Planta acuática

Planta que se ha adaptado a vivir en un ambiente acuático.
La flor de Nymphaea alba , una especie de nenúfar
Brote de Nelumbo nucifera , una planta acuática.

Las plantas acuáticas son plantas que se han adaptado a vivir en ambientes acuáticos ( agua salada o agua dulce ). También se las conoce como hidrófitas o macrófitas para distinguirlas de las algas y otros micrófitos ( fitoplancton ). En lagos , ríos y humedales , la vegetación acuática proporciona cobertura para animales acuáticos como peces , anfibios e insectos acuáticos , crea sustrato para invertebrados bentónicos , produce oxígeno a través de la fotosíntesis y sirve de alimento para algunos animales salvajes herbívoros . [1] Algunos ejemplos conocidos de plantas acuáticas son el nenúfar , el loto , la lenteja de agua , el helecho mosquito , el corazón flotante , la milenrama acuática , la cola de caballo , la lechuga de agua y el jacinto de agua .

Aunque las algas marinas , que son grandes algas marinas multicelulares , tienen funciones ecológicas similares a las de las plantas acuáticas como las praderas marinas , normalmente no se las llama macrófitas porque carecen del sistema especializado de raíces / rizoides de las plantas. [2] En cambio, las algas marinas tienen fijaciones que solo sirven como anclajes y no tienen funciones de absorción.

Las plantas acuáticas requieren adaptaciones especiales para la inundación prolongada en el agua y para flotar en la superficie del agua. La adaptación más común es la presencia de células de empaquetamiento internas livianas, aerénquima , pero las hojas flotantes y las hojas finamente disecadas también son comunes. [3] [4] [5] Las plantas acuáticas solo prosperan en agua o en suelo que está frecuentemente saturado y, por lo tanto, son un componente común de pantanos y marismas . [6] Una de las plantas acuáticas más grandes del mundo es el nenúfar boliviano , que tiene el récord mundial Guinness de tener la hoja indivisa más grande con 3,2 m (10 pies 6 pulgadas) de diámetro; la más pequeña es la lenteja de agua sin raíces , que tiene solo 1 mm (0,039 pulgadas) de ancho. Muchos animales pequeños usan plantas acuáticas como las lentejas de agua y los nenúfares para desovar o como refugios protectores contra depredadores tanto de arriba como de debajo de la superficie del agua.

Las plantas acuáticas son importantes productores primarios y son la base de la red alimentaria de muchas especies de fauna acuática, especialmente de especies de humedales. [7] Compiten con el fitoplancton por el exceso de nutrientes como nitrógeno y fósforo , reduciendo así la prevalencia de eutrofización y floraciones de algas nocivas , y tienen un efecto significativo en la química del suelo ribereño [8] ya que sus hojas , tallos y raíces ralentizan el flujo de agua, capturan sedimentos y atrapan contaminantes . El exceso de sedimentos se asentará en el lecho del arroyo debido a las tasas de flujo reducidas, y algunas plantas acuáticas también tienen microbios simbióticos capaces de fijar nitrógeno y descomponer los contaminantes atrapados y/o absorbidos por las raíces. [9] [2] Históricamente, las plantas acuáticas han sido menos estudiadas que las plantas terrestres , [10] y el manejo de la vegetación acuática se ha convertido en un campo cada vez más interesante [11] como medio para reducir la contaminación agrícola de los cuerpos de agua . [12] [13]

Distribución

El factor principal que controla la distribución de las plantas acuáticas es la disponibilidad de agua. Sin embargo, otros factores también pueden controlar su distribución, como la disponibilidad de nutrientes, las perturbaciones causadas por las olas, el pastoreo y la salinidad. [6] Algunas plantas acuáticas pueden prosperar en agua salobre, salina y salada . [3]

Evolución

Las plantas acuáticas se han adaptado para vivir tanto en agua dulce como salada. Las plantas vasculares acuáticas se han originado en múltiples ocasiones en diferentes familias de plantas; [3] [14] pueden ser helechos o angiospermas (incluyendo tanto monocotiledóneas como dicotiledóneas ). Las únicas angiospermas capaces de crecer completamente sumergidas en agua de mar son las praderas marinas . [15] Se encuentran ejemplos en géneros como Thalassia y Zostera . Un origen acuático de las angiospermas está respaldado por la evidencia de que varias de las primeras angiospermas fósiles conocidas eran acuáticas. Las plantas acuáticas están filogenéticamente bien dispersas entre las angiospermas, con al menos 50 orígenes independientes, aunque comprenden menos del 2% de las especies de angiospermas. [16] Archaefructus representa uno de los fósiles de angiospermas más antiguos y completos, que tiene alrededor de 125 millones de años. [17] Estas plantas requieren adaptaciones especiales para vivir sumergidas en el agua o flotando en la superficie. [17]

