Geometría de la información

Técnica en estadística
El conjunto de todas las distribuciones normales forma una variedad estadística con geometría hiperbólica .

La geometría de la información es un campo interdisciplinario que aplica las técnicas de la geometría diferencial para estudiar la teoría de la probabilidad y la estadística . [1] Estudia las variedades estadísticas , que son variedades riemannianas cuyos puntos corresponden a distribuciones de probabilidad .

Introducción

Históricamente, la geometría de la información se remonta al trabajo de CR Rao , quien fue el primero en tratar la matriz de Fisher como una métrica de Riemann . [2] [3] La teoría moderna se debe en gran medida a Shun'ichi Amari , cuyo trabajo ha tenido una gran influencia en el desarrollo del campo. [4]

Clásicamente, la geometría de la información consideraba un modelo estadístico parametrizado como una variedad de Riemann . Para tales modelos, existe una elección natural de métrica de Riemann, conocida como métrica de información de Fisher . En el caso especial de que el modelo estadístico sea una familia exponencial , es posible inducir la variedad estadística con una métrica hessiana (es decir, una métrica de Riemann dada por el potencial de una función convexa). En este caso, la variedad hereda naturalmente dos conexiones afines planas , así como una divergencia de Bregman canónica . Históricamente, gran parte del trabajo se dedicó a estudiar la geometría asociada de estos ejemplos. En el entorno moderno, la geometría de la información se aplica a un contexto mucho más amplio, que incluye familias no exponenciales, estadísticas no paramétricas e incluso variedades estadísticas abstractas no inducidas a partir de un modelo estadístico conocido. Los resultados combinan técnicas de la teoría de la información , la geometría diferencial afín , el análisis convexo y muchos otros campos.

Las referencias estándar en el campo son el libro de Shun'ichi Amari y Hiroshi Nagaoka, Methods of Information Geometry , [5] y el libro más reciente de Nihat Ay y otros. [6] Frank Nielsen ofrece una introducción breve en la encuesta. [7] En 2018, se publicó la revista Information Geometry , dedicada a este campo.

Colaboradores

La historia de la geometría de la información está asociada con los descubrimientos de al menos las siguientes personas y muchas otras.

Aplicaciones

Como campo interdisciplinario, la geometría de la información se ha utilizado en diversas aplicaciones.

Aquí una lista incompleta:

  • Inferencia estadística [8]
  • Series temporales y sistemas lineales
  • Problema de filtrado [9]
  • Sistemas cuánticos [10]
  • Redes neuronales [11]
  • Aprendizaje automático
  • Mecánica estadística
  • Biología
  • Estadísticas [12] [13]
  • Finanzas matemáticas [14]

Véase también

Referencias

  1. ^ Nielsen, Frank (2022). "Las múltiples caras de la geometría de la información" (PDF) . Avisos de la AMS . 69 (1). Sociedad Matemática Americana: 36-45.
  2. ^ Rao, CR (1945). "Información y precisión alcanzables en la estimación de parámetros estadísticos". Boletín de la Sociedad Matemática de Calcuta . 37 : 81–91.Reimpreso en Breakthroughs in Statistics . Springer. 1992. págs. 235–247. doi :10.1007/978-1-4612-0919-5_16. S2CID  117034671.
  3. ^ Nielsen, F. (2013). "Límite inferior de Cramér-Rao y geometría de la información". En Bhatia, R.; Rajan, CS (eds.). Conectados al infinito II: sobre el trabajo de los matemáticos indios . Textos y lecturas en matemáticas. Vol. Volumen especial de textos y lecturas en matemáticas (TRIM). Hindustan Book Agency. págs. 18–37. arXiv : 1301.3578 . doi :10.1007/978-93-86279-56-9_2. ISBN 978-93-80250-51-9.S2CID16759683  .
  4. ^ Amari, Shun'ichi (1983). "Fundamentos de la geometría de la información". Electrónica y comunicaciones en Japón . 66 (6): 1–10. doi :10.1002/ecja.4400660602.
  5. ^ Amari, Shun'ichi; Nagaoka, Hiroshi (2000). Métodos de geometría de la información . Traducciones de monografías matemáticas. Vol. 191. Sociedad Matemática Americana. ISBN 0-8218-0531-2.
  6. ^ Sí, Nihat; Jost, Jürgen ; Lê, Hông Vân; Schwachhöfer, Lorenz (2017). Geometría de la información . Ergebnisse der Mathematik und ihrer Grenzgebiete. vol. 64. Saltador. ISBN 978-3-319-56477-7.
  7. ^ Nielsen, Frank (2018). "Introducción elemental a la geometría de la información". Entropía . 22 (10).
  8. ^ Kass, RE; Vos, PW (1997). Fundamentos geométricos de la inferencia asintótica . Serie sobre probabilidad y estadística. Wiley. ISBN 0-471-82668-5.
  9. ^ Brigo, Damiano ; Hanzon, Bernard; LeGland, Francois (1998). "Un enfoque geométrico diferencial para el filtrado no lineal: el filtro de proyección" (PDF) . IEEE Transactions on Automatic Control . 43 (2): 247–252. doi :10.1109/9.661075.
  10. ^ van Handel, Ramon; Mabuchi, Hideo (2005). "Filtro de proyección cuántica para un modelo altamente no lineal en QED de cavidad". Journal of Optics B: Óptica cuántica y semiclásica . 7 (10): S226–S236. arXiv : quant-ph/0503222 . Código Bibliográfico :2005JOptB...7S.226V. doi :10.1088/1464-4266/7/10/005. S2CID  15292186.
  11. ^ Zlochin, Mark; Baram, Yoram (2001). "Dinámica estocástica de variedades para el aprendizaje bayesiano". Computación neuronal . 13 (11): 2549–2572. doi :10.1162/089976601753196021. PMID  11674851.
  12. ^ Amari, Shun'ichi (1985). Métodos geométricos diferenciales en estadística . Apuntes de clase sobre estadística. Berlín: Springer-Verlag. ISBN 0-387-96056-2.
  13. ^ Murray, M.; Rice, J. (1993). Geometría diferencial y estadística . Monografías sobre estadística y probabilidad aplicada. Vol. 48. Chapman y Hall . ISBN 0-412-39860-5.
  14. ^ Marriott, Paul; Salmon, Mark, eds. (2000). Aplicaciones de la geometría diferencial a la econometría . Cambridge University Press. ISBN 0-521-65116-6.
  • [1] Revista de Geometría de la Información de Springer
  • Descripción general de la geometría de la información por Cosma Rohilla Shalizi, julio de 2010
  • Notas de geometría informativa de John Baez , noviembre de 2012
  • Geometría de la información para redes neuronales (pdf ), de Daniel Wagenaar
Retrieved from "https://en.wikipedia.org/w/index.php?title=Information_geometry&oldid=1250216678"