This article includes a list of general references, but it lacks sufficient corresponding inline citations. (November 2010) |
Una tuneladora ( TBM ), también conocida como "topo" o "gusano", es una máquina que se utiliza para excavar túneles . Los túneles se excavan a través de roca dura, suelo húmedo o seco o arena , cada uno de los cuales requiere tecnología especializada.
Las tuneladoras son una alternativa a los métodos de perforación y voladura (D&B) y a la "minería manual".
Las tuneladoras limitan la perturbación del terreno circundante y producen una pared de túnel lisa. Esto reduce el costo de revestimiento del túnel y es adecuado para su uso en áreas urbanas. Las tuneladoras son caras de construir y las más grandes son difíciles de transportar. Estos costos fijos se vuelven menos significativos para los túneles más largos.
Hasta la fecha, las secciones transversales de los túneles perforados con TBM varían de 1 a 17,6 metros (3,3 a 57,7 pies). Los túneles más estrechos se perforan normalmente utilizando métodos de construcción sin zanja o perforación direccional horizontal en lugar de TBM. Los túneles con TBM suelen tener una sección transversal circular, aunque pueden tener forma de U, herradura, cuadrada o rectangular. [1] [2] [3] [4] [5] [6]
La velocidad de excavación de túneles aumenta con el tiempo. La primera tuneladora alcanzó un máximo de 4 metros por semana, que aumentó a 16 metros por semana cuatro décadas después. A fines del siglo XIX, la velocidad había alcanzado más de 30 metros por semana. Las tuneladoras de roca del siglo XXI pueden excavar más de 700 metros por semana, mientras que las tuneladoras de suelo pueden superar los 200 metros por semana. La velocidad generalmente disminuye a medida que aumenta el tamaño del túnel. [7]
El primer escudo de tunelaje exitoso fue desarrollado por Sir Marc Isambard Brunel para excavar el Túnel del Támesis en 1825. Sin embargo, esto fue solo la invención del concepto de escudo y no implicó la construcción de una máquina perforadora de túneles completa, ya que la excavación aún tenía que realizarse mediante los métodos de excavación estándar de ese momento. [8]
La primera máquina perforadora de la que se tiene noticia fue la Mountain Slicer de Henri Maus . [9] [10] [11] [12] [13] Encargada por el rey de Cerdeña en 1845 para excavar el túnel ferroviario de Fréjus entre Francia e Italia a través de los Alpes , Maus la hizo construir en 1846 en una fábrica de armas cerca de Turín . Consistía en más de 100 taladros de percusión montados en la parte delantera de una máquina del tamaño de una locomotora, accionada mecánicamente desde la entrada del túnel. Las revoluciones de 1848 afectaron a la financiación, y el túnel no se completó hasta 10 años después, mediante el uso de métodos menos innovadores y menos costosos, como taladros neumáticos . [14]
En Estados Unidos, la primera máquina perforadora que se construyó se utilizó en 1853 durante la construcción del túnel Hoosac en el noroeste de Massachusetts. [15] Fabricada en hierro fundido, se la conocía como la máquina cortadora de piedra patentada de Wilson , en honor a su inventor Charles Wilson. [16] Perforaba 3 metros (10 pies) en la roca antes de romperse (el túnel se completó finalmente más de 20 años después, y al igual que con el túnel ferroviario de Fréjus, utilizando métodos menos ambiciosos). [17] La máquina de Wilson anticipó las tuneladoras modernas en el sentido de que empleaba discos de corte, como los de una grada de discos , que se fijaban al cabezal giratorio de la máquina. [18] [19] [20] A diferencia del cincelado o la perforación y voladura tradicionales, este método innovador de extracción de roca se basaba en simples ruedas de metal para aplicar una alta presión transitoria que fracturaba la roca.
