánica coclear no lineal , Actas de la conferencia: Interspeech 2008.
Véase también