Adaptación acuática

Reproducción

Aunque la mayoría de las angiospermas acuáticas pueden reproducirse mediante floración y producción de semillas, muchas también han evolucionado para tener una reproducción asexual extensa por medio de rizomas , turiones y fragmentos en general. [4]

Fotosíntesis

Las plantas acuáticas sumergidas tienen un acceso más restringido al carbono en forma de dióxido de carbono en comparación con las plantas terrestres. También pueden experimentar niveles reducidos de luz. [18] En las plantas acuáticas, las capas límite difusas (DBL) alrededor de las hojas sumergidas y los tallos fotosintéticos varían según el grosor, la forma y la densidad de las hojas y son el factor principal responsable de la tasa muy reducida de transporte gaseoso a través del límite hoja/agua y, por lo tanto, inhiben en gran medida el transporte de dióxido de carbono. [18] Para superar esta limitación, muchas plantas acuáticas han evolucionado para metabolizar iones de bicarbonato como fuente de carbono. [18]

Las variables ambientales afectan las tasas fotosintéticas instantáneas de las plantas acuáticas y los pigmentos de las enzimas fotosintéticas. [19] En el agua, la intensidad de la luz disminuye rápidamente con la profundidad. La respiración también es mayor en la oscuridad por unidad de volumen del medio en el que viven. [19]

Morfología

Las plantas acuáticas completamente sumergidas tienen poca necesidad de tejido rígido o leñoso, ya que pueden mantener su posición en el agua utilizando la flotabilidad, generalmente de lagunas llenas de gas o células turgentes de Aerenchyma . [20] Cuando se sacan del agua, estas plantas suelen estar flácidas y pierden turgencia rápidamente. [21]

Sin embargo, quienes viven en los ríos necesitan suficiente xilema estructural para evitar ser dañados por el agua que fluye rápidamente y también necesitan fuertes mecanismos de fijación para evitar ser arrancados de raíz por la corriente del río.

Muchas plantas completamente sumergidas tienen hojas finamente disecadas, probablemente para reducir el arrastre en los ríos y proporcionar una superficie mucho mayor para el intercambio de minerales y gases. [20] Algunas especies de plantas como Ranunculus aquatilis tienen dos formas de hojas diferentes con hojas finamente disecadas que están completamente sumergidas y hojas enteras en la superficie del agua.

Algunas plantas que viven en aguas estancadas pueden alterar su posición en la columna de agua en diferentes estaciones. Un ejemplo notable es el soldado de agua, que reposa como una roseta sin raíces en el fondo del cuerpo de agua, pero flota lentamente hacia la superficie a fines de la primavera para que su inflorescencia pueda emerger al aire. Mientras asciende a través de la columna de agua, produce raíces y plantas hijas vegetativas por medio de rizomas . Cuando la floración se completa, la planta desciende a través de la columna de agua y las raíces se atrofian.

En las angiospermas acuáticas flotantes, las hojas han evolucionado para tener solo estomas en la superficie superior para aprovechar el dióxido de carbono atmosférico. [22] El intercambio de gases ocurre principalmente a través de la superficie superior de la hoja debido a la posición de los estomas, y los estomas están en un estado permanentemente abierto. Debido a su entorno acuático, las plantas no corren el riesgo de perder agua a través de los estomas y, por lo tanto, no enfrentan ningún riesgo de deshidratación. [22] Para la fijación de carbono, algunas angiospermas acuáticas pueden absorber CO2 del bicarbonato en el agua, un rasgo que no existe en las plantas terrestres. [18] Las angiospermas que utilizan HCO
3
- puede mantener niveles de CO 2 satisfactorios, incluso en entornos básicos con bajos niveles de carbono. [18]

