Unidad de estado sólido

Dispositivo de almacenamiento informático sin partes móviles
Unidad de estado sólido
Una unidad de estado sólido Serial ATA de 2,5 pulgadas
Uso de memoria flash
Introducido por:SanDisk
Fecha de introducción:1991 ; hace 33 años ( 1991 )
Capacidad:20 MB (factor de forma de 2,5 pulgadas)
Concepto original
Por:Corporación de tecnología de almacenamiento
Concebido:1978 ; hace 46 años ( 1978 )
Capacidad:45 MB
A partir de 2024[actualizar]
Capacidad:Hasta 200 TB [ cita requerida ]
Un SSD mSATA de Intel
Unidad de estado sólido Samsung M.2 NVMe

Una unidad de estado sólido ( SSD ) es un tipo de dispositivo de almacenamiento de estado sólido que utiliza circuitos integrados para almacenar datos de forma persistente . A veces se le denomina dispositivo de almacenamiento semiconductor , dispositivo de estado sólido y disco de estado sólido . [1] [2]

Los SSD dependen de una memoria no volátil, normalmente flash NAND , para almacenar datos en celdas de memoria. El rendimiento y la resistencia de los SSD varían según la cantidad de bits almacenados por celda, desde celdas de un solo nivel (SLC) de alto rendimiento hasta celdas de cuatro niveles (QLC) más asequibles pero más lentas. Además de los SSD basados ​​en flash, otras tecnologías como 3D XPoint ofrecen velocidades más rápidas y mayor resistencia a través de diferentes mecanismos de almacenamiento de datos.

A diferencia de las unidades de disco duro (HDD) tradicionales , las SSD no tienen partes móviles, lo que les permite ofrecer velocidades de acceso a datos más rápidas, menor latencia, mayor resistencia a golpes físicos, menor consumo de energía y funcionamiento silencioso.

Los SSD, que suelen estar interconectados a un sistema de la misma manera que los HDD, se utilizan en una variedad de dispositivos, incluidos ordenadores personales , servidores empresariales y dispositivos móviles . Sin embargo, los SSD suelen ser más caros por gigabyte y tienen una cantidad finita de ciclos de escritura, lo que puede provocar la pérdida de datos con el tiempo. A pesar de estas limitaciones, los SSD están sustituyendo cada vez más a los HDD, especialmente en aplicaciones de rendimiento crítico y como almacenamiento principal en muchos dispositivos de consumo.

Los SSD vienen en varios formatos y tipos de interfaz, incluidos SATA , PCIe y NVMe , cada uno de los cuales ofrece diferentes niveles de rendimiento. Las soluciones de almacenamiento híbrido, como las unidades híbridas de estado sólido (SSHD), combinan tecnologías SSD y HDD para ofrecer un rendimiento mejorado a un costo menor que los SSD puros.

Atributos

Un SSD almacena datos en celdas semiconductoras , con propiedades que varían según la cantidad de bits almacenados en cada celda (entre 1 y 4). Las celdas de un solo nivel (SLC) almacenan un bit de datos por celda y brindan mayor rendimiento y resistencia. Por el contrario, las celdas de múltiples niveles (MLC), las celdas de triple nivel (TLC) y las celdas de cuatro niveles (QLC) almacenan más datos por celda, pero tienen menor rendimiento y resistencia. Los SSD que utilizan tecnología 3D XPoint , como Optane de Intel, almacenan datos cambiando la resistencia eléctrica en lugar de almacenar cargas eléctricas en celdas, lo que puede brindar velocidades más rápidas y una persistencia de datos más prolongada en comparación con la memoria flash convencional. [3] Los SSD basados ​​en flash NAND pierden carga lentamente cuando no están encendidos, mientras que las unidades de consumo muy utilizadas pueden comenzar a perder datos generalmente después de uno o dos años de almacenamiento. [4] Los SSD tienen una cantidad limitada de escrituras durante su vida útil y también se ralentizan a medida que alcanzan su capacidad de almacenamiento completa.

Los SSD también tienen paralelismo interno que les permite gestionar múltiples operaciones simultáneamente, lo que mejora su rendimiento. [5]

A diferencia de los discos duros y otros dispositivos de almacenamiento magnético electromecánicos similares , los SSD no tienen partes mecánicas móviles, lo que les proporciona ventajas como resistencia a golpes físicos, funcionamiento más silencioso y tiempos de acceso más rápidos. Su menor latencia da como resultado tasas de entrada/salida (IOPS) más altas que los discos duros. [6]

Algunas unidades SSD se combinan con discos duros tradicionales en configuraciones híbridas, como Hystor de Intel y Fusion Drive de Apple . Estas unidades utilizan tanto memoria flash como discos magnéticos giratorios para mejorar el rendimiento de los datos a los que se accede con frecuencia. [7] [8]

Las interfaces tradicionales (por ejemplo, SATA y SAS ) y los formatos estándar de HDD permiten que estos SSD se utilicen como reemplazos directos de los HDD en computadoras y otros dispositivos. Los formatos más nuevos, como mSATA , M.2 , U.2 , NF1 / M.3 / NGSFF , [9] [10] XFM Express ( memoria flash cruzada , formato XT2) [11] y EDSFF [12] [13] e interfaces de mayor velocidad como NVM Express (NVMe) sobre PCI Express (PCIe) pueden aumentar aún más el rendimiento sobre el rendimiento de los HDD. [3]

Comparación con otras tecnologías

Unidades de disco duro

Prueba comparativa de SSD, que muestra una velocidad de lectura de aproximadamente 230 MB/s (azul), una velocidad de escritura de 210 MB/s (rojo) y un tiempo de búsqueda de aproximadamente 0,1 ms (verde), todo ello independientemente de la ubicación del disco al que se acceda

Los benchmarks tradicionales de HDD tienden a centrarse en las características de rendimiento, como la latencia rotacional y el tiempo de búsqueda . Como los SSD no necesitan girar ni buscar datos, son muy superiores a los HDD en dichas pruebas. Sin embargo, los SSD tienen problemas con las lecturas y escrituras mixtas, y su rendimiento puede degradarse con el tiempo. Por lo tanto, las pruebas SSD generalmente analizan cuándo se usa por primera vez el disco duro completo, ya que el disco nuevo y vacío puede tener un rendimiento de escritura mucho mejor que el que mostraría después de solo unas semanas de uso. [14]

La confiabilidad de los discos duros y SSD varía mucho entre los distintos modelos. [15] Algunas tasas de fallas en el campo indican que los SSD son significativamente más confiables que los discos duros. [16] [17] Sin embargo, los SSD son sensibles a las interrupciones repentinas de energía, lo que a veces resulta en escrituras abortadas o incluso casos de pérdida total de la unidad. [18]

La mayoría de las ventajas de las unidades de estado sólido sobre los discos duros tradicionales se deben a su capacidad de acceder a los datos de forma completamente electrónica en lugar de electromecánica, lo que da como resultado velocidades de transferencia superiores y robustez mecánica. [19] Por otro lado, las unidades de disco duro ofrecen una capacidad significativamente mayor por su precio. [6] [20]

En los discos duros tradicionales, un archivo reescrito generalmente ocupará la misma ubicación en la superficie del disco que el archivo original, mientras que en los SSD la nueva copia a menudo se escribirá en diferentes celdas NAND con el fin de nivelar el desgaste . Los algoritmos de nivelación del desgaste son complejos y difíciles de probar exhaustivamente. Como resultado, una de las principales causas de pérdida de datos en los SSD son los errores de firmware. [21] [22]

Comparación de SSD y HDD basados ​​en NAND
Atributo o característicaUnidad de estado sólido (SSD)Unidad de disco duro (HDD)
Precio por capacidadEn general, los SSD son más caros que los HDD y se espera que sigan siendo así. A principios de 2018, los precios de los SSD rondaban los 0,30 dólares por gigabyte para los modelos de 4 TB. [23]A principios de 2018, los discos duros tenían un precio de entre 0,02 y 0,03 dólares por gigabyte para los modelos de 1 TB. [23]
Capacidad de almacenamientoEn 2018, los SSD estaban disponibles en tamaños de hasta 100 TB, [24] aunque los modelos de menor costo generalmente variaban entre 120 GB y 512 GB.En 2023, se disponía de discos duros de hasta 30 TB. [25]
Confiabilidad – retención de datosLos SSD desgastados pueden comenzar a perder datos después de apenas tres meses sin energía, especialmente a altas temperaturas. [4] Los SSD más nuevos, según el uso, pueden retener datos por más tiempo. Los SSD generalmente no son adecuados para el almacenamiento de archivos a largo plazo. [26]Los discos duros, cuando se almacenan en un entorno fresco y seco, pueden retener datos durante períodos más largos sin alimentación. Sin embargo, con el tiempo, las piezas mecánicas pueden fallar, como la incapacidad de girar después de un almacenamiento prolongado.
Fiabilidad – longevidadLos SSD carecen de componentes mecánicos, lo que en teoría los hace más confiables que los HDD. Sin embargo, las celdas SSD se desgastan después de una cantidad limitada de escrituras. Los controladores ayudan a mitigar este problema, lo que permite muchos años de uso en condiciones normales. [27]Los discos duros tienen partes móviles propensas al desgaste mecánico, pero el medio de almacenamiento (platos magnéticos) no se degrada con los ciclos de lectura/escritura. Los estudios han sugerido que los discos duros pueden durar entre 9 y 11 años. [28]
Tiempo de inicioLos SSD son casi instantáneos y no requieren preparación de piezas mecánicas.Los discos duros necesitan varios segundos para girar antes de poder acceder a los datos. [29]
Rendimiento del acceso secuencialLos SSD para consumidores ofrecen velocidades de transferencia entre 200 MB/s y 3500 MB/s, según el modelo. [30]Los discos duros transfieren datos a una velocidad aproximada de 200 MB/s, dependiendo de la velocidad de rotación y la ubicación de los datos en el disco. Las pistas externas permiten velocidades de transferencia más rápidas. [31]
Rendimiento de acceso aleatorioLos tiempos de acceso aleatorio de los SSD suelen ser inferiores a 0,1 ms. [32]Los tiempos de acceso aleatorio de los discos duros varían entre 2,9 ms (de gama alta) y 12 ms (discos duros de portátiles). [33]
Consumo de energíaLos SSD de alto rendimiento utilizan entre la mitad y un tercio de la energía que requieren los HDD. [34]Los discos duros utilizan entre 2 y 5 vatios para unidades de 2,5 pulgadas, mientras que las unidades de 3,5 pulgadas de alto rendimiento pueden requerir hasta 20 vatios. [35]
Ruido acústicoLos SSD no tienen partes móviles y son silenciosos. Algunos SSD pueden producir un ruido agudo durante el borrado de bloques. [36]Los discos duros generan ruido al girar los discos y mover los cabezales, que puede variar según la velocidad de la unidad.
Control de temperaturaLos SSD generalmente toleran temperaturas de funcionamiento más altas y no requieren refrigeración especial. [37]Los discos duros necesitan refrigeración en entornos de alta temperatura (por encima de 35 °C (95 °F)) para evitar problemas de confiabilidad. [38]

Tarjetas de memoria

Tarjeta CompactFlash utilizada como SSD

Si bien tanto las tarjetas de memoria como la mayoría de los SSD utilizan memoria flash, tienen características muy diferentes, incluido el consumo de energía, el rendimiento, el tamaño y la confiabilidad. [39] Originalmente, las unidades de estado sólido tenían la forma y el montaje en la computadora como los discos duros. [39] Por el contrario, las tarjetas de memoria (como Secure Digital (SD), CompactFlash (CF) y muchas otras) se diseñaron originalmente para cámaras digitales y luego se utilizaron en teléfonos celulares, dispositivos de juegos, unidades GPS, etc. La mayoría de las tarjetas de memoria son físicamente más pequeñas que los SSD y están diseñadas para insertarse y extraerse repetidamente. [39]

Fracaso y recuperación

Los SSD tienen modos de falla diferentes a los de los discos duros magnéticos tradicionales. Debido a que las unidades de estado sólido no contienen partes móviles, generalmente no están sujetas a fallas mecánicas. Sin embargo, pueden ocurrir otros tipos de fallas. Por ejemplo, las escrituras incompletas o fallidas debido a una pérdida repentina de energía pueden ser más problemáticas que con los HDD, y la falla de un solo chip puede resultar en la pérdida de todos los datos almacenados en él. No obstante, los estudios indican que los SSD son generalmente confiables, a menudo exceden la vida útil indicada por el fabricante [40] [41] y tienen tasas de falla más bajas que los HDD. [40] Sin embargo, los estudios también señalan que los SSD experimentan tasas más altas de errores incorregibles, lo que puede provocar la pérdida de datos, en comparación con los HDD. [42]

La resistencia de un SSD normalmente aparece en su hoja de datos de una de dos formas:

  • ya sea n DW/D ( n escrituras de unidad por día )
  • o m TBW ( máximo de terabytes escritos ), abreviado TBW . [43]

Por ejemplo, un SSD Samsung 970 EVO NVMe M.2 (2018) con 1 TB de capacidad tiene una clasificación de resistencia de 600 TBW. [44]

La recuperación de datos de los SSD presenta desafíos debido a la naturaleza no lineal y compleja del almacenamiento de datos en unidades de estado sólido. Las operaciones internas de los SSD varían según el fabricante, y los comandos (por ejemplo , TRIM y ATA Secure Erase) y programas como (por ejemplo, hdparm ) pueden borrar y modificar los bits de un archivo eliminado.

