En física , y en particular medida por radiometría , la energía radiante es la energía de la radiación electromagnética [1] y gravitacional . Como energía, su unidad SI es el julio (J). La cantidad de energía radiante se puede calcular integrando el flujo radiante (o potencia ) con respecto al tiempo . El símbolo Q e se utiliza a menudo en la literatura para denotar energía radiante ("e" para "energético", para evitar confusiones con cantidades fotométricas). En ramas de la física distintas de la radiometría, la energía electromagnética se denomina utilizando E o W. El término se utiliza particularmente cuando la radiación electromagnética es emitida por una fuente al entorno circundante. Esta radiación puede ser visible o invisible para el ojo humano. [2] [3]
El término "energía radiante" se utiliza con mayor frecuencia en los campos de la radiometría , la energía solar , la calefacción y la iluminación , pero también se utiliza a veces en otros campos (como las telecomunicaciones ). En las aplicaciones modernas que implican la transmisión de energía de un lugar a otro, a veces se utiliza "energía radiante" para referirse a las ondas electromagnéticas en sí mismas , en lugar de a su energía (una propiedad de las ondas). En el pasado, también se ha utilizado el término "energía electrorradiante". [4]
El término "energía radiante" también se aplica a la radiación gravitacional . [5] [6] Por ejemplo, las primeras ondas gravitacionales observadas fueron producidas por una colisión de agujeros negros que emitió aproximadamente 5,3 × 1047 julios de energía de ondas gravitacionales. [7]
Dado que la radiación electromagnética (EM) puede conceptualizarse como una corriente de fotones , la energía radiante puede considerarse como energía fotónica , es decir, la energía transportada por estos fotones. Por otra parte, la radiación EM puede considerarse como una onda electromagnética, que transporta energía en sus campos eléctricos y magnéticos oscilantes. Estos dos puntos de vista son completamente equivalentes y se concilian entre sí en la teoría cuántica de campos (véase dualidad onda-partícula ). [ cita requerida ]
La radiación electromagnética puede tener varias frecuencias . Las bandas de frecuencia presentes en una señal electromagnética dada pueden estar claramente definidas, como se ve en los espectros atómicos , o pueden ser amplias, como en la radiación de cuerpo negro . En la imagen de partículas, la energía transportada por cada fotón es proporcional a su frecuencia. En la imagen de ondas, la energía de una onda monocromática es proporcional a su intensidad [ cita requerida ] . Esto implica que si dos ondas electromagnéticas tienen la misma intensidad, pero diferentes frecuencias, la que tiene la frecuencia más alta "contiene" menos fotones, ya que cada fotón es más energético.
Cuando un objeto absorbe ondas electromagnéticas , su energía se convierte en calor (o en electricidad en el caso de un material fotoeléctrico ). Se trata de un efecto muy conocido, ya que la luz solar calienta las superficies que irradia. A menudo, este fenómeno se asocia especialmente con la radiación infrarroja , pero cualquier tipo de radiación electromagnética calentará un objeto que la absorba. Las ondas electromagnéticas también pueden reflejarse o dispersarse , en cuyo caso su energía también se redirige o redistribuye.
La energía radiante es uno de los mecanismos por los cuales la energía puede entrar o salir de un sistema abierto . [8] [9] [10] Un sistema de este tipo puede ser creado por el hombre, como un colector de energía solar , o natural, como la atmósfera de la Tierra . En geofísica , la mayoría de los gases atmosféricos, incluidos los gases de efecto invernadero , permiten que la energía radiante de longitud de onda corta del Sol pase a la superficie de la Tierra, calentando el suelo y los océanos. La energía solar absorbida se reemite parcialmente como radiación de longitud de onda más larga (principalmente radiación infrarroja), parte de la cual es absorbida por los gases de efecto invernadero atmosféricos. La energía radiante se produce en el sol como resultado de la fusión nuclear . [11]
La energía radiante se utiliza para la calefacción radiante . [12] Puede generarse eléctricamente mediante lámparas infrarrojas o puede absorberse de la luz solar y utilizarse para calentar agua. La energía térmica se emite desde un elemento cálido (suelo, pared, panel superior) y calienta a las personas y otros objetos en las habitaciones en lugar de calentar directamente el aire. Debido a esto, la temperatura del aire puede ser más baja que en un edificio con calefacción convencional, aunque la habitación parezca igual de cómoda.
Se han ideado otras diversas aplicaciones de la energía radiante. [13] Estas incluyen el tratamiento y la inspección, la separación y la clasificación, el medio de control y el medio de comunicación. Muchas de estas aplicaciones implican una fuente de energía radiante y un detector que responde a esa radiación y proporciona una señal que representa alguna característica de la radiación. Los detectores de energía radiante producen respuestas a la energía radiante incidente ya sea como un aumento o disminución del potencial eléctrico o del flujo de corriente o algún otro cambio perceptible, como la exposición de una película fotográfica .