Flotabilidad

Debido a su entorno, las plantas acuáticas experimentan flotabilidad que contrarresta su peso. [23] Debido a esto, su cubierta celular es mucho más flexible y suave, debido a la falta de presión que experimentan las plantas terrestres. [23] También se sabe que las algas verdes tienen paredes celulares extremadamente delgadas debido a su entorno acuático, y la investigación ha demostrado que las algas verdes son el antepasado más cercano a las plantas terrestres y acuáticas vivas. [24] Las plantas terrestres tienen paredes celulares rígidas destinadas a soportar el clima severo, así como a mantener la planta en posición vertical ya que la planta resiste la gravedad. El gravitropismo, junto con el fototropismo y el hidrotropismo, son rasgos que se cree que evolucionaron durante la transición de un hábitat acuático a uno terrestre. [25] [26] Las plantas terrestres ya no tenían acceso ilimitado al agua y tuvieron que evolucionar para buscar nutrientes en su nuevo entorno, así como para desarrollar células con nuevas funciones sensoriales, como los estatocitos .

Plantas terrestres en ambientes acuáticos

Las plantas terrestres pueden sufrir cambios fisiológicos cuando se sumergen debido a inundaciones. Cuando están sumergidas, se ha descubierto que el crecimiento de nuevas hojas tiene hojas más delgadas y paredes celulares más delgadas que las hojas de la planta que creció mientras estaba sobre el agua, junto con niveles de oxígeno más altos en la parte de la planta cultivada bajo el agua en comparación con las secciones que crecieron en su entorno terrestre. [27] Esto se considera una forma de plasticidad fenotípica ya que la planta, una vez sumergida, experimenta cambios en la morfología que se adaptan mejor a su nuevo entorno acuático. [27] Sin embargo, si bien algunas plantas terrestres pueden adaptarse a corto plazo a un hábitat acuático, puede que no sea posible reproducirse bajo el agua, especialmente si la planta generalmente depende de polinizadores terrestres .

Clasificación de los macrófitos

Según su forma de crecimiento, los macrófitos se pueden caracterizar como: [28] [29] [30]

  • Emergente
  • Sumergido
    • Enraizado: enraizado al sustrato
    • Sin raíces: flotando libremente en la columna de agua
    • Adherido: adherido al sustrato pero no por raíces.
  • De hojas flotantes
  • Flotando libremente

Emergente

Una planta emergente es aquella que crece en el agua pero perfora la superficie de modo que queda parcialmente expuesta al aire. En conjunto, estas plantas son vegetación emergente . [29]

Este hábito puede haberse desarrollado porque las hojas pueden realizar la fotosíntesis de manera más eficiente en el aire y en competencia con las plantas sumergidas, pero a menudo, la característica aérea principal es la flor y el proceso reproductivo relacionado. El hábito emergente permite la polinización por el viento o por insectos voladores . [29] [31]

Existen muchas especies de plantas emergentes, entre ellas, la caña ( Phragmites ), Cyperus papyrus , especies de Typha , juncos floridos y especies de arroz silvestre . Algunas especies, como la salicaria purpúrea , pueden crecer en el agua como plantas emergentes, pero son capaces de florecer en pantanos o simplemente en suelos húmedos. [32]

Sumergido

Las macrófitas sumergidas crecen completamente bajo el agua con raíces adheridas al sustrato (p. ej. Myriophyllum spicatum ) o sin ningún sistema radicular (p. ej. Ceratophyllum demersum ). Las helófitas son plantas que crecen parcialmente sumergidas en pantanos y vuelven a crecer a partir de brotes debajo de la superficie del agua. [33] Las masas de vegetación alta que bordean las cuencas hidrográficas y los ríos pueden incluir helófitas. Los ejemplos incluyen masas de Equisetum fluviatile , Glyceria maxima , Hippuris vulgaris , Sagittaria , Carex , Schoenoplectus , Sparganium , Acorus , Iris pseudacorus , Typha y Phragmites australis . [33]

De hojas flotantes

Las macrófitas de hojas flotantes tienen sistemas de raíces adheridos al sustrato o al fondo del cuerpo de agua y con hojas que flotan en la superficie del agua. Las macrófitas de hojas flotantes más comunes son los nenúfares (familia Nymphaeaceae ) y las algas acuáticas (familia Potamogetonaceae ). [34]

Flotando libremente

Los macrófitos que flotan libremente se encuentran suspendidos en la superficie del agua con sus raíces no adheridas al sustrato, sedimento o fondo del cuerpo de agua. Son fácilmente arrastrados por el aire y proporcionan un caldo de cultivo para los mosquitos. Algunos ejemplos incluyen Pistia spp., comúnmente llamada lechuga de agua, col de agua o col del Nilo. [34]