Métricas de confiabilidad

La Asociación de Tecnología de Estado Sólido JEDEC (JEDEC) ha establecido estándares para las métricas de confiabilidad de SSD, que incluyen: [45]

  • Tasa de error de bits irrecuperable (UBER)
  • Terabytes escritos (TBW): la cantidad total de terabytes que se pueden escribir en una unidad dentro de su período de garantía
  • Escrituras de unidad por día (DWPD): la cantidad de veces que se puede escribir en la capacidad total de la unidad por día dentro de su período de garantía

Aplicaciones

En un entorno informático distribuido , los SSD se pueden utilizar como una capa de caché distribuida que absorbe temporalmente el gran volumen de solicitudes de los usuarios a los sistemas de almacenamiento de backend basados ​​en HDD más lentos. Esta capa proporciona un ancho de banda mucho mayor y una latencia menor que el sistema de almacenamiento, y se puede gestionar de varias formas, como una base de datos de clave-valor distribuida y un sistema de archivos distribuido . En las supercomputadoras, esta capa se suele denominar búfer de ráfagas .

Las unidades de estado sólido basadas en flash se pueden utilizar para crear dispositivos de red a partir de hardware de computadora personal de uso general. Una unidad flash protegida contra escritura que contenga el sistema operativo y el software de aplicación puede sustituir a unidades de disco o CD-ROM más grandes y menos confiables. Los dispositivos construidos de esta manera pueden proporcionar una alternativa económica al costoso hardware de enrutadores y cortafuegos. [ cita requerida ]

Los SSD basados ​​en una tarjeta SD con un sistema operativo SD activo se bloquean fácilmente contra escritura . En combinación con un entorno de computación en la nube u otro medio escribible, un sistema operativo arrancado desde una tarjeta SD bloqueada contra escritura es confiable, persistente e inmune a la corrupción permanente.

Caché del disco duro

En 2011, Intel introdujo un mecanismo de almacenamiento en caché para su chipset Z68 (y derivados móviles) llamado Smart Response Technology , que permite utilizar un SSD SATA como caché (configurable como escritura simultánea o escritura diferida ) para una unidad de disco duro magnética convencional. [46] Una tecnología similar está disponible en la tarjeta PCIe RocketHybrid de HighPoint . [47]

Las unidades híbridas de estado sólido (SSHD) se basan en el mismo principio, pero integran cierta cantidad de memoria flash en la placa de una unidad convencional en lugar de utilizar una SSD independiente. El host puede acceder a la capa flash de estas unidades independientemente del almacenamiento magnético mediante comandos ATA-8, lo que permite que el sistema operativo la administre. Por ejemplo, la tecnología ReadyDrive de Microsoft almacena explícitamente partes del archivo de hibernación en la memoria caché de estas unidades cuando el sistema hiberna, lo que hace que la reanudación posterior sea más rápida. [48]

Los sistemas híbridos de doble unidad combinan el uso de dispositivos SSD y HDD independientes instalados en la misma computadora, con una optimización del rendimiento general gestionada por el usuario de la computadora o por el software del sistema operativo de la computadora . Ejemplos de este tipo de sistema son bcache y dm-cache en Linux , [49] y Fusion Drive de Apple .

Arquitectura y función

Los componentes principales de un SSD son el controlador y la memoria que se utiliza para almacenar datos. Tradicionalmente, los primeros SSD utilizaban memoria DRAM volátil para el almacenamiento, pero desde 2009, la mayoría de los SSD utilizan memoria flash NAND no volátil , que retiene los datos incluso cuando están apagados. [50] [3] Los SSD con memoria flash almacenan datos en chips de circuitos integrados de semiconductores de óxido metálico (MOS), utilizando celdas de memoria de compuerta flotante no volátiles . [51]

Controlador

Cada SSD incluye un controlador, que gestiona el flujo de datos entre la memoria NAND y el ordenador anfitrión. El controlador es un procesador integrado que ejecuta el firmware para optimizar el rendimiento, gestionar los datos y garantizar su integridad. [52] [53]

Algunas de las funciones principales que realiza el controlador son:

El rendimiento general de un SSD puede escalar con la cantidad de chips NAND en paralelo y la eficiencia del controlador. Por ejemplo, los controladores que permiten el procesamiento en paralelo de chips flash NAND pueden mejorar el ancho de banda y reducir la latencia. [55]

Micron e Intel fueron pioneros en desarrollar SSD más rápidos al implementar técnicas como la división y entrelazado de datos para mejorar las velocidades de lectura y escritura. [56] Más recientemente, SandForce introdujo controladores que incorporan compresión de datos para reducir la cantidad de datos escritos en la memoria flash, aumentando potencialmente tanto el rendimiento como la resistencia. [57]

Nivelación del desgaste

La nivelación del desgaste es una técnica que se utiliza en los SSD para garantizar que las operaciones de escritura y borrado se distribuyan de manera uniforme en todos los bloques de la memoria flash. Sin esto, algunos bloques específicos podrían desgastarse prematuramente debido al uso repetido, lo que reduciría la vida útil general del SSD. El proceso mueve los datos que se modifican con poca frecuencia (datos fríos) de los bloques de uso intensivo, de modo que los datos que cambian con más frecuencia (datos activos) se puedan escribir en esos bloques. Esto ayuda a distribuir el desgaste de manera más uniforme en todo el SSD. Sin embargo, este proceso introduce escrituras adicionales, conocidas como amplificación de escritura, que deben gestionarse para equilibrar el rendimiento y la durabilidad. [58] [59]

Memoria

Memoria flash

Comparación de arquitecturas [60]
Características de comparaciónMLC  : Condado de San LuisNAND  : NORTE
Relación de persistencia1:101:10
Relación de escritura secuencial1 : 31:4
Relación de lectura secuencial1:11:5
Relación precio1 : 1.3

La mayoría de los SSD utilizan memoria flash NAND no volátil para el almacenamiento de datos, principalmente debido a su relación costo-beneficio y su capacidad para retener datos sin una fuente de alimentación constante. Los SSD basados ​​en memoria flash NAND almacenan datos en celdas semiconductoras, y la arquitectura específica influye en el rendimiento, la resistencia y el costo. [61]

Hay varios tipos de memoria flash NAND, categorizados por la cantidad de bits almacenados en cada celda:

  • Celda de un solo nivel (SLC): almacena 1 bit por celda. La SLC ofrece el máximo rendimiento, confiabilidad y resistencia, pero es más costosa.
  • Celda multinivel (MLC): almacena 2 bits por celda. La MLC ofrece un equilibrio entre costo, rendimiento y resistencia.
  • Celda de triple nivel (TLC): almacena 3 bits por celda. La TLC es menos costosa pero más lenta y menos duradera que la SLC y la MLC.
  • Celda de cuatro niveles (QLC): almacena 4 bits por celda. La QLC es la opción más económica, pero tiene el menor rendimiento y resistencia. [62]

Con el tiempo, los controladores SSD han mejorado la eficiencia de la memoria flash NAND, incorporando técnicas como entrelazado , corrección avanzada de errores y nivelación de desgaste para optimizar el rendimiento y extender la vida útil de la unidad. [63] [ 64] [65] [66] [67] Los SSD de gama baja a menudo utilizan memoria QLC o TLC, mientras que las unidades de gama alta para aplicaciones empresariales o de rendimiento crítico pueden utilizar MLC o SLC. [68]

Además de la estructura NAND plana, muchos SSD ahora utilizan NAND 3D (o V-NAND), donde las celdas de memoria se apilan verticalmente, lo que aumenta la densidad de almacenamiento y al mismo tiempo mejora el rendimiento y reduce los costos. [69]

DRAM y DIMM

Algunas unidades SSD utilizan memorias DRAM volátiles en lugar de memoria flash NAND, lo que ofrece un acceso a los datos a una velocidad muy alta, pero requiere una fuente de alimentación constante para retener los datos. Las unidades SSD basadas en memoria DRAM se utilizan normalmente en aplicaciones especializadas en las que se prioriza el rendimiento sobre el coste o la no volatilidad. Muchas unidades SSD, como los dispositivos NVDIMM , están equipadas con fuentes de alimentación de respaldo, como baterías internas o adaptadores CA/CC externos. Estas fuentes de alimentación garantizan que los datos se transfieran a un sistema de respaldo (normalmente memoria flash NAND u otro medio de almacenamiento) en caso de pérdida de energía, lo que evita la corrupción o pérdida de datos. [70] [71] De forma similar, los dispositivos ULLtraDIMM utilizan componentes diseñados para módulos DIMM, pero solo utilizan memoria flash, similar a una unidad SSD DRAM. [72]

Los SSD basados ​​en DRAM se utilizan a menudo para tareas en las que se debe acceder a los datos a altas velocidades con baja latencia, como en la informática de alto rendimiento o en ciertos entornos de servidores. [73]

Punto X 3D

3D XPoint es un tipo de tecnología de memoria no volátil desarrollada por Intel y Micron, anunciada en 2015. [74] Funciona cambiando la resistencia eléctrica de los materiales en sus celdas, ofreciendo tiempos de acceso mucho más rápidos que el flash NAND. Los SSD basados ​​en 3D XPoint, como las unidades Optane de Intel, proporcionan una latencia más baja y una mayor resistencia que las unidades basadas en NAND, aunque son más caras por gigabyte. [75] [76]

Otro

Las unidades conocidas como unidades híbridas o unidades híbridas de estado sólido (SSHD) utilizan un híbrido de discos giratorios y memoria flash. [77] [78] Algunas SSD utilizan memoria de acceso aleatorio magnetorresistiva (MRAM) para almacenar datos. [79] [80]

Caché y buffer

Muchos SSD basados ​​en flash incluyen una pequeña cantidad de DRAM volátil como caché, similar a los buffers de los discos duros. Esta caché puede almacenar temporalmente datos mientras se escriben en la memoria flash y también almacena metadatos como la asignación de bloques lógicos a ubicaciones físicas en el SSD. [81]

Algunos controladores SSD, como los de SandForce, logran un alto rendimiento sin utilizar una memoria caché DRAM externa. Estos diseños se basan en otros mecanismos, como la memoria SRAM integrada, para gestionar los datos y minimizar el consumo de energía. [82]

Además, algunos SSD utilizan un mecanismo de caché SLC para almacenar temporalmente datos en modo de celda de un solo nivel (SLC), incluso en SSD de celda de múltiples niveles (MLC) o de celda de triple nivel (TLC). Esto mejora el rendimiento de escritura al permitir que los datos se escriban en un almacenamiento SLC más rápido antes de trasladarlos a un almacenamiento MLC o TLC más lento y de mayor capacidad. [83]

En los SSD NVMe, la tecnología Host Memory Buffer (HMB) permite que el SSD utilice una parte de la DRAM del sistema en lugar de depender de un caché DRAM incorporado, lo que reduce los costos y mantiene un alto nivel de rendimiento. [82]

En ciertos SSD de consumo y empresariales de alta gama, se incluyen mayores cantidades de DRAM para almacenar en caché tanto las asignaciones de tablas de archivos como los datos escritos, lo que reduce la amplificación de escritura y mejora el rendimiento general. [84]