En 1853, el estadounidense Ebenezer Talbot también patentó una tuneladora que empleaba los discos de corte de Wilson, aunque estaban montados sobre brazos giratorios, que a su vez estaban montados sobre una placa giratoria. [21] En la década de 1870, John D. Brunton de Inglaterra construyó una máquina que empleaba discos de corte que estaban montados excéntricamente sobre placas giratorias, que a su vez estaban montadas excéntricamente sobre una placa giratoria, de modo que los discos de corte se desplazaran sobre casi toda la superficie de la roca que se iba a eliminar. [22] [23]
La primera tuneladora que perforó una distancia considerable fue inventada en 1863 y mejorada en 1875 por el oficial del ejército británico, el mayor Frederick Edward Blackett Beaumont (1833-1895); la máquina de Beaumont fue mejorada aún más en 1880 por el oficial del ejército británico, el mayor Thomas English (1843-1935). [24] [25] [26] [27] [28] En 1875, la Asamblea Nacional Francesa aprobó la construcción de un túnel bajo el Canal de la Mancha y el Parlamento británico apoyó una prueba con la tuneladora de English. Su cabezal de corte consistía en una broca cónica detrás de la cual había un par de brazos opuestos en los que estaban montados discos de corte. Desde junio de 1882 hasta marzo de 1883, la máquina perforó, a través de tiza, un total de 1.840 m (6.036 pies). [13] Un ingeniero francés, Alexandre Lavalley , que también era contratista del Canal de Suez , utilizó una máquina similar para perforar 1.669 m (5.476 pies) desde Sangatte en el lado francés. [29] Sin embargo, a pesar de este éxito, el proyecto del túnel del Canal de la Mancha fue abandonado en 1883 después de que el ejército británico planteara temores de que el túnel pudiera usarse como ruta de invasión. [13] [30] Sin embargo, en 1883, esta tuneladora se utilizó para perforar un túnel de ventilación ferroviaria (2 m (7 pies) de diámetro y 2,06 km (6.750 pies) de largo) entre Birkenhead y Liverpool , Inglaterra, a través de arenisca bajo el río Mersey . [31]
El túnel del río Hudson se construyó entre 1889 y 1904 con una tuneladora de escudo Greathead. En el proyecto se utilizó aire comprimido a 2,4 bar (35 psi) para reducir los derrumbes. Sin embargo, muchos trabajadores murieron por derrumbes o enfermedad por descompresión. [32] [33] [7]
A finales del siglo XIX y principios del XX, los inventores siguieron diseñando, construyendo y probando tuneladoras para túneles de ferrocarril, metro, alcantarillado, suministro de agua, etc. Se patentaron tuneladoras que empleaban conjuntos rotatorios de taladros o martillos. [34] Se propusieron tuneladoras que se parecían a sierras perforadoras gigantes . [35] Otras tuneladoras consistían en un tambor rotatorio con púas metálicas en su superficie exterior, [36] o una placa circular giratoria cubierta de dientes, [37] o correas giratorias cubiertas de dientes metálicos. [38] Sin embargo, estas tuneladoras resultaron caras, engorrosas e incapaces de excavar rocas duras; por lo tanto, el interés en las tuneladoras disminuyó. No obstante, el desarrollo de las tuneladoras continuó en las minas de potasa y carbón, donde la roca era más blanda. [39]
La empresa Robbins fabricó una tuneladora con un diámetro de perforación de 14,4 m (47 pies 3 pulgadas) para el proyecto del túnel del Niágara en Canadá . La máquina se utilizó para perforar un túnel hidroeléctrico debajo de las cataratas del Niágara . La máquina recibió el nombre de "Big Becky" en referencia a las represas hidroeléctricas Sir Adam Beck a las que se dirigió para crear un túnel hidroeléctrico adicional.
Hitachi Zosen Corporation fabricó en 2013 una tuneladora de presión de tierra conocida como Bertha con un diámetro de perforación de 17,45 metros (57,3 pies) . [40] Fue entregada a Seattle , Washington , para su proyecto de túnel de la autopista 99. [41] La máquina comenzó a funcionar en julio de 2013, pero se detuvo en diciembre de 2013 y requirió reparaciones sustanciales que detuvieron la máquina hasta enero de 2016. [42] Bertha completó la perforación del túnel el 4 de abril de 2017. [43]
Dos tuneladoras suministradas por CREG excavaron dos túneles para el sistema de tránsito rápido de Kuala Lumpur con un diámetro de perforación de 6,67 m (21,9 pies). El medio estaba compuesto por lutitas arenosas saturadas de agua, lutitas esquistosas, lutitas muy meteorizadas y aluvión. Se alcanzó una velocidad máxima de avance de más de 345 m (1132 pies) por mes. [44]
La tuneladora para roca dura más grande del mundo , conocida como Martina , fue construida por Herrenknecht AG . Su diámetro de excavación fue de 15,62 m (51,2 pies), longitud total de 130 m (430 pies); área de excavación de 192 m2 ( 2070 pies cuadrados), valor de empuje de 39 485 t, peso total de 4500 toneladas, capacidad instalada total de 18 MW. Su consumo anual de energía fue de aproximadamente 62 GWh. Es propiedad de la empresa constructora italiana Toto SpA Costruzioni Generali (Grupo Toto) y está operada por ella para la galería Sparvo del Paso de la Autopista Italiana A1 ("Variante di Valico A1"), cerca de Florencia. La misma empresa construyó la tuneladora de lodo de mayor diámetro del mundo , con un diámetro de excavación de 17,6 metros (58 pies), propiedad y operada por la empresa de construcción francesa Dragages Hong Kong (subsidiaria de Bouygues) para el enlace Tuen Mun Chek Lap Kok en Hong Kong.
