Pez payaso | |
---|---|
Pez payaso ocellaris ( Amphiprion ocellaris ) | |
Clasificación científica | |
Dominio: | Eucariota |
Reino: | Animalia |
Filo: | Cordados |
Clase: | Actinopterigios |
Clado : | Percomorfos |
(sin clasificar): | Ovalentaria |
Familia: | Pomacéntridos |
Subfamilia: | Amphiprioninae Allen , 1975 |
Géneros | |
Los peces payaso o anémona son peces de la subfamilia Amphiprioninae en la familia Pomacentridae . Se reconocen treinta especies de peces payaso: una en el género Premnas , mientras que las restantes pertenecen al género Amphiprion . En la naturaleza, todos forman mutualismos simbióticos con las anémonas de mar . Dependiendo de la especie, los peces anémona son en general de color amarillo, naranja o de un color rojizo o negruzco, y muchos muestran barras o manchas blancas. El más grande puede alcanzar una longitud de 17 cm ( 6+1 ⁄ 2 pulgada), mientras que los más pequeños apenas alcanzanlos 7-8 cm ( 2+3 ⁄ 4 – 3+1 ⁄ 4 pulgada).
Los peces payaso son endémicos de las aguas más cálidas del océano Índico, incluido el mar Rojo y el océano Pacífico, la Gran Barrera de Coral , el sudeste asiático, Japón y la región indo-malasia. Si bien la mayoría de las especies tienen distribuciones restringidas, otras están muy extendidas. Los peces payaso suelen vivir en el fondo de mares poco profundos en arrecifes protegidos o en lagunas poco profundas . No se encuentran peces payaso en el Atlántico. [1]
Los peces payaso son omnívoros y pueden alimentarse de alimentos no digeridos de sus anémonas hospedadoras, y la materia fecal del pez payaso proporciona nutrientes a la anémona de mar. Los peces payaso se alimentan principalmente de zooplancton pequeño de la columna de agua, como copépodos y larvas de tunicados , y una pequeña parte de su dieta proviene de algas, con la excepción del Amphiprion perideraion , que se alimenta principalmente de algas . [2] [3]
El pez payaso y las anémonas de mar tienen una relación simbiótica y mutualista, en la que cada una proporciona muchos beneficios a la otra. Las especies individuales son generalmente muy específicas de hospedador. La anémona de mar protege al pez payaso de los depredadores, además de proporcionarle alimento a través de los restos que quedan de las comidas de la anémona y los tentáculos ocasionales de la anémona muerta, y funciona como un sitio seguro para anidar. A cambio, el pez payaso defiende a la anémona de sus depredadores y parásitos. [4] [5] La anémona también recoge nutrientes de los excrementos del pez payaso. [6] El nitrógeno excretado por el pez payaso aumenta la cantidad de algas incorporadas al tejido de sus hospedadores, lo que ayuda a la anémona en el crecimiento y la regeneración de los tejidos. [3] La actividad del pez payaso da como resultado una mayor circulación de agua alrededor de la anémona de mar, [7] y se ha sugerido que su colorido brillante podría atraer a los peces pequeños hacia la anémona, que luego los atrapa. [8] Los estudios sobre los peces payaso han demostrado que alteran el flujo de agua alrededor de los tentáculos de las anémonas de mar mediante ciertos comportamientos y movimientos como el "acuñamiento" y el "cambio de posición". La aireación de los tentáculos de la anémona huésped permite beneficios para el metabolismo de ambos socios, principalmente al aumentar el tamaño corporal de la anémona y la respiración tanto de los peces payaso como de las anémonas. [9]
El blanqueamiento de la anémona hospedadora puede ocurrir cuando las temperaturas cálidas causan una reducción en los simbiontes de algas dentro de la anémona. El blanqueamiento del hospedador puede causar un aumento a corto plazo en la tasa metabólica del pez payaso residente, probablemente como resultado de un estrés agudo. [10] Sin embargo, con el tiempo, parece haber una regulación negativa del metabolismo y una tasa de crecimiento reducida para los peces asociados con anémonas blanqueadas. Estos efectos pueden deberse a una disponibilidad reducida de alimentos (por ejemplo, productos de desecho de la anémona, algas simbióticas) para el pez payaso. [11]
Se dan varias teorías sobre cómo pueden sobrevivir al veneno de la anémona de mar:
Los peces payaso son el ejemplo más conocido de peces que pueden vivir entre los tentáculos venenosos de las anémonas de mar, pero hay varios otros, incluidos los juveniles de dascyllus de tres manchas , ciertos peces cardenal (como el cardenal de Banggai ), el gobio incógnito (o anémona) y los juveniles de pez verde pintado . [13] [14] [15]
En un grupo de peces payaso, existe una estricta jerarquía de dominancia . La hembra más grande y agresiva se encuentra en la parte superior. Solo dos peces payaso, un macho y una hembra, en un grupo se reproducen, a través de fertilización externa . Los peces payaso son hermafroditas secuenciales protándricos , lo que significa que primero se convierten en machos y, cuando maduran, se convierten en hembras. Si la hembra de pez payaso es eliminada del grupo, como por ejemplo por muerte, uno de los machos más grandes y dominantes se convierte en hembra. [16] Los machos restantes suben un rango en la jerarquía. Los peces payaso viven en una jerarquía, como las hienas, excepto que son más pequeños y se basan en el tamaño, no en el sexo y en el orden de incorporación/nacimiento. [ cita requerida ]