Batería y supercondensador

Los SSD de mayor rendimiento pueden incluir un condensador o una batería, que ayuda a preservar la integridad de los datos en caso de una pérdida de energía inesperada. El condensador o la batería proporcionan suficiente energía para permitir que los datos del caché se escriban en la memoria no volátil, lo que garantiza que no se pierdan datos. [85] [86]

En algunos SSD que utilizan memoria flash de celdas multinivel (MLC), puede producirse un problema potencial conocido como "corrupción de página inferior" si se pierde la energía mientras se programa una página superior. Esto puede provocar que los datos escritos previamente se corrompan. Para solucionar este problema, algunos SSD de alta gama incorporan supercondensadores para garantizar que todos los datos se puedan escribir de forma segura durante una pérdida repentina de energía. [87]

Algunos SSD de consumo tienen condensadores integrados para guardar datos críticos, como la tabla de mapeo de Flash Translation Layer (FTL). Algunos ejemplos son las series Crucial M500 e Intel 320. [88] Los SSD de clase empresarial, como la serie Intel DC S3700, suelen venir con mecanismos de protección contra pérdida de energía más robustos, como supercondensadores o baterías. [89]

Interfaz de host

La interfaz de host de un SSD se refiere al conector físico y a los métodos de señalización utilizados para comunicarse entre el SSD y el sistema host. Esta interfaz es administrada por el controlador del SSD y suele ser similar a las que se encuentran en las unidades de disco duro tradicionales (HDD). Las interfaces comunes incluyen:

  • Serial ATA : una de las interfaces más utilizadas en los SSD de consumo. SATA 3.0 admite velocidades de transferencia de hasta 6,0 Gbit/s. [90]
  • SCSI conectado en serie : las interfaces SAS se utilizan principalmente en entornos empresariales y son más rápidas y robustas que las SATA. SAS 3.0 ofrece velocidades de hasta 12,0 Gbit/s. [91]
  • PCI Express (PCIe): Interfaz de alta velocidad utilizada en unidades SSD de alto rendimiento. PCIe 3.0 x4 admite velocidades de transferencia de hasta 31,5 Gbit/s. [92]
  • M.2 : una interfaz más nueva diseñada para SSD que es más compacta que SATA o PCIe, y que se encuentra a menudo en computadoras portátiles y de escritorio de alta gama. M.2 admite interfaces SATA (hasta 6,0 Gbit/s) y PCIe (hasta 31,5 Gbit/s).
  • U.2 : Otra interfaz utilizada para SSD de nivel empresarial, que proporciona velocidades PCIe 3.0 x4 pero con un conector más robusto adecuado para entornos de servidor.
  • Canal de fibra : las interfaces de canal de fibra, normalmente utilizadas en sistemas empresariales, ofrecen altas velocidades de transferencia de datos; las versiones modernas admiten hasta 128 Gbit/s.
  • USB : algunos SSD externos utilizan la interfaz de bus serie universal, con versiones modernas como USB 3.1 Gen 2 que admiten velocidades de hasta 10 Gbit/s. [93]
  • ATA paralela (PATA): una interfaz más antigua utilizada en los primeros SSD, con velocidades de hasta 1064 Mbit/s. PATA ha sido reemplazada en gran medida por SATA debido a mayores tasas de transferencia de datos y mayor confiabilidad. [94] [95]
  • SCSI paralelo : interfaz utilizada principalmente en servidores, con velocidades que van desde los 40 Mbit/s hasta los 2560 Mbit/s. Ha sido reemplazada en su mayor parte por SCSI conectado en serie. El último SSD basado en SCSI se introdujo en 2004. [96]

Los SSD pueden admitir varias interfaces lógicas, que definen los conjuntos de comandos que utilizan los sistemas operativos para comunicarse con el SSD. Dos interfaces lógicas comunes son:

  • Interfaz de controlador de host avanzada (AHCI): diseñada inicialmente para discos duros, la AHCI se utiliza comúnmente con SSD SATA, pero es menos eficiente para los SSD modernos debido a su sobrecarga.
  • NVM Express (NVMe): una interfaz moderna diseñada específicamente para SSD, NVMe aprovecha al máximo el paralelismo en los SSD, proporcionando una latencia significativamente menor y un mayor rendimiento que AHCI. [97]
Una unidad de estado sólido (SSD) M.2 (2242) conectada a un adaptador USB 3.0 y conectada a la computadora
Un SSD con 1,2 TB de NAND MLC, utilizando PCI Express como interfaz de host [98]

Configuraciones

El tamaño y la forma de cualquier dispositivo dependen en gran medida del tamaño y la forma de los componentes utilizados para fabricarlo. Los discos duros y las unidades ópticas tradicionales están diseñados en torno a los platos giratorios o al disco óptico junto con el motor del eje en su interior. Dado que un SSD está formado por varios circuitos integrados (CI) interconectados y un conector de interfaz, su forma ya no se limita a la forma de las unidades de medios giratorios. Algunas soluciones de almacenamiento de estado sólido vienen en un chasis más grande que incluso puede ser un factor de forma de montaje en bastidor con numerosos SSD en su interior. Todos se conectarían a un bus común dentro del chasis y se conectarían fuera de la caja con un solo conector. [3]

Para el uso general de computadoras, el factor de forma de 2,5 pulgadas (que se encuentra típicamente en computadoras portátiles y se usa para la mayoría de los SSD SATA) es el más popular, en tres grosores [99] (7,0 mm, 9,5 mm, 14,8 o 15,0 mm; con 12,0 mm también disponible para algunos modelos). Para computadoras de escritorio con ranuras para unidades de disco duro de 3,5 pulgadas, se puede usar una placa adaptadora simple para que encaje dicha unidad. Otros tipos de factores de forma son más comunes en aplicaciones empresariales. Un SSD también se puede integrar completamente en el resto de circuitos del dispositivo, como en la MacBook Air de Apple (a partir del modelo de otoño de 2010). [100] A partir de 2014 , los factores de forma mSATA y M.2 también ganaron popularidad, principalmente en computadoras portátiles.[actualizar]

Factores de forma de HDD estándar

Un SSD con un factor de forma de HDD de 2,5 pulgadas, abierto para mostrar la electrónica de estado sólido. Los espacios vacíos junto a los chips NAND son para chips NAND adicionales, lo que permite utilizar el mismo diseño de placa de circuito en varios modelos de unidad con diferentes capacidades; otras unidades pueden utilizar en cambio una placa de circuito cuyo tamaño aumenta junto con la capacidad de la unidad, dejando el resto de la unidad vacía.

El beneficio de utilizar un factor de forma de HDD actual sería aprovechar la amplia infraestructura ya existente para montar y conectar las unidades al sistema host. [3] [101] Estos factores de forma tradicionales se conocen por el tamaño del medio giratorio (es decir, 5,25 pulgadas, 3,5 pulgadas, 2,5 pulgadas o 1,8 pulgadas) y no por las dimensiones de la carcasa de la unidad.

Factores de formato de tarjeta estándar

Para aplicaciones donde el espacio es limitado, como ultrabooks o tabletas , se estandarizaron algunos formatos compactos para SSD basados ​​en flash.

Existe el formato mSATA, que utiliza el diseño físico de la tarjeta PCI Express Mini . Sigue siendo compatible eléctricamente con la especificación de interfaz de la tarjeta PCI Express Mini, aunque requiere una conexión adicional al controlador host SATA a través del mismo conector.

El formato M.2 , anteriormente conocido como Next Generation Form Factor (NGFF), es una transición natural del mSATA y el diseño físico que utilizaba, a un formato más utilizable y avanzado. Mientras que mSATA aprovechaba un formato y un conector existentes, M.2 ha sido diseñado para maximizar el uso del espacio de la tarjeta, mientras que minimiza el espacio ocupado. El estándar M.2 permite que tanto los SSD SATA como PCI Express se adapten a los módulos M.2. [102]

Algunas unidades de alto rendimiento y alta capacidad utilizan el formato estándar de tarjeta adicional PCI Express para alojar chips de memoria adicionales, permitir el uso de niveles de potencia más altos y permitir el uso de un disipador de calor de gran tamaño . También existen placas adaptadoras que convierten otros formatos, especialmente unidades M.2 con interfaz PCIe, en tarjetas adicionales comunes.

Factores de forma de disco en un módulo

Un disco en un módulo de 2 GB con interfaz PATA

Un disco en un módulo ( DOM ) es una unidad flash con una interfaz SATA o ATA paralela (PATA) de 40/44 pines , diseñada para conectarse directamente a la placa base y usarse como una unidad de disco duro (HDD) de computadora. Los dispositivos DOM emulan una unidad de disco duro tradicional, por lo que no se necesitan controladores especiales ni otro soporte específico del sistema operativo. Los DOM se utilizan generalmente en sistemas integrados , que a menudo se implementan en entornos hostiles donde los discos duros mecánicos simplemente fallarían, o en clientes ligeros debido a su pequeño tamaño, bajo consumo de energía y funcionamiento silencioso.

A partir de 2016, [actualizar]las capacidades de almacenamiento varían de 4 MB a 128 GB con diferentes variaciones en los diseños físicos, incluida la orientación vertical u horizontal. [ cita requerida ]

Factores de forma de caja

Muchas de las soluciones basadas en DRAM utilizan una caja que suele estar diseñada para encajar en un sistema de montaje en bastidor. La cantidad de componentes DRAM necesarios para obtener la capacidad suficiente para almacenar los datos junto con las fuentes de alimentación de respaldo requiere un espacio mayor que los formatos de disco duro tradicionales. [103]

Factores de forma de placa base

Los SSD utilizan ahora factores de forma que eran más comunes en los módulos de memoria para aprovechar su flexibilidad a la hora de disponer los componentes. Algunos de ellos incluyen PCIe , mini PCIe , mini-DIMM , MO-297 y muchos más. [104] El SATADIMM de Viking Technology utiliza una ranura DIMM DDR3 vacía en la placa base para proporcionar energía al SSD con un conector SATA independiente para proporcionar la conexión de datos de vuelta a la computadora. El resultado es un SSD fácil de instalar con una capacidad igual a las unidades que normalmente ocupan una bahía de unidad completa de 2,5 pulgadas . [105] Al menos un fabricante, Innodisk, ha producido una unidad que se coloca directamente en el conector SATA (SATADOM) de la placa base sin necesidad de un cable de alimentación. [106] Algunos SSD se basan en el factor de forma PCIe y conectan tanto la interfaz de datos como la alimentación a través del conector PCIe al host. Estas unidades pueden utilizar controladores flash PCIe directos [107] o un dispositivo puente PCIe a SATA que luego se conecta a los controladores flash SATA. [108]

También hay SSD que tienen la forma de tarjetas PCIe, a las que a veces se les llama SSD HHHL (Half Height Half Length) o AIC (Add in Card). [109] [110] [111]

Factores de forma de matriz de rejilla de bolas

A principios de la década de 2000, algunas empresas introdujeron SSD en formatos Ball Grid Array (BGA), como DiskOnChip [112] de M-Systems (ahora SanDisk ) y NANDrive [113] [114] de Silicon Storage Technology (ahora producido por Greenliant Systems ), y M1000 [115] de Memoright para su uso en sistemas integrados. Los principales beneficios de los SSD BGA son su bajo consumo de energía, el pequeño tamaño del paquete de chip para adaptarse a subsistemas compactos y que se pueden soldar directamente a una placa base del sistema para reducir los efectos adversos de la vibración y los golpes. [116]

Estas unidades integradas a menudo cumplen con los estándares eMMC y eUFS .

Desarrollo e historia

Precios de venta al público históricamente más bajos de memoria y almacenamiento para computadoras

Los primeros SSD que utilizan RAM y tecnología similar

Los primeros dispositivos similares a las unidades de estado sólido (SSD) utilizaban tecnología de semiconductores, siendo un ejemplo temprano el StorageTek STC 4305 de 1978. Este dispositivo era un reemplazo compatible con el disco duro IBM 2305 , que inicialmente utilizaba dispositivos acoplados por carga para el almacenamiento y luego cambió a memoria dinámica de acceso aleatorio (DRAM). El STC 4305 era significativamente más rápido que sus contrapartes mecánicas y costaba alrededor de $400,000 para una capacidad de 45 MB. [117] Aunque existieron los primeros dispositivos similares a SSD, no se usaron ampliamente debido a su alto costo y pequeña capacidad de almacenamiento.