Las tuneladoras suelen constar de una rueda de corte giratoria en la parte delantera, denominada cabezal de corte, seguida de un cojinete principal, un sistema de empuje, un sistema para retirar el material excavado (escombros) y mecanismos de soporte. Las máquinas varían según la geología del lugar, la cantidad de agua subterránea presente y otros factores.
Las máquinas perforadoras de roca se diferencian de las máquinas perforadoras de tierra en la forma en que cortan el túnel, la forma en que proporcionan tracción para apoyar la actividad de perforación y en la forma en que sostienen las paredes del túnel recién formado.
Las tuneladoras blindadas se utilizan normalmente para excavar túneles en el suelo. Se colocan segmentos de hormigón detrás de la tuneladora para sostener las paredes del túnel. [45]
La máquina se estabiliza en el túnel con cilindros hidráulicos que presionan contra el escudo, lo que permite que la TBM aplique presión en el frente del túnel.
Las máquinas de viga principal no instalan segmentos de hormigón detrás del cabezal de corte, sino que la roca se sostiene utilizando métodos de soporte del suelo, como vigas anulares, pernos de roca, hormigón proyectado , correas de acero, acero anular y malla de alambre. [45]
Dependiendo de la estabilidad de la geología local, las paredes recién formadas del túnel a menudo necesitan ser apuntaladas inmediatamente después de ser excavadas para evitar el derrumbe, antes de que se haya construido cualquier soporte o revestimiento permanente. Muchas tuneladoras están equipadas con uno o más escudos cilíndricos detrás del cabezal de corte para sostener las paredes hasta que se construya el soporte permanente del túnel más adelante en la máquina. La estabilidad de las paredes también influye en el método por el cual la tuneladora se ancla en su lugar para poder aplicar fuerza al cabezal de corte. Esto a su vez determina si la máquina puede perforar y avanzar simultáneamente, o si esto se hace en modos alternos.
Las tuneladoras de pinza se utilizan en túneles de roca. Previenen el uso de un escudo y, en su lugar, empujan directamente contra los lados no reforzados del túnel. [7]
Las máquinas como la máquina Wirth solo se pueden mover sin pinzas. Otras máquinas pueden moverse de forma continua. Al final de un ciclo de perforación Wirth, las patas caen al suelo, las pinzas se retraen y la máquina avanza. A continuación, las pinzas se vuelven a acoplar y las patas traseras se elevan para el siguiente ciclo.
Una tuneladora de escudo simple tiene un escudo cilíndrico único después del cabezal de corte. Inmediatamente después del escudo se construye un revestimiento de hormigón permanente y la tuneladora empuja el revestimiento para aplicar fuerza al cabezal de corte. Como este empuje no se puede realizar mientras se construye el siguiente anillo de revestimiento, la tuneladora de escudo simple funciona en modos de corte y revestimiento alternados.
Las tuneladoras de doble escudo (o escudo telescópico) tienen un escudo delantero que avanza con el cabezal de corte y un escudo trasero que actúa como pinza. Los dos escudos pueden moverse axialmente uno respecto del otro (es decir, telescópicamente) a lo largo de una distancia limitada. El escudo de pinza ancla la tuneladora de modo que se pueda aplicar presión al cabezal de corte mientras se construye simultáneamente el revestimiento de hormigón.
En roca dura con un nivel mínimo de agua subterránea, el área alrededor del cabezal de corte de una tuneladora puede despresurizarse, ya que la cara de roca expuesta puede sostenerse por sí sola. En suelos más débiles, o cuando hay una cantidad significativa de agua subterránea, se debe aplicar presión a la cara del túnel para evitar el derrumbe o la infiltración de agua subterránea en la máquina.
Las máquinas de equilibrio de presión de tierra (EPB) se utilizan en terrenos blandos con menos de 7 bar (100 psi) de presión. Utilizan lodo para mantener la presión en el frente del túnel. El lodo (o escombros ) se admite en la tuneladora a través de un transportador de tornillo . Al ajustar la velocidad de extracción de lodo y la velocidad de avance de la tuneladora, se puede controlar la presión en el frente de la tuneladora sin el uso de lodo . Se pueden inyectar aditivos como bentonita , polímeros y espuma antes del frente para estabilizar el suelo. Dichos aditivos se pueden inyectar por separado en el cabezal de corte y el tornillo de extracción para garantizar que el lodo sea lo suficientemente cohesivo para mantener la presión y restringir el flujo de agua.
