Este artículo tiene varios problemas. Ayúdenos a mejorarlo o a discutir estos problemas en la página de discusión . ( Aprenda cómo y cuándo eliminar estos mensajes )
|
En física , una resonancia de Feshbach puede ocurrir tras la colisión de dos átomos lentos , cuando se adhieren temporalmente formando un compuesto inestable con una vida útil corta (la llamada resonancia). [1] Es una característica de los sistemas de muchos cuerpos en los que se logra un estado ligado si el acoplamiento entre al menos un grado interno de libertad y las coordenadas de reacción , que conducen a la disociación , desaparecen. La situación opuesta, cuando no se forma un estado ligado, es una resonancia de forma . Recibe su nombre de Herman Feshbach , un físico del MIT .
Las resonancias de Feshbach han adquirido importancia en el estudio de sistemas de átomos fríos , incluidos los gases de Fermi y los condensados de Bose-Einstein (BEC). [2] En el contexto de los procesos de dispersión en sistemas de muchos cuerpos, la resonancia de Feshbach se produce cuando la energía de un estado ligado de un potencial interatómico es igual a la energía cinética de un par de átomos en colisión. En entornos experimentales, las resonancias de Feshbach proporcionan una forma de variar la fuerza de interacción entre átomos en la nube al cambiar la longitud de dispersión, a sc , de las colisiones elásticas. Para las especies atómicas que poseen estas resonancias (como K 39 y K 40 ), es posible variar la fuerza de interacción al aplicar un campo magnético uniforme. Entre muchos usos, esta herramienta ha servido para explorar la transición de un BEC de moléculas fermiónicas a pares de fermiones que interactúan débilmente, el BCS, en las nubes de Fermi. Para los BEC, se han utilizado resonancias de Feshbach para estudiar un espectro de sistemas desde los gases de Bose ideales no interactuantes hasta el régimen unitario de interacciones.
Consideremos un evento general de dispersión cuántica entre dos partículas. En esta reacción, hay dos partículas reactivas denotadas por A y B , y dos partículas producto denotadas por A' y B' . Para el caso de una reacción (como una reacción nuclear ), podemos denotar este evento de dispersión por
La combinación de las especies y estados cuánticos de las dos partículas reactivas antes o después del evento de dispersión se denomina canal de reacción. Específicamente, las especies y estados de A y B constituyen el canal de entrada , mientras que los tipos y estados de A' y B' constituyen el canal de salida . Un canal de reacción energéticamente accesible se denomina canal abierto , mientras que un canal de reacción prohibido por la conservación de la energía se denomina canal cerrado.
Consideremos la interacción de dos partículas A y B en un canal de entrada C. Las posiciones de estas dos partículas están dadas por y , respectivamente. La energía de interacción de las dos partículas dependerá normalmente sólo de la magnitud de la separación , y esta función, a veces denominada curva de energía potencial , se denota por . A menudo, este potencial tendrá un mínimo pronunciado y, por tanto, admitirá estados ligados .
La energía total de las dos partículas en el canal de entrada es
donde denota la energía cinética total del movimiento relativo (el movimiento del centro de masa no desempeña ningún papel en la interacción de dos cuerpos), es la contribución a la energía de los acoplamientos a campos externos y representa un vector de uno o más parámetros como el campo magnético o el campo eléctrico . Consideremos ahora un segundo canal de reacción, denotado por D , que está cerrado para valores grandes de R . Sea que esta curva de potencial admita un estado ligado con energía .
Una resonancia de Feshbach ocurre cuando
para un cierto rango de vectores de parámetros . Cuando se cumple esta condición, cualquier acoplamiento entre el canal C y el canal D puede dar lugar a una mezcla significativa entre los dos canales; esto se manifiesta como una dependencia drástica del resultado del evento de dispersión en el parámetro o parámetros que controlan la energía del canal de entrada. Estos acoplamientos pueden surgir de interacciones de intercambio de espín o interacciones relativistas dependientes del espín. [2]
En experimentos atómicos ultrafríos, la resonancia se controla a través del campo magnético y asumimos que la energía cinética es aproximadamente 0. Dado que los canales difieren en grados de libertad internos, como el giro y el momento angular, su diferencia de energía depende del efecto Zeeman . La longitud de dispersión se modifica como
donde es la longitud de dispersión de fondo, es la intensidad del campo magnético donde se produce la resonancia y es el ancho de resonancia. [2] Esto permite la manipulación de la longitud de dispersión a 0 o valores arbitrariamente altos.
A medida que el campo magnético se desplaza a través de la resonancia, los estados en el canal abierto y cerrado también pueden mezclarse y una gran cantidad de átomos, a veces con una eficiencia cercana al 100 %, se convierten en moléculas de Feshbach. Estas moléculas tienen estados vibracionales altos, por lo que luego deben pasar a estados más bajos y estables para evitar la disociación. Esto se puede hacer mediante emisiones estimuladas u otras técnicas ópticas como STIRAP . Otros métodos incluyen la inducción de emisión estimulada a través de un campo magnético oscilante y la termalización átomo-molécula. [2]
En las moléculas, los acoplamientos no adiabáticos entre dos potenciales adiabáticos forman la región de cruce evitado (AC). Las resonancias rovibrónicas en la región AC de dos potenciales acoplados son muy especiales, ya que no están en la región de estado ligado de los potenciales adiabáticos, y normalmente no juegan papeles importantes en las dispersiones y son menos discutidas. Yu Kun Yang et al estudiaron este problema en New J. Phys. 22 (2020). [3] Ejemplificadas en la dispersión de partículas, las resonancias en la región AC se investigan exhaustivamente. Los efectos de las resonancias en la región AC en las secciones transversales de dispersión dependen en gran medida de los acoplamientos no adiabáticos del sistema, pueden ser muy significativos como picos agudos o discretos enterrados en el fondo. Más importante aún, muestra que una cantidad simple propuesta por Zhu y Nakamura para clasificar la fuerza de acoplamiento de las interacciones no adiabáticas puede aplicarse bien para estimar cuantitativamente la importancia de las resonancias en la región AC.
Un estado virtual, o estado inestable, es un estado transitorio o ligado que puede decaer en un estado libre o relajarse a una velocidad finita. [4] Este estado puede ser el estado metaestable de una determinada clase de resonancia de Feshbach: "Un caso especial de una resonancia de tipo Feshbach se produce cuando el nivel de energía se encuentra cerca de la parte superior del pozo de potencial. Este estado se denomina 'virtual ' " [5] y puede contrastarse además con una resonancia de forma en función del momento angular. [6] Debido a su existencia transitoria, pueden requerir técnicas especiales para su análisis y medición, por ejemplo. [7] [8] [9] [10]