Clasificación morfológica

Las múltiples clasificaciones posibles de las plantas acuáticas se basan en la morfología. [3] Un ejemplo tiene seis grupos como sigue: [35]

  • Anfifitas: plantas que están adaptadas a vivir sumergidas o en la tierra.
  • Elodeidas: plantas de tallo que completan todo su ciclo de vida sumergidas, o solo con sus flores por encima de la línea de flotación.
  • Isótidas : plantas en roseta que completan todo su ciclo de vida sumergidas.
  • Helófitas : plantas con raíces en el fondo, pero con hojas por encima de la línea de flotación.
  • Ninfeidas: plantas enraizadas en el fondo, pero con hojas flotando en la superficie del agua.
  • Neuston : plantas vasculares que flotan libremente en el agua.

Funciones de los macrófitos en los sistemas acuáticos

Los macrófitos desempeñan muchas funciones ecosistémicas en los ecosistemas acuáticos y brindan servicios a la sociedad humana. Una de las funciones importantes que desempeñan los macrófitos es la absorción de nutrientes disueltos, incluidos el nitrógeno y el fósforo. [8] Los macrófitos se utilizan ampliamente en humedales construidos en todo el mundo para eliminar el exceso de N y P del agua contaminada. [36] Además de la absorción directa de nutrientes, los macrófitos influyen indirectamente en el ciclo de nutrientes , especialmente el ciclo de N al influir en los grupos funcionales bacterianos desnitrificantes que habitan en las raíces y brotes de los macrófitos. [37] Los macrófitos promueven la sedimentación de sólidos suspendidos al reducir las velocidades de la corriente, [38] impiden la erosión al estabilizar las superficies del suelo. [39] Los macrófitos también proporcionan heterogeneidad espacial en una columna de agua que de otro modo no estaría estructurada. La complejidad del hábitat proporcionada por los macrófitos tiende a aumentar la diversidad y la densidad tanto de peces como de invertebrados. [40]

El valor adicional de los macrófitos específicos del sitio proporciona hábitat para la vida silvestre y hace que los sistemas de tratamiento de aguas residuales sean estéticamente satisfactorios. [41]

Usos e importancia para los humanos

Cultivos alimentarios

Producción acuícola mundial de peces y plantas acuáticas comestibles, 1990-2016

Algunas plantas acuáticas son utilizadas por los seres humanos como fuente de alimento. Algunos ejemplos son el arroz silvestre ( Zizania ), el abrojo de agua ( Trapa natans ), la castaña de agua china ( Eleocharis dulcis ), el loto indio ( Nelumbo nucifera ), la espinaca de agua ( Ipomoea aquatica ), el nenúfar espinoso ( Euryale ferox ) y el berro ( Rorippa nasturtium-aquaticum ).

Bioevaluación

Una disminución en una comunidad de macrófitos puede indicar problemas de calidad del agua y cambios en el estado ecológico del cuerpo de agua. Dichos problemas pueden ser el resultado de una turbidez excesiva , herbicidas o salinización . Por el contrario, los niveles demasiado altos de nutrientes pueden crear una sobreabundancia de macrófitos, lo que a su vez puede interferir con el procesamiento del lago. [1] Los niveles de macrófitos son fáciles de muestrear, no requieren análisis de laboratorio y se utilizan fácilmente para calcular métricas de abundancia simples. [1]

Fuentes potenciales de agentes terapéuticos

Las investigaciones fitoquímicas y farmacológicas sugieren que las macrófitas de agua dulce, como Centella asiatica , Nelumbo nucifera , Nasturtium officinale , Ipomoea aquatica y Ludwigia adscendens , son fuentes prometedoras de productos naturales anticancerígenos y antioxidantes. [42]

Se ha descubierto que los extractos de agua caliente del tallo y la raíz de Ludwigia adscendens , así como los del fruto, la hoja y el tallo de Monochoria hastata tienen actividad inhibidora de la lipoxigenasa . El extracto de agua caliente preparado a partir de la hoja de Ludwigia adscendens exhibe una actividad inhibidora de la alfa-glucosidasa más potente que la de la acarbosa . [43]

Tratamiento de aguas residuales

Las macrófitas desempeñan un papel esencial en algunas formas de tratamiento de aguas residuales, más comúnmente en el tratamiento de aguas residuales a pequeña escala mediante humedales construidos o en lagunas de pulido para sistemas más grandes. [41]