Al igual que otros tipos de TBM, las EPB utilizan cilindros de empuje para avanzar empujando los segmentos de hormigón. El cabezal de corte utiliza una combinación de brocas de carburo de tungsteno , cortadores de disco de carburo, picas de arrastre y/o cortadores de disco para roca dura.
La EPB ha permitido excavar túneles en terrenos blandos, húmedos o inestables con una velocidad y seguridad que antes no eran posibles. El Eurotúnel , la circunvalación del Támesis , secciones del metro de Londres y la mayoría de los nuevos túneles de metro completados en los últimos 20 años en todo el mundo se excavaron utilizando este método. La EPB ha competido históricamente con el método de escudo de lodo (ver más abajo), donde el lodo se utiliza para estabilizar el frente del túnel y transportar el material a la superficie. Las tuneladoras EPB se utilizan principalmente en terrenos más finos (como arcilla), mientras que las tuneladoras de lodo se utilizan principalmente para terrenos más gruesos (como grava). [46]
Las máquinas de protección de lodos se pueden utilizar en terrenos blandos con alta presión de agua o donde las condiciones del suelo granular (arenas y gravas) no permiten que se forme un tapón en el tornillo. El cabezal de corte se llena con lodo presurizado, generalmente hecho de arcilla bentonita que aplica presión hidrostática al frente. El lodo se mezcla con el lodo antes de ser bombeado a una planta de separación de lodos, generalmente fuera del túnel.
Las plantas de separación de lodos utilizan sistemas de filtración de varias etapas que separan los lodos de los lodos para permitir su reutilización. El grado en que se puede "limpiar" el lodo depende de los tamaños relativos de las partículas del lodo. Las tuneladoras de lodos no son adecuadas para limos y arcillas, ya que los tamaños de las partículas de los lodos son menores que los de la bentonita. En este caso, se elimina el agua del lodo y se deja una torta de arcilla que puede estar contaminada.
A veces se coloca un sistema de cajón en el cabezal de corte para permitir que los trabajadores operen la máquina, [47] [48] aunque la presión del aire puede alcanzar niveles elevados en el cajón, lo que requiere que los trabajadores tengan autorización médica como "aptos para bucear" y puedan operar las esclusas de presión. [47] [48]
Las tuneladoras para terrenos blandos de cara abierta dependen de que el terreno excavado permanezca en pie brevemente sin apoyo. Son adecuadas para su uso en terrenos con una resistencia de hasta aproximadamente 10 MPa (1500 psi) con bajos flujos de agua. Pueden perforar túneles con una sección transversal de más de 10 m (30 pies). Un brazo de perforación o un cabezal de corte perforan hasta 150 mm (6 pulgadas) del borde del escudo. Después de un ciclo de perforación, el escudo se eleva hacia adelante para comenzar un nuevo ciclo. El apoyo del terreno lo proporcionan los segmentos de hormigón prefabricado o, ocasionalmente, segmentos de hierro con grafito esferoidal (SGI) que se atornillan o se sostienen hasta que se agrega un anillo de soporte. El segmento final, llamado cuña, tiene forma de cuña y expande el anillo hasta que está apretado contra el suelo.
Las tuneladoras tienen un diámetro que va de 1 a 17 metros (3 a 56 pies). Las tuneladoras con escudo para microtúneles se utilizan para construir túneles pequeños y son un equivalente más pequeño a una tuneladora con escudo general y generalmente perforan túneles de 1 a 1,5 metros (3,3 a 4,9 pies), demasiado pequeños para que los operadores puedan caminar por ellos.
Detrás de todo tipo de tuneladoras, en la parte terminada del túnel, se encuentran plataformas de soporte posteriores conocidas como sistema de respaldo, cuyos mecanismos pueden incluir transportadores u otros sistemas para remoción de lodo; tuberías de lodos (si aplica); salas de control; sistemas eléctricos, de eliminación de polvo y de ventilación; y mecanismos para el transporte de segmentos prefabricados.
La construcción de túneles urbanos exige que la superficie permanezca intacta y que se evite el hundimiento del terreno . El método habitual para hacerlo en terrenos blandos es mantener la presión del suelo durante y después de la construcción.
En estas situaciones se utilizan tuneladoras con control positivo del frente, como las de presión de tierra balanceada (EPB) y las de escudo de lechada (SS). Ambos tipos (EPB y SS) son capaces de reducir el riesgo de hundimientos y vacíos en la superficie si las condiciones del terreno están bien documentadas. Al hacer túneles en entornos urbanos, se deben tener en cuenta otros túneles, líneas de servicios públicos existentes y cimentaciones profundas, y el proyecto debe contemplar medidas para mitigar cualquier efecto perjudicial sobre otras infraestructuras. [ cita requerida ]
{{cite journal}}
: CS1 maint: unfit URL (link)