Espacio métrico inyectivo

Tipo de espacio métrico

En geometría métrica , un espacio métrico inyectivo , o equivalentemente un espacio métrico hiperconvexo , es un espacio métrico con ciertas propiedades que generalizan las de la línea real y de las distancias L en espacios vectoriales de dimensiones superiores . Estas propiedades se pueden definir de dos maneras aparentemente diferentes: la hiperconvexidad implica las propiedades de intersección de bolas cerradas en el espacio, mientras que la inyectividad implica las incrustaciones isométricas del espacio en espacios más grandes. Sin embargo, es un teorema de Aronszajn y Panitchpakdi (1956) que estos dos tipos diferentes de definiciones son equivalentes. [1]

Hiperconvexidad

Se dice que un espacio métrico es hiperconvexo si es convexo y sus bolas cerradas tienen la propiedad binaria de Helly . Es decir: incógnita {\estilo de visualización X}

  1. Dos puntos cualesquiera pueden conectarse mediante la imagen isométrica de un segmento de línea de longitud igual a la distancia entre los puntos (es decir, es un espacio de trayectoria). incógnita {\estilo de visualización x} y {\estilo de visualización y} incógnita {\estilo de visualización X}
  2. Si hay una familia de bolas cerradas tal que cada par de bolas en se encuentra, entonces existe un punto común a todas las bolas en . F {\estilo de visualización F} B ¯ a ( pag ) = { q d ( pag , q ) a } {\displaystyle {\bar {B}}_{r}(p)=\{q\mid d(p,q)\leq r\}} F {\estilo de visualización F} incógnita {\estilo de visualización x} F {\estilo de visualización F}

De manera equivalente, un espacio métrico es hiperconvexo si, para cualquier conjunto de puntos en y radios que satisfacen para cada y , hay un punto en que está dentro de la distancia de cada uno (es decir, para todos los ). incógnita {\estilo de visualización X} pag i estilo de visualización p_{i}} incógnita {\estilo de visualización X} a i > 0 {\displaystyle r_{i}>0} a i + a yo d ( pag i , pag yo ) {\displaystyle r_{i}+r_{j}\geq d(p_{i},p_{j})} i {\estilo de visualización i} yo {\estilo de visualización j} q {\estilo de visualización q} incógnita {\estilo de visualización X} a i estilo de visualización r_{i}} pag i estilo de visualización p_{i}} d ( pag i , q ) a i {\displaystyle d(p_{i},q)\leq r_{i}} i {\estilo de visualización i}

Inyectividad

Una retracción de un espacio métrico es una función que se asigna a un subespacio de sí mismo, tal que incógnita {\estilo de visualización X} F {\estilo de visualización f} incógnita {\estilo de visualización X}

  1. para todo lo que tenemos es que ; es decir, es la función identidad en su imagen (es decir, es idempotente ), y incógnita incógnita {\displaystyle x\en X} F ( F ( incógnita ) ) = F ( incógnita ) {\displaystyle f(f(x))=f(x)} F {\estilo de visualización f}
  2. porque todo lo que tenemos es eso , es decir, no expansivo . incógnita , y incógnita {\displaystyle x,y\en X} d ( F ( incógnita ) , F ( y ) ) d ( incógnita , y ) {\displaystyle d(f(x),f(y))\leq d(x,y)} F {\estilo de visualización f}

Un retracto de un espacio es un subespacio de que es una imagen de un retracto. Se dice que un espacio métrico es inyectivo si, siempre que es isométrico a un subespacio de un espacio , ese subespacio es un retracto de . incógnita {\estilo de visualización X} incógnita {\estilo de visualización X} incógnita {\estilo de visualización X} incógnita {\estilo de visualización X} O {\estilo de visualización Z} Y {\estilo de visualización Y} O {\estilo de visualización Z} Y {\estilo de visualización Y}

Ejemplos

Los ejemplos de espacios métricos hiperconvexos incluyen

Debido a la equivalencia entre hiperconvexidad e inyectividad, todos estos espacios son también inyectivos.

Propiedades

En un espacio inyectivo, el radio de la bola mínima que contiene cualquier conjunto es igual a la mitad del diámetro de . Esto se deduce de que las bolas de radio la mitad del diámetro, centradas en los puntos de , se intersecan de a pares y, por lo tanto, por hiperconvexidad, tienen una intersección común; una bola de radio la mitad del diámetro centrada en un punto de esta intersección común contiene todos los . Por lo tanto, los espacios inyectivos satisfacen una forma particularmente fuerte del teorema de Jung . S {\estilo de visualización S} S {\estilo de visualización S} S {\estilo de visualización S} S {\estilo de visualización S}

Todo espacio inyectivo es un espacio completo , [2] y toda función métrica (o, equivalentemente, función no expansiva o función corta ) en un espacio inyectivo acotado tiene un punto fijo . [3] Un espacio métrico es inyectivo si y solo si es un objeto inyectivo en la categoría de espacios métricos y funciones métricas . [4]

Notas

  1. ^ Véase, por ejemplo, Chepoi 1997.
  2. ^ Aronszajn y Panitchpakdi 1956.
  3. ^ Sin 1979; Soardi 1979.
  4. ^ Para propiedades adicionales de espacios inyectivos ver Espínola & Khamsi 2001.

Referencias

  • Aronszajn, N. ; Panitchpakdi, P. (1956). "Extensiones de transformaciones uniformemente continuas y espacios métricos hiperconvexos". Pacific Journal of Mathematics . 6 : 405–439. doi : 10.2140/pjm.1956.6.405 . MR  0084762.Corrección (1957), Pacific J. Math. 7 : 1729, MR 0092146.
  • Chepoi, Victor (1997). "Un enfoque TX para algunos resultados sobre cortes y métricas". Avances en Matemáticas Aplicadas . 19 (4): 453–470. doi : 10.1006/aama.1997.0549 . MR  1479014.
  • Espínola, R.; Khamsi, MA (2001). "Introducción a los espacios hiperconvexos" (PDF) . En Kirk, WA; Sims B. (eds.). Manual de teoría métrica del punto fijo . Dordrecht: Kluwer Academic Publishers. MR  1904284.
  • Isbell, JR (1964). "Seis teoremas sobre espacios métricos inyectivos". Comentarios Mathematici Helvetici . 39 : 65–76. doi :10.1007/BF02566944. SEÑOR  0182949.
  • Sine, RC (1979). "Sobre semigrupos de contracción no lineal en espacios supranormativos". Análisis no lineal . 3 (6): 885–890. doi :10.1016/0362-546X(79)90055-5. MR  0548959.
  • Soardi, P. (1979). "Existencia de puntos fijos de aplicaciones no expansivas en ciertas redes de Banach". Actas de la American Mathematical Society . 73 (1): 25–29. doi : 10.2307/2042874 . JSTOR  2042874. MR  0512051.
Obtenido de "https://es.wikipedia.org/w/index.php?title=Espacio_métrico_inyectivo&oldid=1157891830"