Plantas acuáticas invasoras

La introducción de plantas acuáticas no autóctonas ha dado lugar a numerosos ejemplos en todo el mundo de plantas que se han vuelto invasivas y que con frecuencia dominan los entornos en los que han sido introducidas. [44] Entre estas especies se encuentra el jacinto de agua , que es invasivo en muchas zonas tropicales y subtropicales, incluida gran parte del sur de los EE. UU., muchos países asiáticos y Australia. La siempreviva de Nueva Zelanda es una planta altamente invasiva en climas templados que se extiende desde una planta marginal hasta abarcar todo el cuerpo de muchos estanques con la exclusión casi total de otras plantas y la vida silvestre [45].

Otras especies de plantas invasoras notables incluyen la centella asiática , [46] la hierba de estanque de hojas rizadas , [45] el helecho acuático [45] y la pluma de loro . [47] Muchas de estas plantas invasoras se han vendido como plantas oxigenantes para acuarios o plantas decorativas para estanques de jardín y luego se han desechado en el medio ambiente. [45]

En 2012, un estudio exhaustivo de las plantas acuáticas exóticas en 46 países europeos reveló 96 especies exóticas. Las especies exóticas eran principalmente nativas de América del Norte, Asia y América del Sur. La planta exótica más extendida en Europa fue Elodea canadensis (que se encuentra en 41 países europeos), seguida de Azolla filiculoides en 25 países y Vallisneria spiralis en 22 países. [44] Los países con más especies de plantas acuáticas exóticas registradas fueron Francia e Italia con 30 especies, seguidos de Alemania con 27 especies, y Bélgica y Hungría con 26 especies. [44]

La Organización Europea y Mediterránea de Protección de las Plantas ha publicado recomendaciones a las naciones europeas que abogan por la restricción o prohibición del comercio de plantas exóticas invasoras. [48]

