Espacio-tiempo estático

Espacio-tiempo que no cambia con el tiempo y es irrotacional.

En la relatividad general , se dice que un espacio-tiempo es estático si no cambia con el tiempo y también es irrotacional. Es un caso especial de un espacio-tiempo estacionario , que es la geometría de un espacio-tiempo estacionario que no cambia con el tiempo pero puede rotar. Por lo tanto, la solución de Kerr proporciona un ejemplo de un espacio-tiempo estacionario que no es estático; la solución de Schwarzschild no rotatoria es un ejemplo que es estático.

Formalmente, un espacio-tiempo es estático si admite un campo vectorial de Killing global, no evanescente y temporal que es irrotacional , es decir , cuya distribución ortogonal es involutiva . (Obsérvese que las hojas de la foliación asociada son necesariamente hipersuperficies espaciales ). Por tanto, un espacio-tiempo estático es un espacio-tiempo estacionario que satisface esta condición de integrabilidad adicional. Estos espacio-tiempos forman una de las clases más simples de variedades lorentzianas . K {\displaystyle K}

Localmente, cada espacio-tiempo estático parece un espacio-tiempo estático estándar que es un producto deformado lorentziano R S con una métrica de la forma × {\displaystyle \times }

g [ ( t , x ) ] = β ( x ) d t 2 + g S [ x ] {\displaystyle g[(t,x)]=-\beta (x)dt^{2}+g_{S}[x]} ,

donde R es la línea real, es una métrica (definida positiva) y es una función positiva en la variedad de Riemann S. g S {\displaystyle g_{S}} β {\displaystyle \beta }

En una representación de coordenadas locales de este tipo, el campo de Killing puede identificarse con y S , la variedad de trayectorias - , puede considerarse como el 3-espacio instantáneo de observadores estacionarios. Si es el cuadrado de la norma del campo vectorial de Killing, , tanto como son independientes del tiempo (de hecho ). Es de este último hecho que un espacio-tiempo estático obtiene su nombre, ya que la geometría de la porción espacial S no cambia con el tiempo. K {\displaystyle K} t {\displaystyle \partial _{t}} K {\displaystyle K} λ {\displaystyle \lambda } λ = g ( K , K ) {\displaystyle \lambda =g(K,K)} λ {\displaystyle \lambda } g S {\displaystyle g_{S}} λ = β ( x ) {\displaystyle \lambda =-\beta (x)}

Ejemplos de espaciotiempos estáticos

Ejemplos de espaciotiempos no estáticos

En general, "casi todos" los espacio-tiempos no serán estáticos. Algunos ejemplos explícitos incluyen:

Referencias

  • Hawking, SW; Ellis, GFR (1973), La estructura a gran escala del espacio-tiempo , Cambridge Monographs on Mathematical Physics, vol. 1, Londres-Nueva York: Cambridge University Press, MR  0424186
Retrieved from "https://en.wikipedia.org/w/index.php?title=Static_spacetime&oldid=1221924862"