Lección de tres partes

Una lección de tres partes es un método de aprendizaje basado en la investigación que se utiliza para enseñar matemáticas en escuelas primarias y secundarias . La lección de tres partes se ha atribuido a John A. Van de Walle, un matemático de la Universidad Commonwealth de Virginia . [1] [2]

Componentes

Fase de inicio (10 a 15 minutos)

El objetivo es preparar cognitivamente a los estudiantes para la lección de matemáticas haciéndoles pensar en un procedimiento, estrategia o concepto utilizado en una lección anterior. Los profesores determinan qué aprendizaje previo específico desean que los estudiantes recuerden, en función de los resultados deseados para esa lección en particular. [3] El papel del profesor es "preparar mentalmente a los estudiantes para trabajar en el problema". [1]

Marian Small , defensora de un enfoque constructivista para la enseñanza de las matemáticas, ofrece un ejemplo de una pregunta basada en la investigación a partir de la cual se podría crear una lección de tres partes: "en un autobús hay 47 estudiantes; en otro, 38. ¿Cuántos estudiantes hay en ambos autobuses?" [4]

Fase de trabajo (30 a 40 minutos)

Los estudiantes resuelven problemas matemáticos de forma individual, en parejas o en pequeños grupos y “registran el pensamiento matemático que utilizaron para desarrollar soluciones”. Luego, los estudiantes planifican las estrategias, los métodos y los materiales concretos que utilizarán para resolver el problema. El profesor circulará por el aula y hará observaciones sobre las formas en que interactúan los estudiantes, y anotará el lenguaje matemático que están utilizando, así como los modelos matemáticos que están empleando para resolver el problema. Si un estudiante tiene dificultades, “el profesor puede plantear preguntas para provocar un mayor pensamiento o pedir a otros estudiantes que expliquen su plan para resolver el problema”. [3] Se aconseja a los profesores que sean oyentes activos en esta fase y que tomen notas. Esta es también una fase en la que los profesores pueden evaluar a los estudiantes. [1]

Fase de consolidación y práctica (10 a 15 minutos)

En esta fase final, el profesor supervisa la puesta en común de las soluciones por parte de los estudiantes y puede emplear otras técnicas de enseñanza como el "congreso de matemáticas", el "paseo por la galería" o el "bansho". Si los estudiantes descubrieron nuevos métodos y estrategias durante la fase de trabajo, el profesor los publicará en el "muro de estrategias" de la clase o los utilizará para desarrollar un "cuadro de referencia". [3] Los profesores no deben evaluar a los estudiantes en esta fase, pero deben escuchar activamente "tanto las buenas como las no tan buenas ideas". [1]

Eficacia

Los defensores de la lección en tres partes afirman que los estudiantes desarrollan "independencia y confianza al elegir los métodos, estrategias y materiales concretos que utilizarán, así como las formas de registrar sus soluciones". Afirman que los estudiantes aprenden a discernir similitudes y diferencias en las matemáticas, y también que "a través de un discurso matemático tan rico en el aula, los estudiantes desarrollan y consolidan su comprensión del objetivo de aprendizaje de la lección en términos de establecer conexiones con conocimientos y experiencias anteriores y hacer generalizaciones". [3] Los defensores también afirman que "los estudiantes están más entusiasmados con la materia" cuando se utiliza la instrucción matemática basada en la investigación. [5]

Los opositores a los métodos basados ​​en la investigación, como la lección en tres partes, afirman que los estudiantes no están aprendiendo los conceptos básicos, como las tablas de multiplicar. En Ontario (Canadá), donde el Ministerio de Educación ha promovido la lección en tres partes, el plan de estudios se modificó a finales de los años 1990 en favor de "la resolución de problemas basada en investigaciones abiertas en lugar de la memorización". En esa provincia, los resultados de las pruebas de matemáticas de tercer y sexto grado disminuyeron entre 2009 y 2013, y "algunos sostienen que el plan de estudios de matemáticas, y no la formación docente, es el culpable de los resultados más bajos porque pone más énfasis en los conceptos y aplicaciones del mundo real que en el aprendizaje de memoria". [5]

Véase también

Referencias

  1. ^ abcd Van de Walle, John A. (1 de abril de 2003). "Matemáticas reformistas versus fundamentos: comprensión del conflicto y cómo afrontarlo". Matemáticamente sensato.
  2. ^ "Biografía de John Van de Walle". Consejo Nacional de Profesores de Matemáticas . Consultado el 21 de septiembre de 2014 .
  3. ^ abcd "Esbozo de una lección en tres partes". Colegio de Maestros de Ontario. Marzo de 2010.
  4. ^ Small, Marian (2012). "Cómo aprenden matemáticas los estudiantes y qué matemáticas queremos que aprendan" (PDF) . Cengage Learning.
  5. ^ ab Alphonso, Caroline; Morrow, Adrian (28 de agosto de 2013). "Los maestros de Ontario necesitan una mejor formación en matemáticas, dice el ministro". Globe and Mail.
Obtenido de "https://es.wikipedia.org/w/index.php?title=Lección_en_tres_partes&oldid=1188699947"