Véase también

Referencias

  1. ^ abc "Macrófitos como indicadores de pantanos de agua dulce en Florida" (PDF) . Archivado (PDF) desde el original el 2014-04-07 . Consultado el 2014-04-05 .
  2. ^ ab Krause-Jensen, Dorte; Sand-Jensen, Kaj (mayo de 1998). "Atenuación de la luz y fotosíntesis de comunidades de plantas acuáticas". Limnología y Oceanografía . 43 (3): 396–407. Bibcode :1998LimOc..43..396K. doi : 10.4319/lo.1998.43.3.0396 . ISSN  0024-3590. S2CID  85700950.
  3. ^ abcd Sculthorpe, CD 1967. La biología de las plantas vasculares acuáticas. Reimpreso en 1985 por Edward Arnold, de London.
  4. ^ ab Hutchinson, GE 1975. Tratado de limnología, vol. 3, Botánica limnológica. Nueva York: John Wiley.
  5. ^ Cook, CDK (ed). 1974. Plantas acuáticas del mundo. Dr. W. Junk Publishers, La Haya. ISBN 90-6193-024-3 . 
  6. ^ ab Keddy, PA 2010. Ecología de humedales: principios y conservación (2.ª edición). Cambridge University Press, Cambridge, Reino Unido. 497 pág.
  7. ^ Chambers, Patricia A. (septiembre de 1987). "Luz y nutrientes en el control de la estructura de la comunidad de plantas acuáticas. II. Observaciones in situ". Revista de ecología . 75 (3): 621–628. Bibcode :1987JEcol..75..621C. doi :10.2307/2260194. JSTOR  2260194.
  8. ^ ab "¿Los macrófitos desempeñan un papel en los humedales de tratamiento construidos?". Ciencia y tecnología del agua . 35 (5). 1997. doi :10.1016/s0273-1223(97)00047-4. ISSN  0273-1223.
  9. ^ Cowardin, Lewis M.; Carter, Virginia; Golet, Francis C.; Laroe, Edward T. (15 de julio de 2005), "Clasificación de humedales y hábitats de aguas profundas de los Estados Unidos", en Lehr, Jay H.; Keeley, Jack (eds.), Water Encyclopedia , John Wiley & Sons, Inc., págs. sw2162, doi :10.1002/047147844x.sw2162, ISBN 9780471478447, archivado desde el original el 21 de diciembre de 2019 , consultado el 16 de noviembre de 2019
  10. ^ Maréchal, Eric (2019). "Plantas marinas y de agua dulce: desafíos y expectativas". Frontiers in Plant Science . 10 : 1545. doi : 10.3389/fpls.2019.01545 . ISSN  1664-462X. PMC 6883403 . PMID  31824548. 
  11. ^ Nichols, Stanley A. (4 de febrero de 1974). "Manipulación mecánica y del hábitat para el manejo de plantas acuáticas: una revisión de técnicas". Departamento de Recursos Naturales – vía Google Books.
  12. ^ Quilliam, Richard S.; van Niekerk, Melanie A.; Chadwick, David R.; Cross, Paul; Hanley, Nick; Jones, Davey L.; Vinten, Andy JA; Willby, Nigel; Oliver, David M. (abril de 2015). "¿Puede la recolección de macrófitos de aguas eutróficas cerrar el ciclo de pérdida de nutrientes de las tierras agrícolas?". Journal of Environmental Management . 152 : 210–217. Bibcode :2015JEnvM.152..210Q. doi : 10.1016/j.jenvman.2015.01.046 . hdl : 10023/6517 . PMID  25669857.
  13. ^ Verhofstad, MJJM; Poelen, MDM; van Kempen, MML; Bakker, ES; Smolders, AJP (septiembre de 2017). "Encontrar la frecuencia de cosecha para maximizar la eliminación de nutrientes en un humedal construido dominado por plantas acuáticas sumergidas". Ingeniería ecológica . 106 : 423–430. Bibcode :2017EcEng.106..423V. doi :10.1016/j.ecoleng.2017.06.012.
  14. ^ Tomlinson, PB (1986). La botánica de los manglares . Cambridge, Reino Unido: Cambridge University Press.
  15. ^ "Alismatales". Sitio web de filogenia de angiospermas . Jardín Botánico de Misuri . Archivado desde el original el 29 de enero de 2018. Consultado el 1 de marzo de 2018 .
  16. ^ Pennisi, Elizabeth (1 de junio de 2018). "Esta trucha de agua salada evolucionó para vivir en agua dulce en tan solo 100 años". Science . doi :10.1126/science.aau3582. ISSN  0036-8075. S2CID  89661781.
  17. ^ ab Mader, Sylvia S. (1998). Biología . WCB/McGraw-Hill. ISBN 0-697-34079-1.OCLC 37418228  .
  18. ^ abcde Pedersen, Ole; Colmer, Timothy David; Sand-Jensen, Kaj (2013). "Fotosíntesis subacuática de plantas sumergidas: avances y métodos recientes". Frontiers in Plant Science . 4 : 140. doi : 10.3389/fpls.2013.00140 . ISSN  1664-462X. PMC 3659369 . PMID  23734154. 