A finales de los años 80, empresas como Zitel empezaron a vender productos SSD basados ​​en DRAM bajo el nombre de "RAMDisk". Estos dispositivos se utilizaban principalmente en sistemas especializados como los fabricados por UNIVAC y Perkin-Elmer.

SSD que utilizan Flash

Evolución de los SSD
ParámetroEmpezó conDesarrollado paraMejora
Capacidad20 MB100 TB  [118]5 millones a uno [119]
Velocidad de lectura secuencial49,3 MB/s [120]15 GB/s [121]304,25 a uno [122]
Velocidad de escritura secuencial80 MB/s [123] [124]15.200 GB/s [121]190 a uno [125]
IOPS79 [120]2.500.000 [121]31.645,56 a uno [126]
Tiempo de acceso0,5 ms [120]0,045 ms de lectura, 0,013 ms de escritura [127]Lectura: 11 a uno, [128] Escritura: 38 a uno, [129]
Precio50.000 dólares estadounidenses por gigabyte [130]US$0,05 por gigabyte [131]10.000.000 a uno [132]
Vistas superior e inferior de un modelo SATA 3.0 (6 Gbit/s) de 2,5 pulgadas y 100 GB de la serie Intel DC S3700

La memoria flash, un componente clave en los SSD modernos, fue inventada en 1980 por Fujio Masuoka en Toshiba. [133] [134] Los SSD basados ​​en flash fueron patentados en 1989 por los fundadores de SanDisk , [135] que lanzó su primer producto en 1991: un SSD de 20 MB para portátiles IBM. [136] Si bien la capacidad de almacenamiento era limitada y el precio alto (alrededor de $1000), esto marcó el comienzo de una transición a la memoria flash como alternativa a los discos duros tradicionales. [137]

En la década de 1990 surgieron nuevos fabricantes de unidades de memoria flash, entre ellos STEC, Inc. , [138] M-Systems , [139] [140] y BiTMICRO. [141] [142]

A medida que la tecnología avanzó, los SSD experimentaron mejoras espectaculares en capacidad, velocidad y asequibilidad. [143] [144] [145] [146] Para 2016, los SSD disponibles comercialmente tenían más capacidad que los HDD más grandes disponibles. [147] [148] [149] [150] [151] Para 2018, los SSD basados ​​en flash habían alcanzado capacidades de hasta 100 TB en productos empresariales, y los SSD de consumo ofrecían hasta 16 TB. [118] Estos avances estuvieron acompañados de aumentos significativos en las velocidades de lectura y escritura, y algunos modelos de consumo de alta gama alcanzaron velocidades de hasta 14,5 GB/s. [121]

En 2021, se anunció NVMe 2.0 con Zoned Namespaces (ZNS). ZNS permite mapear los datos directamente a su ubicación física en la memoria, lo que proporciona acceso directo en un SSD sin una capa de traducción flash. [152] En 2024, Samsung anunció lo que llamó el primer SSD del mundo con una interfaz PCIe híbrida, el Samsung 990 EVO. La interfaz híbrida se ejecuta en los modos x4 PCIe 4.0 o x2 PCIe 5.0, una novedad para un SSD M.2. [153]

Los precios de los SSD también han caído drásticamente: el costo por gigabyte disminuyó de alrededor de 50.000 dólares en 1991 a menos de 0,05 dólares en 2020. [131]

Unidades flash empresariales

Las unidades flash empresariales (EFD) están diseñadas para aplicaciones de alto rendimiento que requieren operaciones de entrada/salida rápidas por segundo ( IOPS ), confiabilidad y eficiencia energética. Las EFD suelen tener especificaciones más altas que las SSD de consumo, lo que las hace adecuadas para aplicaciones de misión crítica. El término fue utilizado por primera vez por EMC en 2008 para describir las SSD diseñadas para entornos empresariales. [154] [155]

Un ejemplo de un EFD es la serie Intel DC S3700, lanzada en 2012. Estas unidades se destacaron por su rendimiento constante, manteniendo la variación de IOPS dentro de un rango estrecho, lo cual es crucial para los entornos empresariales. [156]

Otro producto importante es la serie Toshiba PX02SS, lanzada en 2016. Diseñadas para aplicaciones de escritura intensiva como el procesamiento de transacciones en línea, estas unidades lograron velocidades de lectura y escritura impresionantes y altas calificaciones de resistencia. [157]

Unidades que utilizan otras tecnologías de memoria persistente

En 2017, Intel presentó los SSD basados ​​en la tecnología 3D XPoint bajo la marca Optane. A diferencia de la memoria flash NAND, 3D XPoint utiliza un método diferente para almacenar datos, lo que ofrece un mayor rendimiento de IOPS, aunque las velocidades de lectura y escritura secuencial siguen siendo más lentas en comparación con los SSD tradicionales. [158]

Uso por parte del consumidor

A medida que la tecnología SSD continúa mejorando, se utilizan cada vez más en PC ultraportátiles y sistemas portátiles ligeros. El primer PC basado en SSD con memoria flash que estuvo disponible fue el Sony Vaio UX90, anunciado para pedidos anticipados el 27 de junio de 2006 y comenzó a enviarse en Japón el 3 de julio de 2006 con un disco duro de memoria flash de 16 GB. [159] Otro de los primeros lanzamientos convencionales de SSD fue el XO Laptop , construido como parte del proyecto One Laptop Per Child . La producción en masa de estas computadoras, construidas para niños en países en desarrollo, comenzó en diciembre de 2007. Para 2009, Dell , [160] [161] [162] Toshiba , [163] [164] Asus , [165] Apple , [166] y Lenovo [167] habían comenzado a producir computadoras portátiles con SDD.

En 2010, la línea MacBook Air de Apple comenzó a utilizar unidades de estado sólido como predeterminadas. [168] [166] En 2011, el Ultrabook de Intel se convirtió en la primera computadora de consumo ampliamente disponible que usa SSD además del MacBook Air. [169] En la actualidad, los dispositivos SDD son ampliamente utilizados y distribuidos por varias empresas , y una pequeña cantidad de empresas fabrican los dispositivos flash NAND dentro de ellos. [170]

Ventas

Los envíos de SSD fueron de 11 millones de unidades en 2009, [171] 17,3 millones de unidades en 2011 [172] por un total de US$5 mil millones, [173] 39 millones de unidades en 2012, y se esperaba que aumentaran a 83 millones de unidades en 2013 [174] a 201,4 millones de unidades en 2016 [172] y a 227 millones de unidades en 2017. [175]

Los ingresos del mercado mundial de SSD totalizaron 585 millones de dólares en 2008, lo que representa un aumento de más del 100% respecto de los 259 millones de dólares de 2007. [176]

Compatibilidad con sistemas de archivos

Los mismos sistemas de archivos que se utilizan en las unidades de disco duro también se pueden utilizar en las unidades de estado sólido. Los sistemas de archivos que admiten SSD generalmente también admiten el comando TRIM, que ayuda al SSD a reciclar los datos descartados. El sistema de archivos no necesita administrar la nivelación del desgaste u otras características de la memoria flash, ya que las maneja internamente el SSD. Algunos sistemas de archivos estructurados en registros (por ejemplo, F2FS , JFFS2 ) ayudan a reducir la amplificación de escritura en SSD, especialmente en situaciones en las que solo se modifican cantidades muy pequeñas de datos, como cuando se actualizan los metadatos del sistema de archivos .

Si un sistema operativo no admite el uso de TRIM en particiones de intercambio discretas , es posible que se puedan utilizar archivos de intercambio dentro de un sistema de archivos normal. Por ejemplo, OS X no admite particiones de intercambio; solo realiza intercambios con archivos dentro de un sistema de archivos, por lo que puede utilizar TRIM cuando, por ejemplo, se eliminan archivos de intercambio. [ cita requerida ]

Linux

Desde 2010, las utilidades de unidad estándar de Linux se han encargado de la alineación adecuada de la partición de forma predeterminada. [177]

El soporte del kernel para la operación TRIM se introdujo en la versión 2.6.33 de la línea principal del kernel de Linux, lanzada el 24 de febrero de 2010. [178] Los sistemas de archivos ext4 , Btrfs , XFS , JFS y F2FS incluyen soporte para la función discard (TRIM o UNMAP). Para hacer uso de TRIM, se debe montar un sistema de archivos utilizando el discardparámetro. Las particiones de intercambio de Linux realizan operaciones de descarte de forma predeterminada cuando la unidad subyacente admite TRIM, con la posibilidad de desactivarlas. [179] [180] [181] El soporte para TRIM en cola, una característica SATA 3.1 que hace que los comandos TRIM no interrumpan las colas de comandos, se introdujo en el kernel de Linux 3.12, lanzado el 2 de noviembre de 2013. [182]

Una alternativa a la operación TRIM a nivel de kernel es utilizar una utilidad de espacio de usuario llamadaFstrim-esque recorre todos los bloques no utilizados en un sistema de archivos y envía comandos TRIM para esas áreas.Fstrim-esLa utilidad normalmente se ejecuta mediante cron como una tarea programada. [183]

Consideraciones sobre el rendimiento de Linux

Un SSD que utiliza NVM Express como interfaz de dispositivo lógico, en forma de una tarjeta de expansión PCI Express 3.0 ×4

Durante la instalación, las distribuciones de Linux normalmente no configuran el sistema instalado para utilizar TRIM y, por lo tanto, el /etc/fstabarchivo requiere modificaciones manuales. [184] Esto se debe a que la implementación actual del comando TRIM de Linux podría no ser óptima. [185] Se ha demostrado que causa una degradación del rendimiento en lugar de un aumento del rendimiento en determinadas circunstancias. [186] [187] A partir de enero de 2014, [actualizar]Linux envía un comando TRIM individual a cada sector, en lugar de una lista vectorizada que define un rango TRIM como lo recomienda la especificación TRIM. [188]

Por razones de rendimiento, se recomienda cambiar el programador de E/S del CFQ (Completely Fair Queuing) predeterminado a NOOP o Deadline . CFQ fue diseñado para medios magnéticos tradicionales y busca la optimización, por lo que muchos de esos esfuerzos de programación de E/S se desperdician cuando se utilizan con SSD. Como parte de sus diseños, los SSD ofrecen niveles mucho mayores de paralelismo para las operaciones de E/S, por lo que es preferible dejar las decisiones de programación a su lógica interna, especialmente para SSD de alta gama. [189] [190]

Una capa de bloques escalable para almacenamiento SSD de alto rendimiento, conocida como blk-multiqueue o blk-mq y desarrollada principalmente por ingenieros de Fusion-io , se fusionó con la línea principal del kernel de Linux en la versión 3.13 del kernel, lanzada el 19 de enero de 2014. Esto aprovecha el rendimiento ofrecido por los SSD y NVMe al permitir tasas de envío de E/S mucho más altas. Con este nuevo diseño de la capa de bloques del kernel de Linux, las colas internas se dividen en dos niveles (colas por CPU y colas de envío de hardware), eliminando así los cuellos de botella y permitiendo niveles mucho más altos de paralelización de E/S. A partir de la versión 4.0 del núcleo Linux, publicada el 12 de abril de 2015, el controlador de bloque VirtIO , la capa SCSI (que utilizan los controladores Serial ATA), el marco de mapeo de dispositivos , el controlador de dispositivo de bucle , el controlador de imágenes de bloques sin clasificar (UBI) (que implementa la capa de administración de bloques de borrado para dispositivos de memoria flash) y el controlador RBD (que exporta objetos Ceph RADOS como dispositivos de bloque) se han modificado para utilizar realmente esta nueva interfaz; otros controladores se incorporarán en las siguientes versiones. [191] [192] [193] [194] [195]

macOS

Las versiones posteriores a Mac OS X 10.6.8 (Snow Leopard) admiten TRIM, pero solo cuando se utilizan con un SSD adquirido por Apple. [196] TRIM no se habilita automáticamente para unidades de terceros, aunque se puede habilitar mediante el uso de utilidades de terceros como Trim Enabler . El estado de TRIM se puede verificar en la aplicación Información del sistema o en la system_profilerherramienta de línea de comandos.