Cantidad | Unidad | Dimensión | Notas | ||
---|---|---|---|---|---|
Nombre | Símbolo [nb 1] | Nombre | Símbolo | ||
Energía radiante | Q e [nb 2] | joule | Yo | M⋅L2⋅T − 2 | Energía de la radiación electromagnética. |
Densidad de energía radiante | nosotros | julio por metro cúbico | J/ m3 | M ⋅ L −1 ⋅ T −2 | Energía radiante por unidad de volumen. |
Flujo radiante | Φ y [nb 2] | vatio | W = J/s | M⋅L2⋅T − 3 | Energía radiante emitida, reflejada, transmitida o recibida por unidad de tiempo. A veces también se la denomina "potencia radiante" y en astronomía se la denomina luminosidad . |
Flujo espectral | Φ e, ν [nota 3] | vatio por hercio | W/ Hz | M⋅L2⋅T − 2 | Flujo radiante por unidad de frecuencia o longitud de onda. Esta última se mide habitualmente en W⋅nm −1 . |
Φ e, λ [nota 4] | vatio por metro | Peso en metros | M⋅L⋅T − 3 | ||
Intensidad radiante | Yo e,Ω [nb 5] | vatio por estereorradián | Con sr. | M⋅L2⋅T − 3 | Flujo radiante emitido, reflejado, transmitido o recibido por unidad de ángulo sólido. Se trata de una magnitud direccional . |
Intensidad espectral | Yo e,Ω, ν [nota 3] | vatio por estereorradián por hercio | W⋅sr −1 ⋅Hz −1 | M⋅L2⋅T − 2 | Intensidad radiante por unidad de frecuencia o longitud de onda. Esta última se mide habitualmente en W⋅sr −1 ⋅nm −1 . Se trata de una cantidad direccional . |
Yo , e,Ω, λ [nota 4] | vatio por estereorradián por metro | W⋅sr −1 ⋅m −1 | M⋅L⋅T − 3 | ||
Resplandor | L e,Ω [nb 5] | vatio por estereorradián por metro cuadrado | W⋅sr −1 ⋅m −2 | M⋅T − 3 | Flujo radiante emitido, reflejado, transmitido o recibido por una superficie , por unidad de ángulo sólido por unidad de área proyectada. Se trata de una magnitud direccional . A veces también se la denomina, de manera confusa, "intensidad". |
Radiancia espectral Intensidad específica | L e,Ω, ν [nota 3] | vatio por estereorradián por metro cuadrado por hercio | W⋅sr −1 ⋅m −2 ⋅Hz −1 | M⋅T − 2 | Radiancia de una superficie por unidad de frecuencia o longitud de onda. Esta última se mide habitualmente en W⋅sr −1 ⋅m −2 ⋅nm −1 . Se trata de una cantidad direccional . A veces también se la denomina, de forma confusa, "intensidad espectral". |
L e,Ω, λ [nota 4] | vatio por estereorradián por metro cuadrado, por metro | W⋅sr −1 ⋅m −3 | M⋅L − 1⋅T − 3 | ||
Densidad de flujo de irradiancia | E e [nb 2] | vatio por metro cuadrado | W/ m2 | M⋅T − 3 | Flujo radiante que recibe una superficie por unidad de área. A veces también se lo denomina, de manera confusa, "intensidad". |
Irradiancia espectral Densidad de flujo espectral | E e, ν [nb 3] | vatio por metro cuadrado por hercio | W⋅m − 2⋅Hz −1 | M⋅T − 2 | Irradiancia de una superficie por unidad de frecuencia o longitud de onda. A veces también se la llama, de manera confusa, "intensidad espectral". Las unidades de densidad de flujo espectral que no pertenecen al SI incluyen Jansky (1 julio =10 −26 W⋅m −2 ⋅Hz −1 ) y unidad de flujo solar (1 ufs =10 −22 W⋅m −2 ⋅Hz −1 =10 4 Jy ). |
E e, λ [nota 4] | vatio por metro cuadrado, por metro | W/ m3 | M⋅L − 1⋅T − 3 | ||
Radiosidad | Yo [nb 2 ] | vatio por metro cuadrado | W/ m2 | M⋅T − 3 | Flujo radiante que sale (emitido, reflejado y transmitido) de una superficie por unidad de área. A veces también se lo denomina, de manera confusa, "intensidad". |
Radiosidad espectral | J e, ν [nb 3] | vatio por metro cuadrado por hercio | W⋅m − 2⋅Hz −1 | M⋅T − 2 | Radiosidad de una superficie por unidad de frecuencia o longitud de onda. Esta última se mide habitualmente en W⋅m −2 ⋅nm −1 . A veces también se la denomina, de forma confusa, "intensidad espectral". |
J e, λ [nb 4] | vatio por metro cuadrado, por metro | W/ m3 | M⋅L − 1⋅T − 3 | ||
Excitación radiante | Yo y [nb 2] | vatio por metro cuadrado | W/ m2 | M⋅T − 3 | Flujo radiante emitido por una superficie por unidad de área. Este es el componente emitido de la radiosidad. "Emitancia radiante" es un término antiguo para esta cantidad. A veces también se la denomina, de manera confusa, "intensidad". |
Excitación espectral | Yo , ν [nb 3] | vatio por metro cuadrado por hercio | W⋅m − 2⋅Hz −1 | M⋅T − 2 | Excitancia radiante de una superficie por unidad de frecuencia o longitud de onda. Esta última se mide comúnmente en W⋅m −2 ⋅nm −1 . "Emitancia espectral" es un término antiguo para esta cantidad. A veces también se la denomina, de manera confusa, "intensidad espectral". |
Yo , λ [nb 4] | vatio por metro cuadrado, por metro | W/ m3 | M⋅L − 1⋅T − 3 | ||
Exposición radiante | Él | julio por metro cuadrado | J/ m2 | M⋅T − 2 | Energía radiante que recibe una superficie por unidad de área o, equivalentemente, irradiancia de una superficie integrada en el tiempo de irradiación. A veces también se la denomina "fluencia radiante". |
Exposición espectral | Él , ν [nb 3] | julio por metro cuadrado por hercio | J⋅m − 2⋅Hz −1 | M⋅T − 1 | Exposición radiante de una superficie por unidad de frecuencia o longitud de onda. Esta última se mide habitualmente en J⋅m −2 ⋅nm −1 . A veces también se denomina "fluencia espectral". |
Él , λ [nb 4] | julios por metro cuadrado, por metro | J/ m3 | M ⋅ L −1 ⋅ T −2 | ||
Ver también: |