  19. ^ ab Sand-Jensen, Kaj (1989-07-01). "Variables ambientales y su efecto en la fotosíntesis de comunidades de plantas acuáticas". Botánica acuática . Fotosíntesis y fotorrespiración en organismos acuáticos. 34 (1): 5–25. Bibcode :1989AqBot..34....5S. doi :10.1016/0304-3770(89)90048-X. ISSN  0304-3770.
  20. ^ ab "Adaptaciones morfológicas, fisiológicas y anatómicas en plantas". Universidad Musulmana de Aligarh . Consultado el 8 de febrero de 2022 .
  21. ^ "Adaptaciones de las plantas a la vida acuática". The Offwell Woodland & Wildlife Trust . Consultado el 8 de febrero de 2022 .
  22. ^ ab Shtein, Ilana; Popper, Zoë A.; Harpaz-Saad, Smadar (3 de julio de 2017). "Los estomas permanentemente abiertos de las angiospermas acuáticas muestran patrones de cristalinidad de celulosa modificados". Plant Signaling & Behavior . 12 (7): e1339858. Bibcode :2017PlSiB..12E9858S. doi :10.1080/15592324.2017.1339858. ISSN  1559-2324. PMC 5586356 . PMID  28718691. 
  23. ^ ab Okuda, Kazuo (1 de agosto de 2002). "Estructura y filogenia de las cubiertas celulares". Revista de investigación vegetal . 115 (4): 283–288. Código Bibliográfico :2002JPlR..115..283O. doi :10.1007/s10265-002-0034-x. ISSN  1618-0860. PMID  12582732. S2CID  33043901.
  24. ^ Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred (1 de septiembre de 2009). "Paredes celulares de las plantas a lo largo de la evolución: hacia una comprensión molecular de sus principios de diseño". Journal of Experimental Botany . 60 (13): 3615–3635. doi : 10.1093/jxb/erp245 . ISSN  0022-0957. PMID  19687127. Archivado desde el original el 6 de junio de 2020 . Consultado el 6 de junio de 2020 .
  25. ^ Vries, Jan de; Archibald, John M. (2018). "Evolución de las plantas: hitos en el camino hacia la vida terrestre". New Phytologist . 217 (4): 1428–1434. doi : 10.1111/nph.14975 . ISSN  1469-8137. PMID  29318635.
  26. ^ Najrana, Tanbir; Sanchez-Esteban, Juan (2016-12-26). "Mecanotransducción como adaptación a la gravedad". Frontiers in Pediatrics . 4 : 140. doi : 10.3389/fped.2016.00140 . ISSN  2296-2360. PMC 5183626 . PMID  28083527. 
  27. ^ ab Mommer, Liesje; Wolters-Arts, Mieke; Andersen, Charlotte; Visser, Eric JW; Pedersen, Ole (2007). "Aclimatación de hojas inducida por inmersión en especies terrestres con tolerancia a inundaciones variable". New Phytologist . 176 (2): 337–345. doi : 10.1111/j.1469-8137.2007.02166.x . hdl : 2066/36521 . ISSN  1469-8137. PMID  17888115.
  28. ^ van der Valk, Arnold G. (2006). "4. Plantas y animales de humedales". La biología de los humedales de agua dulce . Nueva York: Oxford University Press. págs. 71–75. ISBN 9780199608942.
  29. ^ abc "¿Cuáles son los diferentes tipos de plantas acuáticas?". WorldAtlas . 2019-10-08 . Consultado el 2023-12-01 .
  30. ^ "Plantas acuáticas: definición, tipos e importancia de las plantas acuáticas". Toppr-guides . 2019-11-05 . Consultado el 2023-12-01 .
  31. ^ Vymazal, Jan (diciembre de 2013). "Plantas emergentes utilizadas en humedales artificiales de superficie libre: una revisión". Ingeniería ecológica . 61 : 582–592. Bibcode :2013EcEng..61..582V. doi :10.1016/j.ecoleng.2013.06.023. ISSN  0925-8574.
  32. ^ Swearingen, Jil M. (7 de julio de 2009). «Grupo de trabajo de plantas exóticas del PCA: salicaria púrpura (Lythrum salicaria)». Servicio de Parques Nacionales . Archivado desde el original el 2 de septiembre de 2011. Consultado el 24 de septiembre de 2011 .
  33. ^ ab Beentje, Henk; Hickey, Michael; King, Clive (2001). "El glosario ilustrado de términos botánicos de Cambridge". Boletín Kew . 56 (2): 505. Código Bibliográfico :2001KewBu..56..505B. doi :10.2307/4110976. ISSN  0075-5974. JSTOR  4110976. S2CID  86620932.
  34. ^ ab Bornette, Gudrun; Amoros, Claude; Lamouroux, Nicolas (marzo de 1998). "Diversidad de plantas acuáticas en humedales ribereños: el papel de la conectividad". Biología de agua dulce . 39 (2): 267–283. Bibcode :1998FrBio..39..267B. doi :10.1046/j.1365-2427.1998.00273.x. ISSN  0046-5070.
  35. ^ Westlake, DF; Kvĕt, J.; Szczepański, A (1998). La ecología de producción de los humedales . Cambridge: Cambridge University Press.