Las versiones posteriores a OS X 10.10.4 (Yosemite) incluyen sudo trimforce enableun comando de terminal que habilita TRIM en SSD que no son de Apple. [197] También existe una técnica para habilitar TRIM en versiones anteriores a Mac OS X 10.6.8, aunque sigue siendo incierto si TRIM se utiliza correctamente en esos casos. [198]

Microsoft Windows

Antes de la versión 7, Microsoft Windows no tomó ninguna medida específica para admitir unidades de estado sólido. A partir de Windows 7, el sistema de archivos NTFS estándar brinda compatibilidad con el comando TRIM. [199]

De manera predeterminada, Windows 7 y las versiones más nuevas ejecutan comandos TRIM automáticamente si se detecta que el dispositivo es una unidad de estado sólido. Sin embargo, debido a que TRIM restablece de manera irreversible todo el espacio liberado, puede ser conveniente deshabilitar la compatibilidad cuando se prefiera habilitar la recuperación de datos en lugar de la nivelación del desgaste. [200] Windows implementa TRIM para más que solo operaciones de eliminación de archivos. La operación TRIM está completamente integrada con comandos a nivel de partición y volumen, como format y delete , con comandos del sistema de archivos relacionados con truncate y compression, y con la función System Restore (también conocida como Volume Snapshot). [201]

La desfragmentación debe desactivarse en las unidades de estado sólido porque la ubicación de los componentes de los archivos en una SSD no afecta significativamente su rendimiento, pero mover los archivos para que estén contiguos mediante la rutina de desfragmentación de Windows provocará un desgaste innecesario de la escritura en el número limitado de ciclos de escritura en la SSD. La función SuperFetch tampoco mejorará materialmente el rendimiento y provoca una sobrecarga adicional en el sistema y la SSD. [202]

Windows Vista

Windows Vista generalmente espera unidades de disco duro en lugar de SSD. [203] [204] Windows Vista incluye ReadyBoost para aprovechar las características de los dispositivos flash conectados por USB, pero para los SSD solo mejora la alineación de partición predeterminada para evitar operaciones de lectura-modificación-escritura que reducen la velocidad de los SSD. La mayoría de los SSD suelen dividirse en sectores de 4 KiB, mientras que los sistemas anteriores pueden basarse en sectores de 512 bytes con sus configuraciones de partición predeterminadas no alineadas con los límites de 4 KiB. [205] Windows Vista no envía el comando TRIM a las unidades de estado sólido, pero algunas utilidades de terceros como SSD Doctor escanearán periódicamente la unidad y TRIM las entradas apropiadas. [206]

Ventanas 7

Windows 7 y versiones posteriores tienen soporte nativo para SSD. [201] [207] El sistema operativo detecta la presencia de un SSD y optimiza el funcionamiento en consecuencia. Para los dispositivos SSD, Windows 7 desactiva ReadyBoost y la desfragmentación automática. [208] A pesar de la declaración inicial de Steven Sinofsky antes del lanzamiento de Windows 7, [201] sin embargo, la desfragmentación no está desactivada, aunque su comportamiento en SSD difiere. [209] Una razón es el bajo rendimiento de Volume Shadow Copy Service en SSD fragmentados. [209] La segunda razón es evitar alcanzar el número máximo práctico de fragmentos de archivos que un volumen puede manejar. [209]

Windows 7 también incluye soporte para el comando TRIM para reducir la recolección de basura de datos que el sistema operativo ya ha determinado que ya no son válidos. [210] [211]

Windows 8.1 y posteriores

Los sistemas Windows 8.1 y posteriores también admiten TRIM automático para SSD PCI Express basados ​​en NVMe. Para Windows 7, se requiere la actualización KB2990941 para esta funcionalidad y debe integrarse en la configuración de Windows mediante DISM si Windows 7 debe instalarse en el SSD NVMe. Windows 8/8.1 también admite el comando SCSI unmap, un análogo de SATA TRIM, para SSD conectados por USB o carcasas SATA a USB. También es compatible con el protocolo USB Attached SCSI (UASP).

Si bien Windows 7 admitía TRIM automático para SSD SATA internos, Windows 8.1 y Windows 10 admiten TRIM manual y TRIM automático para SSD SATA, NVMe y conectados por USB. El Desfragmentador de disco en Windows 10 y 11 puede ejecutar TRIM para optimizar un SSD. [212]

ZFS

Solaris a partir de la versión 10 Update 6 (publicada en octubre de 2008), y versiones recientes [ ¿cuándo? ] de OpenSolaris , Solaris Express Community Edition , Illumos , Linux con ZFS en Linux y FreeBSD pueden usar SSD como potenciadores del rendimiento para ZFS . Se puede usar un SSD de baja latencia para el registro de intenciones de ZFS (ZIL), donde se denomina SLOG. También se puede usar un SSD para la caché de reemplazo adaptativa de nivel 2 (L2ARC), que se usa para almacenar en caché datos para lectura. [213]

BSD libre

ZFS para FreeBSD introdujo soporte para TRIM el 23 de septiembre de 2012. [214] El sistema de archivos Unix también admite el comando TRIM. [215]

Organismos de normalización

A continuación se enumeran las organizaciones y los organismos de normalización que trabajan para crear estándares para unidades de estado sólido (y otros dispositivos de almacenamiento informático). La siguiente tabla también incluye organizaciones que promueven el uso de unidades de estado sólido. Esta no es necesariamente una lista exhaustiva.

Organización o comitéSubcomité de:Objetivo
INCITACoordina la actividad de normas técnicas entre ANSI en los EE. UU. y los comités conjuntos ISO/IEC en todo el mundo.
T10INCITASCSI
T11INCITAFC
T13INCITAAtaque
JEDECDesarrolla estándares abiertos y publicaciones para la industria de la microelectrónica.
JC-64.8JEDECSe centra en los estándares y publicaciones de unidades de estado sólido.
NVMHCIProporciona interfaces de programación de hardware y software estándar para subsistemas de memoria no volátil.
SATA-IOProporciona a la industria orientación y apoyo para implementar la especificación SATA.
Comité de la SFFTrabajos sobre estándares de la industria del almacenamiento que requieren atención cuando otros comités de estándares no los abordan
SNIADesarrolla y promueve estándares, tecnologías y servicios educativos en la gestión de la información.
SSSISNIAFomenta el crecimiento y el éxito del almacenamiento de estado sólido

Véase también

Referencias

  1. ^ Whittaker, Zack. "Los precios de los discos de estado sólido están cayendo, pero siguen siendo más costosos que los discos duros". Between the Lines . ZDNet. Archivado desde el original el 2 de diciembre de 2012. Consultado el 14 de diciembre de 2012 .
  2. ^ "El ahorro de energía de las unidades SSD supone una reducción significativa del coste total de propiedad" (PDF) . STEC . Archivado desde el original (PDF) el 2010-07-04 . Consultado el 25 de octubre de 2010 .
  3. ^ abcde "Solid State Storage 101: An introduction to Solid State Storage" (PDF) . SNIA . Enero de 2009. Archivado desde el original (PDF) el 10 de junio de 2019 . Consultado el 9 de agosto de 2010 .
  4. ^ por Kristian Vättö. "La verdad sobre la retención de datos en SSD". Archivado desde el original el 2017-03-18 . Consultado el 2017-11-05 .
  5. ^ Feng Chen, Rubao Lee y Xiaodong Zhang (2011). "Funciones esenciales de la explotación del paralelismo interno de unidades de estado sólido basadas en memoria flash en el procesamiento de datos de alta velocidad". 2011 IEEE 17th International Symposium on High Performance Computer Architecture. págs. 266–277.
  6. ^ ab Kasavajhala, Vamsee (mayo de 2011). "Estudio de precio y rendimiento de SSD frente a HDD, un informe técnico de Dell" (PDF) . Marketing técnico de Dell PowerVault. Archivado (PDF) del original el 12 de mayo de 2012. Consultado el 15 de junio de 2012 .
  7. ^ Feng Chen, David A. Koufaty y Xiaodong Zhang (2011). "Hystor | Actas de la conferencia internacional sobre supercomputación" . Conferencia internacional sobre supercomputación (ICS '11). págs. 22-23. doi :10.1145/1995896.1995902.
  8. ^ "WD muestra su primer disco híbrido, el WD Black SSHD". Cnet. Archivado desde el original el 29 de marzo de 2013. Consultado el 26 de marzo de 2013 .
  9. ^ "NF1 SSD | Samsung Semiconductor". Samsung.com .
  10. ^ "Servidores NVMe All-Flash | Supermicro". SuperMicro.com . 28 de abril de 2023.
  11. ^ Liu, Zhiye (6 de agosto de 2019). "Toshiba presenta el formato XFMEXPRESS para SSD NVMe". Tom's Hardware .
  12. ^ "SSD para centros de datos Intel basados ​​en EDSFF (anteriormente factor de forma "Ruler")". Intel .
  13. ^ "El primer SSD 'regla' de Intel tiene una capacidad de 32 TB". Engadget . 8 de agosto de 2019.
  14. ^ "Evaluación comparativa de SSD empresariales" (PDF) . Archivado desde el original (PDF) el 2012-05-07 . Consultado el 2012-05-06 .
  15. ^ Paul, Ian (14 de enero de 2014). «Estudio de tres años sobre 27.000 unidades revela los fabricantes de discos duros más fiables». PC World . Archivado desde el original el 15 de mayo de 2014. Consultado el 17 de mayo de 2014 .
  16. ^ "Validación de la confiabilidad de las unidades de estado sólido de Intel". Intel. Julio de 2011. Archivado desde el original el 18 de enero de 2012. Consultado el 10 de febrero de 2012 .
  17. ^ Prieur, Marc (16 de noviembre de 2012). «Tasas de retorno de componentes (7)». BeHardware. Archivado desde el original el 9 de agosto de 2013. Consultado el 25 de agosto de 2013 .
  18. ^ Harris, Robin (1 de marzo de 2013). "Cómo los fallos de alimentación de los SSD alteran sus datos". ZDNet . CBS Interactive. Archivado desde el original el 4 de marzo de 2013.
  19. ^ "SSD vs HDD – ¿Por qué elegir una unidad de estado sólido?". Guía de SSD . OCZ Technology. Archivado desde el original el 10 de mayo de 2013. Consultado el 17 de junio de 2013 .
  20. ^ "Comparación de precios de SSD" (PDF) . Archivado (PDF) del original el 2012-05-12 . Consultado el 2012-05-06 .
  21. ^ Mearian, Lucas (3 de agosto de 2009). «Intel confirma un error de corrupción de datos en los nuevos SSD y detiene los envíos». ComputerWorld. Archivado desde el original el 25 de enero de 2013. Consultado el 17 de junio de 2013 .
  22. ^ "Más errores de firmware en el disco duro provocan pérdida de datos". Defcon-5.com. 5 de septiembre de 2009. Archivado desde el original el 18 de mayo de 2014. Consultado el 17 de junio de 2013 .
  23. ^ ab "HDD vs SSD: ¿Qué nos depara el futuro en materia de almacenamiento? – Parte 2". Backblaze. 13 de marzo de 2018.
  24. ^ "Nimbus Data lanza la unidad de estado sólido más grande del mundo (100 terabytes) para impulsar la innovación basada en datos". 19 de marzo de 2018.
  25. ^ "Seagate envía los primeros discos duros HAMR de más de 30 TB". Tom's Hardware . 21 de abril de 2023 . Consultado el 25 de noviembre de 2023 .
  26. ^ "Alerta de IBM ESS: posibilidad de pérdida de datos de SSD tras un apagado prolongado". IBM . 23 de mayo de 2022 . Consultado el 24 de mayo de 2024 .
  27. ^ "Fiabilidad de los SSD en el mundo real: la experiencia de Google". ZD Net . 25 de febrero de 2016 . Consultado el 20 de septiembre de 2019 .
  28. ^ "Estudio: los índices de MTBF de los discos duros son muy exagerados" . Consultado el 23 de febrero de 2013 .
  29. ^ "HDD vs. SSD". diffen.com . Consultado el 29 de noviembre de 2014 .
  30. ^ "El SSD 960 Pro de Samsung tiene velocidades de lectura de 3500 MB/s y de escritura de 2100 MB/s". 21 de septiembre de 2016.
  31. ^ "La guía para PC: Velocidad del husillo". Archivado desde el original el 17 de agosto de 2000.
  32. ^ Markoff, John (11 de diciembre de 2008). "Computación sin un disco duro zumbante". The New York Times .
  33. ^ "Glosario de recuperación de datos de discos duros". Archivado desde el original el 15 de julio de 2011. Consultado el 14 de julio de 2011 .
  34. ^ "Curso intensivo sobre SSD: lo que necesita saber". 7 de junio de 2010. {{cite magazine}}: Requiere citar revista |magazine=( ayuda )
  35. ^ "Toshiba anuncia un disco duro de 1,8 pulgadas para tabletas y dispositivos multimedia". eWEEK . 25 de enero de 2011.
  36. ^ "¿Cómo funcionan los SSD y son comparables a los HDD?". Hardware .
  37. ^ Un estudio a gran escala de fallas de memoria flash en el campo . Conferencia internacional ACM SIGMETRICS. 2015.
  38. ^ "Las cajas del sistema mal ventiladas pueden acortar la vida útil del disco duro".
  39. ^ abc "Las diferencias entre un SSD y una tarjeta de memoria". SanDisk.com . Archivado desde el original el 16 de enero de 2015. Consultado el 8 de octubre de 2020 .
  40. ^ ab Confiabilidad de Flash en producción: lo esperado y lo inesperado – Schroeder, Lagisetty & Merchant, 2016.
  41. ^ Gasior, Geoff (12 de marzo de 2015). "El experimento de resistencia de las unidades SSD: todos están muertos". The Tech Report .
  42. ^ Klein, Andy (19 de enero de 2019). «Estadísticas de discos duros Backblaze para 2018». Backblaze . Consultado el 13 de febrero de 2019 .
  43. ^ "Informe técnico: adaptación de la resistencia de los SSD a las aplicaciones empresariales más habituales" (PDF) . Documents.WesternDigital.com . Consultado el 13 de junio de 2020 .
  44. ^ "Producto: Samsung 970 EVO NVMe M.2 SSD 1TB". Samsung.com . Consultado el 13 de junio de 2020 .
  45. ^ Null, Linda; Lobur, Julia (14 de febrero de 2014). Fundamentos de la organización y la arquitectura informática. Jones & Bartlett Learning. págs. 499-500. ISBN 978-1-284-15077-3.
  46. ^ "Revisión del chipset Intel Z68 y la tecnología Smart Response (almacenamiento en caché SSD)". AnandTech. Archivado desde el original el 2012-05-05 . Consultado el 2012-05-06 .
  47. ^ "Almacenamiento en caché de SSD (sin Z68): RocketHybrid 1220 de HighPoint". Tom's Hardware. 2011-05-10 . Consultado el 2012-05-06 .
  48. ^ Russinovich, Mark E.; Salomón, David A.; Ionescu, Álex (2009). Partes internas de Windows (5ª ed.). Prensa de Microsoft. págs. 772–774. ISBN 978-0-7356-2530-3.
  49. ^ Petros Koutoupis (25 de noviembre de 2013). "Técnicas avanzadas de almacenamiento en caché de discos duros". linuxjournal.com. Archivado desde el original el 2 de diciembre de 2013. Consultado el 2 de diciembre de 2013 .
  50. ^ "¿Qué es un disco de estado sólido?". Ramsan.com . Texas Memory Systems . Archivado desde el original el 4 de febrero de 2008.
  51. ^ Hutchinson, Lee (4 de junio de 2012). «Solid-state revolution: in-depth on how SSDs really work» (Revolución del estado sólido: análisis en profundidad sobre cómo funcionan realmente los SSD). Ars Technica . Consultado el 27 de septiembre de 2019 .
  52. ^ Bechtolsheim, Andy (2008). "La revolución del almacenamiento en estado sólido" (PDF) . SNIA.org . Consultado el 7 de noviembre de 2010 .[ enlace muerto ]
  53. ^ Rent, Thomas M. (9 de abril de 2010). "Detalle del controlador SSD". StorageReview.com . Archivado desde el original el 15 de octubre de 2010. Consultado el 9 de abril de 2010 .
  54. ^ "Descripción del producto Sandforce SF-2500/2600" . Consultado el 25 de febrero de 2012 .
  55. ^ Error de cita: La referencia nombrada SSD Anthology2fue invocada pero nunca definida (ver la página de ayuda ).
  56. ^ "SSD flash con velocidad de escritura de 250 MB/s". Micron.com. Archivado desde el original el 26 de junio de 2009. Consultado el 21 de octubre de 2009 .
  57. ^ Shimpi, Anand Lal (31 de diciembre de 2009). "OCZ's Vertex 2 Pro Preview: The Fastest MLC SSD We've Ever Tested". AnandTech. Archivado desde el original el 12 de mayo de 2013. Consultado el 16 de junio de 2013 .
  58. ^ Arnd Bergmann (18 de febrero de 2011). "Optimización de Linux con unidades flash baratas". LWN.net . Archivado desde el original el 7 de octubre de 2013. Consultado el 3 de octubre de 2013 .
  59. ^ Jonathan Corbet (15 de mayo de 2007). "LogFS". LWN.net . Archivado desde el original el 4 de octubre de 2013. Consultado el 3 de octubre de 2013 .
  60. ^ SLC y MLC Archivado el 5 de abril de 2013 en Wayback Machine. SSD Festplatten. Consultado el 10 de abril de 2013.
  61. ^ "Las 20 cosas más importantes que debe saber sobre las unidades SSD" (PDF) . seagate.com . 2011. Archivado (PDF) desde el original el 27 de mayo de 2016 . Consultado el 26 de septiembre de 2015 .
  62. ^ Mearian, Lucas (27 de agosto de 2008). "Solid-state disk lowerluster for laptops, PCs". Computerworld.com . Archivado desde el original el 23 de octubre de 2016. Consultado el 6 de mayo de 2017 .
  63. ^ Lai, Eric (7 de noviembre de 2008). «Las unidades SSD para portátiles son más lentas que los discos duros». Computerworld . Archivado desde el original el 29 de junio de 2011. Consultado el 19 de junio de 2011 .
  64. ^ Drossel, Gary (14 de septiembre de 2009). "Metodologías para calcular la vida útil de las unidades SSD" (PDF) . Storage Developer Conference, 2009. Archivado (PDF) desde el original el 8 de diciembre de 2015. Consultado el 20 de junio de 2010 .
  65. ^ "¿Son las unidades SSD MLC seguras en las aplicaciones empresariales?". Storagesearch.com . ACSL. Archivado desde el original el 19 de septiembre de 2008.
  66. ^ Lucchesi, Ray (septiembre de 2008). "Las unidades flash SSD entran en la empresa" (PDF) . Silverton Consulting. Archivado (PDF) desde el original el 10 de diciembre de 2015. Consultado el 18 de junio de 2010 .
  67. ^ Bagley, Jim (1 de julio de 2009). "Aprovisionamiento excesivo: ¿una estrategia ganadora o una retirada?" (PDF) . StorageStrategies Now. pág. 2. Archivado desde el original (PDF) el 4 de enero de 2010. Consultado el 19 de junio de 2010 .
  68. ^ "¿Son las unidades SSD MLC seguras en las aplicaciones empresariales?". Storagesearch.com . ACSL. Archivado desde el original el 19 de septiembre de 2008.
  69. ^ "Samsung presenta el primer SSD basado en 3D V-NAND para aplicaciones empresariales". Samsung . 13 de agosto de 2013 . Consultado el 10 de marzo de 2020 .
  70. ^ Cash, Kelly. "SSD flash: ¿tecnología inferior o superestrella encubierta?". BiTMICRO. Archivado desde el original el 19 de julio de 2011. Consultado el 14 de agosto de 2010 .
  71. ^ Kerekes, Zsolt. «RAM SSDs». storagesearch.com . ACSL. Archivado desde el original el 22 de agosto de 2010. Consultado el 14 de agosto de 2010 .
  72. ^ "DIMM híbridos y la búsqueda de velocidad". Computación en red . 2014-03-12. Archivado desde el original el 20 de diciembre de 2014 . Consultado el 20 de diciembre de 2014 .
  73. ^ Lloyd, Chris (28 de enero de 2010). «Almacenamiento de última generación que hace que los SSD parezcan lentos: uso de unidades RAM para obtener el máximo rendimiento». techradar.com . Archivado desde el original el 4 de diciembre de 2014. Consultado el 27 de noviembre de 2014 .