  36. ^ Vymazal, Jan (2013). "Plantas emergentes utilizadas en humedales artificiales de superficie libre: una revisión". Ingeniería ecológica . 61 : 582–592. Código Bibliográfico :2013EcEng..61..582V. doi :10.1016/j.ecoleng.2013.06.023.
  37. ^ Hallin, Sara; Hellman, Maria; Choudhury, Maidul I.; Ecke, Frauke (2015). "Importancia relativa de la absorción por las plantas y la desnitrificación asociada a ellas para la eliminación de nitrógeno del drenaje de minas en humedales subárticos". Water Research . 85 : 377–383. Bibcode :2015WatRe..85..377H. doi :10.1016/j.watres.2015.08.060. PMID  26360231.
  38. ^ Zhu, Mengyuan; Zhu, Guangwei; Nurminen, Leena; Wu, Tingfeng; Deng, Jianming; Zhang, Yunlin; Qin, Boqiang; Ventelä, Anne-Mari (2015). "La influencia de los macrófitos en la resuspensión de sedimentos y el efecto de los nutrientes asociados en un lago grande y poco profundo (lago Taihu, China)". PLOS ONE . ​​10 (6): e0127915. Bibcode :2015PLoSO..1027915Z. doi : 10.1371/journal.pone.0127915 . PMC 4452177 . PMID  26030094. 
  39. ^ Horppila, Jukka; Kaitaranta, Joni; Joensuu, Laura; Nurminen, Leena (2013). "Influencia de la densidad de macrófitos emergentes (Phragmites australis) en la turbulencia del agua y la erosión de sedimentos ricos en materia orgánica". Journal of Hydrodynamics . 25 (2): 288–293. Bibcode :2013JHyDy..25..288H. doi :10.1016/S1001-6058(13)60365-0. S2CID  120990795.
  40. ^ Thomaz, Sidinei M.; Dibble, Eric D.; Evangelista, Luiz R.; Higuti, Janet; Bini, Luis M. (2007). "Influencia de la complejidad del hábitat de los macrófitos acuáticos en la abundancia y riqueza de invertebrados en lagunas tropicales". Biología de agua dulce . 53 (2): 358–367. doi :10.1111/j.1365-2427.2007.01898.x.
  41. ^ ab Brix, Hans (1994-02-01). "Funciones de los macrófitos en humedales artificiales". Ciencia y tecnología del agua . 29 (4): 71–78. doi :10.2166/wst.1994.0160. ISSN  0273-1223.
  42. ^ Chai, Tsun-Thai; Ooh, Keng-Fei; Quah, Yixian; Wong, Fai-Chu (2015). "Macrófitos de agua dulce comestibles: una fuente de productos naturales anticancerígenos y antioxidantes: una mini-revisión". Phytochemistry Reviews . 14 (3): 443–457. Código Bibliográfico :2015PChRv..14..443C. doi :10.1007/s11101-015-9399-z. S2CID  15597431.
  43. ^ Ooh, KF; Ong, HC; Wong, FC; Sit, NW; Chai, TT (2014). "Perfilado por cromatografía líquida de alto rendimiento de fitoquímicos promotores de la salud y evaluación de las actividades antioxidantes, antilipoxigenasa, quelantes de hierro y antiglucosidasa de macrófitos de humedales". Pharmacognosy Magazine . 10 (Supl 3): S443–S455. doi : 10.4103/0973-1296.139767 . PMC 4189257 . PMID  25298659. 
  44. ^ abc HUSSNER, A (7 de junio de 2012). "Especies exóticas de plantas acuáticas en países europeos". Weed Research . 52 (4): 297–306. Bibcode :2012WeedR..52..297H. doi :10.1111/j.1365-3180.2012.00926.x. ISSN  0043-1737.
  45. ^ abcd «Plantas acuáticas no autóctonas invasoras». Northern Ireland Direct Government Services. 9 de noviembre de 2015. Consultado el 6 de febrero de 2022 .
  46. ^ "La planta invasora Centella 'estrangula' el río Támesis". BBC. 27 de marzo de 2018.
  47. ^ "Pluma de loro". Vida vegetal. Archivado desde el original el 15 de febrero de 2021. Consultado el 6 de febrero de 2022 .
  48. ^ Brunel, Sarah; Petter, Françoise; Fernandez-Galiano, Eladio; Smith, Ian (2009), Inderjit (ed.), "Enfoque de la Organización Europea y Mediterránea de Protección de las Plantas para la Evaluación y Gestión de los Riesgos Presentados por las Plantas Exóticas Invasoras", Gestión de Malezas Invasoras , Invading Nature – Springer Series In Invasion Ecology, vol. 5, Dordrecht: Springer Netherlands, págs. 319–343, doi :10.1007/978-1-4020-9202-2_16, ISBN 978-1-4020-9202-2, consultado el 6 de marzo de 2022
  • https://web.archive.org/web/20200410235322/https://aquaplant.tamu.edu/
  • http://aswm.org
  • http://plantas.ifas.ufl.edu
  • Monitoreo de plantas acuáticas en el estado de Washington
Obtenido de "https://es.wikipedia.org/w/index.php?title=Planta_acuática&oldid=1251440363"