  74. ^ "Intel y Micron revelan Xpoint, una nueva arquitectura de memoria que podría superar a DDR4 y NAND – ExtremeTech". ExtremeTech . Archivado desde el original el 20 de agosto de 2015.
  75. ^ Smith, Ryan (18 de agosto de 2015). "Intel anuncia la marca de almacenamiento Optane para productos 3D XPoint". Archivado desde el original el 19 de agosto de 2015. Los productos estarán disponibles en 2016, tanto en formatos SSD (PCIe) estándar para todo, desde Ultrabooks hasta servidores, como en un formato DIMM para sistemas Xeon para un mayor ancho de banda y latencias más bajas. Como se esperaba, Intel proporcionará controladores de almacenamiento optimizados para la memoria 3D XPoint
  76. ^ "Intel y Micron presentan la tecnología de almacenamiento 3D XPoint, que es 1000 veces más rápida que los SSD actuales". CNET . CBS Interactive. Archivado desde el original el 29 de julio de 2015.
  77. ^ The SSD Guy (30 de marzo de 2013). "Seagate actualiza sus unidades híbridas y elimina gradualmente las unidades de disco duro de 7200 RPM". The SSD Guy. Archivado desde el original el 16 de diciembre de 2013. Consultado el 20 de enero de 2014 .
  78. ^ "Unidades de almacenamiento híbridas". Archivado desde el original el 6 de junio de 2013.
  79. ^ Douglas Perry. "Buffalo muestra SSD con caché MRAM" Archivado el 16 de diciembre de 2013 en Wayback Machine . 2012.
  80. ^ Rick Burgess. "Everspin es el primero en lanzar una memoria ST-MRAM y afirma que es 500 veces más rápida que las SSD". Archivado el 3 de abril de 2013 en Wayback Machine . 2012.
  81. ^ Error de cita: La referencia nombrada SSD Anthology3fue invocada pero nunca definida (ver la página de ayuda ).
  82. ^ ab Demerjian, Charlie (3 de mayo de 2010). "Los SSD SandForce rompen récords de TPC-C". SemiAccurate.com. Archivado desde el original el 27 de noviembre de 2010. Consultado el 7 de noviembre de 2010 .
  83. ^ "Los SSD de Intel ya no están en la lista de los avergonzados". 9 de abril de 2011. Archivado desde el original el 3 de febrero de 2012.
  84. ^ "Revisión del SSD M500 de Crucial". 18 de abril de 2013. Archivado desde el original el 20 de abril de 2013.
  85. ^ Error de cita: La referencia nombrada Demerjian TPC-C Records3fue invocada pero nunca definida (ver la página de ayuda ).
  86. ^ Kerekes, Zsolt. "Sobrevivir a una pérdida repentina de energía de SSD". storagesearch.com . Archivado desde el original el 22 de noviembre de 2014. Consultado el 28 de noviembre de 2014 .
  87. ^ Error de cita: La referencia nombrada Werner SSD Features2fue invocada pero nunca definida (ver la página de ayuda ).
  88. ^ "Revisión del SSD M500 de Crucial". 18 de abril de 2013. Archivado desde el original el 20 de abril de 2013.
  89. ^ Anand Lal Shimpi (9 de noviembre de 2012). "Revisión del SSD Intel DC S3700 (200 GB)". AnandTech . Archivado desde el original el 23 de septiembre de 2014. Consultado el 24 de septiembre de 2014 .
  90. ^ "SATA-IO lanza la especificación SATA Revision 3.0" (PDF) (Nota de prensa). Organización Internacional Serial ATA. 27 de mayo de 2009. Archivado (PDF) desde el original el 11 de junio de 2009. Consultado el 3 de julio de 2009 .
  91. ^ "Mapa de ruta del sistema maestro SCSI conectado en serie". SCSI Trade Association. 14 de octubre de 2015. Archivado desde el original el 7 de marzo de 2016. Consultado el 26 de febrero de 2016 .
  92. ^ "Preguntas frecuentes sobre PCI Express 3.0". pcisig.com . PCI-SIG. Archivado desde el original el 2014-02-01 . Consultado el 2014-05-01 .
  93. ^ "SuperSpeed ​​USB 10 Gbps – Ready for Development" (USB de 10 Gbps de Supervelocidad: listo para el desarrollo). Rock Hill Herald. Archivado desde el original el 11 de octubre de 2014. Consultado el 31 de julio de 2013 .
  94. ^ "SSD PATA". Transcend. Archivado desde el original el 17 de julio de 2011.
  95. ^ "SSD para netbooks". Super Talent. Archivado desde el original el 23 de noviembre de 2010.
  96. ^ Kerekes, Zsolt (julio de 2010). "El mercado de SSD SCSI (paralelo)". StorageSearch.com . ACSL. Archivado desde el original el 27 de mayo de 2011. Consultado el 20 de junio de 2011 .
  97. ^ "Solid State Storage 101: An introduction to Solid State Storage" (PDF) . SNIA . Enero de 2009. Archivado desde el original (PDF) el 10 de junio de 2019 . Consultado el 9 de agosto de 2010 .
  98. ^ Paul Alcorn. "Componentes internos del SSD empresarial PCIe ES3000 de Huawei Tecal". Tom's IT Pro . Archivado desde el original el 19 de junio de 2015.
  99. ^ "Disco duro de 2,5 pulgadas - Wiki de Geekworm". wiki.geekworm.com . Consultado el 8 de septiembre de 2024 .
  100. ^ Kristian, Vättö. "Apple ahora también utiliza SSD de SanDisk en la MacBook Pro con pantalla Retina". anandtech.com . Archivado desde el original el 29 de noviembre de 2014. Consultado el 27 de noviembre de 2014 .
  101. ^ Ruth, Gene (27 de enero de 2010). "SSD: Deshazte del formato de disco duro". Burton Group. Archivado desde el original el 9 de febrero de 2010. Consultado el 13 de junio de 2010 .
  102. ^ "Tarjeta SATA M.2". Organización Internacional Serial ATA. Archivado desde el original el 2013-10-03 . Consultado el 2013-09-14 .
  103. ^ Hachman, Mark (17 de enero de 2014). "Los precios de los SSD enfrentan un futuro incierto en 2014". pcworld.com . Archivado desde el original el 2 de diciembre de 2014. Consultado el 24 de noviembre de 2014 .
  104. ^ Beard, Brian (2009). "Las unidades SSD se están convirtiendo en algo común a medida que las PC pasan a ser 100 % de estado sólido" (PDF) . Samsung Semiconductor, Inc. Archivado (PDF) del original el 16 de julio de 2011. Consultado el 13 de junio de 2010 .
  105. ^ "Enterprise SATADIMM". Viking Technology. Archivado desde el original el 4 de noviembre de 2011. Consultado el 7 de noviembre de 2010 .
  106. ^ "SATADOM". Innodisk. Archivado desde el original el 7 de julio de 2011. Consultado el 7 de julio de 2011 .
  107. ^ Pop, Sebastian (17 de noviembre de 2009). «El SSD PCI Express de Fusion-io ioXtreme está destinado al mercado de consumo». Softpedia . Archivado desde el original el 16 de julio de 2011. Consultado el 9 de agosto de 2010 .
  108. ^ Pariseau, Beth (16 de marzo de 2010). «LSI ofrece una tarjeta PCIe basada en Flash con interfaz SAS de 6 Gbit/s». Archivado desde el original el 6 de noviembre de 2010. Consultado el 9 de agosto de 2010 .
  109. ^ "Los factores de forma SSD proliferan en la Flash Memory Summit 2018".
  110. ^ "Análisis del SSD PCIe ASUS ROG RAIDR Express de 240 GB". 6 de diciembre de 2013.
  111. ^ "Factores de forma SSD | SNIA".
  112. ^ Kerekes, Zsolt. «SSD». StorageSearch.com . ACSL. Archivado desde el original el 27 de mayo de 2011. Consultado el 27 de junio de 2011 .
  113. ^ "Novedad de SST: SST85LD0128 NANDrive: unidad de disco duro de estado sólido de 128 MB basada en Flash con interfaz ATA/IDE". Boletín Memec. Diciembre de 2006. Consultado el 27 de junio de 2011 .[ enlace muerto permanente ]
  114. ^ "SST anuncia dispositivos de almacenamiento de estado sólido ATA pequeños". Computer Technology Review. 26 de octubre de 2006. Archivado desde el original el 1 de octubre de 2011. Consultado el 27 de junio de 2011 .
  115. ^ "Especificaciones del M1000". Memoright. Archivado desde el original el 25 de noviembre de 2011. Consultado el 7 de julio de 2011 .
  116. ^ Chung, Yuping (19 de noviembre de 2008). «Los SSD compactos, resistentes a golpes y a errores ofrecen opciones de almacenamiento para información y entretenimiento en el automóvil». EE Times . Archivado desde el original el 17 de mayo de 2012. Consultado el 27 de junio de 2011 .
  117. ^ "StorageTek – circa 2004". storagesearch.com . Consultado el 11 de diciembre de 2017 .
  118. ^ ab Mui, Tsing (19 de septiembre de 2021). "El SSD Mushkin Enhanced Source HC de 16 TB comienza a aparecer en los minoristas". The FPS Review . Consultado el 21 de junio de 2024 .
  119. ^ 100.000.000.000.000 dividido por 20.000.000.
  120. ^ abc "Unidad de estado sólido Samsung de 32 GB | bit-tech.net". bit-tech.net .
  121. ^ abcd Downing, Shane (20 de febrero de 2024). «Revisión del SSD Crucial T705 de 2 TB: el SSD más rápido del planeta». Tom's Hardware . Consultado el 21 de junio de 2024 .
  122. ^ 15.000 ÷ 49,3
  123. ^ "Las primeras unidades SSD Pulsar de Seagate listas para arrasar en el ámbito empresarial". Engadget . 19 de julio de 2019.
  124. ^ "Los SSD Enterprise de 25 GB/50 GB de Samsung no pueden detenerse, no se detendrán bajo cargas pesadas". Engadget . 18 de julio de 2019.
  125. ^ 15,200 ÷ 80
  126. ^ 2.500.000÷79
  127. ^ "Análisis del SSD NVMe M.2 WD Black SN850 de 1 TB". 9 de noviembre de 2020.
  128. ^ 0,5 ÷ 0,045
  129. ^ 0,5 ÷ 0,013
  130. ^ eran 20 MB por $1000, entonces 20÷1000=50 entonces $50 por MB, un GB son 1000 MB entonces 50×1000=50,000
  131. ^ ab Bendle, Stewart (20 de junio de 2024). "Las mejores ofertas en discos duros y SSD de 2024". Tom's Hardware . Consultado el 21 de junio de 2024 .
  132. ^ 50.000 dividido por 0,05.
  133. ^ "1987: Toshiba lanza NAND Flash". eWeek . 11 de abril de 2012 . Consultado el 20 de junio de 2019 .
  134. ^ "1971: Se introduce la ROM de semiconductores reutilizable". Museo de Historia de la Computación . Consultado el 19 de junio de 2019 .
  135. ^ Patente estadounidense 5.297.148
  136. ^ "Historia de la marca SanDisk. Noticias de 1991". sandisk.com . SanDisk Corp. 1991 . Consultado el 12 de diciembre de 2017 .
  137. ^ "1991: Se muestra el módulo de unidad de estado sólido". Museo de Historia de la Computación . Consultado el 31 de mayo de 2019 .
  138. ^ Mellor, Chris. "Hay mucho entusiasmo con este STEC". theregister.co.uk . Archivado desde el original el 11 de noviembre de 2013 . Consultado el 24 de noviembre de 2014 .
  139. ^ Odagiri, Hiroyuki; Goto, Akira; Sunami, Atsushi; Nelson, Richard R. (2010). Derechos de propiedad intelectual, desarrollo y recuperación: un estudio comparativo internacional. Oxford University Press . págs. 224–227. ISBN 978-0-19-957475-9.
  140. ^ Drossel, Gary (febrero de 2007). "Las unidades de estado sólido cumplen con los requisitos de seguridad de almacenamiento militar" (PDF) . Military Embedded Systems. Archivado (PDF) desde el original el 14 de julio de 2011. Consultado el 13 de junio de 2010 .
  141. ^ Un gigabyte (1 GB) equivale a mil millones de bytes (1000 3 B).
  142. ^ "Comunicados de prensa de BiTMICRO 1999". BiTMICRO. 1999. Archivado desde el original el 2010-05-01 . Consultado el 2010-06-13 .
  143. ^ "Fusion-io anuncia ioDrive, que pone el poder de una SAN en la palma de su mano" (PDF) . Fusion-io. 2007-09-25. Archivado desde el original (PDF) el 2010-05-09 . Consultado el 2010-06-13 .
  144. ^ "La nueva unidad SSD Z de 1 TB ultrarrápida de OCZ". Tom's Hardware. 4 de marzo de 2009. Consultado el 21 de octubre de 2009 .
  145. ^ Un terabyte (1 TB) equivale a un billón de bytes (1000 4 B).
  146. ^ Jansen, Ng (2009-12-02). "Micron anuncia la primera unidad de estado sólido SATA de 6 Gbps nativa del mundo". Daily Tech . Archivado desde el original el 2009-12-05 . Consultado el 2009-12-02 .
  147. ^ Anthony, Sebastian (11 de agosto de 2016). "El nuevo SSD de 60 TB de Seagate es el más grande del mundo". Ars Technica .
  148. ^ "Seagate presume de tener la unidad flash SSD más rápida a 10 GB/s". SlashGear . 9 de marzo de 2016.
  149. ^ Tallis, Billy. "Seagate presenta SSD PCIe de 10 GB/s y SSD SAS de 60 TB". AnandTech.com .
  150. ^ "El enorme SSD de 15 TB de Samsung puede ser tuyo por unos 10.000 dólares - Computerworld". ComputerWorld.com . Archivado desde el original el 25 de octubre de 2020 . Consultado el 2 de enero de 2019 .
  151. ^ "Samsung 15.36TB MZ-ILS15T0 PM1633a SSD SAS de 2,5" de clase empresarial de 15 TB". Scan.co.uk .
  152. ^ "NVMe se refactoriza". 30 de junio de 2021.
  153. ^ Shane Downing (23 de enero de 2024). "Se anuncia el SSD híbrido 990 EVO de Samsung: el primer SSD híbrido PCIe 4.0 x4 y 5.0 x2 del mundo". Tom's Hardware . Consultado el 26 de enero de 2024 .
  154. ^ Mellor, Chris. "EMC ha cambiado el almacenamiento en disco empresarial para siempre: el primero en entrar en la brecha del flash empresarial". Techworld . Consultado el 12 de junio de 2010 .
  155. ^ Burke, Barry A. (18 de febrero de 2009). "1.040: efd – ¿qué hay en un nombre?". The Storage Anarchist. Archivado desde el original el 12 de junio de 2010. Consultado el 12 de junio de 2010 .
  156. ^ Anand Lal Shimpi (9 de noviembre de 2012). "¿Reseña del SSD Intel DC S3700 (200 GB)?". AnandTech. Archivado desde el original el 25 de octubre de 2014.
  157. ^ "PX02SSB080 / PX02SSF040 / PX02SSF020 / PX02SSF010". Toshiba Corporation. Archivado desde el original el 15 de febrero de 2016.
  158. ^ "El SSD X100 de Micron es su primer producto 3D XPoint | TechRadar". TechRadar.com . 24 de octubre de 2019.
  159. ^ "文庫本サイズのVAIO「tipo U」 フラッシュメモリー搭載モデル発売".ソニー製品情報・ソニーストア – ソニー(en japonés) . Consultado el 11 de enero de 2019 .
  160. ^ Aughton, Simon (25 de abril de 2007). "Dell incorpora la opción de flash con SSD a sus portátiles". IT PRO. Archivado desde el original el 17 de septiembre de 2008.
  161. ^ Miller, Paul (18 de enero de 2009). «Dell añade la opción de SSD de 256 GB a los portátiles XPS M1330 y M1730». engadget.com . Archivado desde el original el 24 de septiembre de 2015. Consultado el 25 de noviembre de 2014 .
  162. ^ Crothers, Brooke. "Dell primero: unidad de estado sólido de 256 GB en computadoras portátiles". CNet.com . Archivado desde el original el 2 de septiembre de 2015. Consultado el 25 de noviembre de 2014 .
  163. ^ "Toshiba lanza el primer portátil con una SSD de 512 GB". Tom's Hardware. 14 de abril de 2009.[ enlace muerto permanente ]
  164. ^ "Toshiba anuncia la primera computadora portátil del mundo con SSD de 512 GB". CNET News. 14 de abril de 2009. Archivado desde el original el 29 de marzo de 2011.
  165. ^ Chen, Shu-Ching Jean (7 de junio de 2007). "Una computadora portátil de 199 dólares no es un juego de niños". Forbes . Archivado desde el original el 15 de junio de 2007. Consultado el 28 de junio de 2007 .
  166. ^ ab "Especificaciones del MacBook Air". Apple Inc. Archivado desde el original el 1 de octubre de 2009. Consultado el 21 de octubre de 2009 .[ verificación necesaria ]
  167. ^ Joshua Topolsky (15 de agosto de 2008). "Lenovo presenta el nuevo ThinkPad X301: nuevas CPU, SSD de 128 GB, sigue siendo extremadamente delgado". engadget.com. Archivado desde el original el 12 de diciembre de 2013. Consultado el 9 de diciembre de 2013 .
  168. ^ "MacBook Air". Apple, Inc. 20 de octubre de 2010. Archivado desde el original el 22 de diciembre de 2011.[ verificación necesaria ]
  169. ^ Simms, Craig. «MacBook Air vs. las alternativas ultrabook». CNet.com . Archivado desde el original el 24 de septiembre de 2015. Consultado el 25 de noviembre de 2014 .
  170. ^ "Cuota de mercado de los fabricantes de memorias NAND Flash en 2018". Statista .
  171. ^ Las ventas de SSD aumentaron un 14% en 2009 Archivado el 15 de junio de 2013 en Wayback Machine , 20 de enero de 2010, Brian Beeler, storagereview.com
  172. ^ Las unidades de estado sólido alcanzarán un gran éxito este año con un enorme crecimiento de los envíos Archivado el 16 de abril de 2013 en Wayback Machine , 2 de abril de 2012, Fang Zhang, iSupply
  173. ^ Las ventas de SSD aumentan y los precios caen por debajo de 1 dólar por GB en 2012 Archivado el 16 de diciembre de 2013 en Wayback Machine , 10 de enero de 2012, Pedro Hernández, ecoinsite.com
  174. ^ 39 millones de SSD enviados a nivel mundial en 2012, un 129 % más que en 2011 – IHS iSuppli Archivado el 28 de mayo de 2013 en Wayback Machine , 24 de enero de 2013, storagenewsletter.com
  175. ^ Los SSD resisten el temporal de los PC Archivado el 16 de diciembre de 2013 en Wayback Machine , 8 de mayo de 2013, Nermin Hajdarbegovic, TG Daily , consultado el 9 de mayo de 2013
  176. ^ Samsung lidera el mercado de SSD en 2008 con una participación de más del 30%, según Gartner Archivado el 3 de junio de 2013 en Wayback Machine , 10 de junio de 2009, Josephine Lien, Taipei; Jessie Shen, DIGITIMES
  177. ^ Karel Zak (4 de febrero de 2010). «Cambios entre v2.17 y v2.17.1-rc1, commit 1a2416c6ed10fcbfb48283cae7e68ee7c7f1c43d». kernel.org . Archivado desde el original el 25 de mayo de 2013. Consultado el 13 de abril de 2014 .
  178. ^ "Linux kernel 2.6.33". kernelnewbies.org . 2010-02-24. Archivado desde el original el 2012-06-16 . Consultado el 2013-11-05 .
  179. ^ "swapon(8) – Página del manual de Linux". man7.org . 2013-09-17. Archivado desde el original el 2013-07-14 . Consultado el 2013-12-12 .
  180. ^ "Optimización de SSD". debian.org . 22 de noviembre de 2013. Archivado desde el original el 5 de julio de 2013. Consultado el 11 de diciembre de 2013 .
  181. ^ "kernel/git/stable/linux-stable.git: mm/swapfile.c, línea 2507 (árbol estable del kernel de Linux, versión 3.12.5)". kernel.org . Consultado el 12 de diciembre de 2013 .
  182. ^ Tejun Heo. "LKML: Tejun Heo: [GIT PULL] Cambios en libata para v3.12-rc1". lkml.org . Archivado desde el original el 17 de enero de 2016.
  183. ^ Michael Larabel (19 de noviembre de 2013). "Ubuntu pretende reducir el tamaño de los SSD por defecto". Phoronix.com . Archivado desde el original el 9 de agosto de 2014. Consultado el 29 de junio de 2014 .
  184. ^ "Habilitación y prueba de la compatibilidad con SSD TRIM en Linux". Techgage. 6 de mayo de 2011. Archivado desde el original el 7 de mayo de 2012. Consultado el 6 de mayo de 2012 .
  185. ^ "Lista de correo de openSUSE: ¿Detección de SSD al crear un fstab por primera vez?". Lists.OpenSuse.org . 2 de junio de 2011. Archivado desde el original el 17 de junio de 2011. Consultado el 6 de mayo de 2012 .
  186. ^ "Compatibilidad con descarte (recorte) de SSD". openSUSE. Archivado desde el original el 14 de noviembre de 2012.
  187. ^ "Patrick Nagel: Impacto de la opción de descarte de ext4 en mi SSD". 8 de julio de 2011. Archivado desde el original el 29 de abril de 2013.
  188. ^ "block/blk-lib.c, línea 29". kernel.org . Consultado el 9 de enero de 2014 .
  189. ^ "Comparación del programador de E/S de Linux en el escritorio Linux 3.4". Phoronix . 2012-05-11. Archivado desde el original el 2013-10-04 . Consultado el 2013-10-03 .
  190. ^ "Evaluación comparativa de SSD de programadores de E/S". ubuntuforums.org . 2010. Archivado desde el original el 2013-10-05 . Consultado el 2013-10-03 .
  191. ^ "Linux kernel 3.13, Sección 1.1 Una capa de bloques escalable para almacenamiento SSD de alto rendimiento". kernelnewbies.org . 2014-01-19. Archivado desde el original el 2014-01-25 . Consultado el 2014-01-25 .
  192. ^ "Núcleo Linux 3.18, Sección 1.8. Compatibilidad opcional con SCSI multicola". kernelnewbies.org . 2014-12-07. Archivado desde el original el 2014-12-18 . Consultado el 2014-12-18 .
  193. ^ Jonathan Corbet (5 de junio de 2013). "La capa de bloques multicola". LWN.net . Archivado desde el original el 25 de enero de 2014. Consultado el 25 de enero de 2014 .
  194. ^ Matias Bjørling; Jens Axboe; David Nellans; Philippe Bonnet (2013). "Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems" (PDF) . kernel.dk . ACM. Archivado (PDF) desde el original el 2014-02-02 . Consultado el 2014-01-25 .
  195. ^ "Linux kernel 4.0, Sección 3. Bloque". kernelnewbies.org . 2015-05-01. Archivado desde el original el 2015-05-04 . Consultado el 2015-05-02 .
  196. ^ "Mac OS X Lion tiene compatibilidad TRIM para SSD y resoluciones HiDPI para una densidad de píxeles mejorada". Engadget. 27 de febrero de 2011. Archivado desde el original el 29 de junio de 2011. Consultado el 12 de junio de 2011 .
  197. ^ "Soporte de SSD de terceros para Yosemite 10.10.4 y El Capitan". MacRumors . 30 de junio de 2015. Archivado desde el original el 26 de septiembre de 2015 . Consultado el 29 de septiembre de 2015 .
  198. ^ "Foro MacRumors". MacRumors . 25 de marzo de 2011. Archivado desde el original el 27 de septiembre de 2011 . Consultado el 12 de junio de 2011 .[ ¿ Fuente poco confiable? ]
  199. ^ "Compatibilidad con notificaciones de eliminación/recorte de ATA en Windows 7" (PDF) . Archivado desde el original (PDF) el 28 de julio de 2013.
  200. ^ Yuri Gubanov; Oleg Afonin (2014). "Recuperación de evidencia de unidades SSD: comprensión de TRIM, recolección de basura y exclusiones". belkasoft.com . Archivado desde el original el 22 de enero de 2015. Consultado el 22 de enero de 2015 .
  201. ^ abc Sinofsky, Steven (5 de mayo de 2009). "Soporte y preguntas y respuestas sobre unidades de estado sólido". Ingeniería de Windows 7 . Microsoft . Archivado desde el original el 20 de mayo de 2012.
  202. ^ Butler, Harry (27 de agosto de 2009). "Ajustes de rendimiento de SSD para Vista". Bit-Tech.net . Archivado desde el original el 27 de julio de 2010. Consultado el 9 de agosto de 2010 .
  203. ^ Smith, Tony. "Si su SSD no funciona, échele la culpa a Vista, dice el fabricante de SSD". Archivado desde el original el 14 de octubre de 2008. Consultado el 11 de octubre de 2008 .
  204. ^ "Samsung y Microsoft negocian para acelerar los SSD en Vista". Archivado desde el original el 5 de febrero de 2009. Consultado el 22 de septiembre de 2008 .
  205. ^ Sexton, Koka (29 de junio de 2010). "El almacenamiento SSD exige una alineación adecuada de las particiones". WWPI.com . Archivado desde el original el 23 de julio de 2010. Consultado el 9 de agosto de 2010 .
  206. ^ "Solid State Doctor – Solid State Drive Utility for SSD's" (Doctor de estado sólido: utilidad para unidades SSD). Archivado desde el original el 3 de marzo de 2016. Consultado el 23 de febrero de 2016 .Enlace a la información
  207. ^ Flynn, David (10 de noviembre de 2008). "Windows 7 se vuelve compatible con SSD". APC . Future Publishing. Archivado desde el original el 1 de febrero de 2009.
  208. ^ "Cómo desactivar la desfragmentación de Windows 7 para unidades de estado sólido – Thomas-Krenn-Wiki".
  209. ^ abc Hanselman, Scott (3 de diciembre de 2014). "La historia real y completa: ¿Windows desfragmenta su SSD?". Blog de Scott Hanselman . Microsoft . Archivado desde el original el 22 de diciembre de 2014.
  210. ^ Yam, Marcus (5 de mayo de 2009). "Windows 7 y optimización para unidades de estado sólido". Tom's Hardware . Consultado el 9 de agosto de 2010 .
  211. ^ "6 cosas que no deberías hacer con las unidades de estado sólido". Howtogeek.com . 20 de junio de 2013. Archivado desde el original el 13 de marzo de 2016. Consultado el 12 de marzo de 2016 .
  212. ^ "RESUELTO: ¿Windows desfragmenta los SSD? ¿Qué es la optimización de SSD? – Up & Running Technologies, Tech How To's". www.urtech.ca .
  213. ^ "Unidades ZFS L2ARC y SSD por Brendan Gregg". brendan_entry_test . Blog de Sun Microsystem. 12 de julio de 2008. Archivado desde el original el 30 de agosto de 2009. Consultado el 12 de noviembre de 2009 .
  214. ^ "[base] Revisión 240868". Svnweb.freebsd.org . Archivado desde el original el 20 de enero de 2013 . Consultado el 20 de enero de 2014 .
  215. ^ Nemeth, Evi (2011). Manual de administración de sistemas UNIX y Linux, 4.ª edición, Pearson. ISBN 978-8131761779. Recuperado el 25 de noviembre de 2014 .

Lectura adicional

  • "Revolución del estado sólido: análisis en profundidad de cómo funcionan realmente los SSD". Lee Hutchinson. Ars Technica. 4 de junio de 2012.
  • Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, "Comprensión de la robustez de los SSD en caso de falla de energía", FAST'13
  • Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, Grant Wallace, "Nitro: una caché SSD con capacidad optimizada para almacenamiento primario", USENIX ATC'14
  • JEDEC continúa con sus esfuerzos de estandarización de SSD
  • Linux y NVM: desafíos de los sistemas de archivos y almacenamiento (PDF)
  • Optimización de Linux y SSD
  • Comprensión de la robustez de los SSD en caso de falla de energía (USENIX 2013, por Mai Zheng, Joseph Tucek, Feng Qin y Mark Lillibridge)
Obtenido de "https://es.wikipedia.org/w/index.php?title=Unidad_de_estado_sólido&oldid=1252238465"