Los peces payaso ponen huevos en cualquier superficie plana cerca de las anémonas que los hospedan. En la naturaleza, los peces payaso desovan alrededor de la época de la luna llena. Dependiendo de la especie, pueden poner cientos o miles de huevos. El progenitor macho cuida los huevos hasta que eclosionan, aproximadamente entre 6 y 10 días después, generalmente dos horas después del anochecer. [17]
Las colonias de peces payaso suelen estar formadas por un macho y una hembra reproductores y unos pocos machos jóvenes, que ayudan a cuidar la colonia. [18] Aunque varios machos cohabitan en un entorno con una sola hembra, no se produce poligamia y solo la pareja adulta muestra un comportamiento reproductivo. Sin embargo, si la hembra muere, la jerarquía social cambia y el macho reproductor muestra una inversión sexual protándrica para convertirse en la hembra reproductora. El juvenil más grande se convierte entonces en el nuevo macho reproductor después de un período de rápido crecimiento. [19] La existencia de protándria en los peces payaso puede basarse en el caso de que los no reproductores modulen su fenotipo de una manera que haga que los reproductores los toleren. Esta estrategia evita los conflictos al reducir la competencia entre los machos por una hembra. Por ejemplo, al modificar deliberadamente su tasa de crecimiento para permanecer pequeños y sumisos, los juveniles de una colonia no representan una amenaza para la aptitud del macho adulto, protegiéndose así de ser expulsados por el pez dominante. [20]
El ciclo reproductivo del pez payaso suele estar relacionado con el ciclo lunar. Las tasas de desove del pez payaso alcanzan su punto máximo alrededor del primer y tercer cuarto de la luna. El momento de este desove significa que los huevos eclosionan alrededor de los períodos de luna llena o luna nueva. Una explicación de este reloj lunar es que las mareas vivas producen las mareas más altas durante los períodos de luna llena o luna nueva. La eclosión nocturna durante la marea alta puede reducir la depredación al permitir una mayor capacidad de escape. Es decir, las corrientes más fuertes y el mayor volumen de agua durante la marea alta protegen a las crías al arrastrarlas eficazmente a un lugar seguro. Antes del desove, el pez payaso muestra mayores tasas de mordeduras de anémonas y sustrato, lo que ayuda a preparar y limpiar el nido para el desove. [19]
Antes de realizar la puesta, los padres suelen dejar una puesta ovalada de diámetro variable para la puesta. La fecundidad, o tasa reproductiva, de las hembras suele oscilar entre 600 y 1.500 huevos, según su tamaño. A diferencia de la mayoría de las especies animales, la hembra sólo se hace cargo de los huevos en ocasiones, y los machos dedican la mayor parte del tiempo y el esfuerzo. Los peces payaso macho cuidan de sus huevos abanicándolos y guardándolos durante 6 a 10 días hasta que eclosionan. En general, los huevos se desarrollan más rápidamente en una puesta cuando los machos se abanicen adecuadamente, y el abanicamiento representa un mecanismo crucial para el desarrollo exitoso de los huevos. Esto sugiere que los machos pueden controlar el éxito de la eclosión de una puesta de huevos invirtiendo diferentes cantidades de tiempo y energía en los huevos. Por ejemplo, un macho podría optar por abanicarse menos en épocas de escasez o abanicarse más en épocas de abundancia. Además, los machos muestran un mayor estado de alerta cuando protegen crías más valiosas o huevos en los que la paternidad está garantizada. Sin embargo, las hembras muestran generalmente menos preferencia por el comportamiento parental que los machos. Todo esto sugiere que los machos tienen una mayor inversión parental en los huevos en comparación con las hembras. [21]
Las crías de pez payaso experimentan un desarrollo posterior a la eclosión en lo que respecta tanto al tamaño del cuerpo como a las aletas. Si se mantienen en la regulación térmica requerida, los peces payaso experimentan un desarrollo adecuado de sus aletas. Los peces payaso siguen el orden siguiente en el desarrollo de sus aletas: "Pectorales < caudal < dorsal = anal < pélvica". La etapa larvaria temprana es crucial para garantizar una progresión saludable del crecimiento. [22]
Históricamente, los peces payaso han sido identificados por características morfológicas y patrón de color en el campo, mientras que en un laboratorio, se utilizan otras características como la escamación de la cabeza, la forma de los dientes y las proporciones corporales. [2] Estas características se han utilizado para agrupar especies en seis complejos : percula , tomate , zorrillo , clarkii , silla de montar y granate . [23] Como se puede ver en la galería, cada uno de los peces en estos complejos tiene una apariencia similar. El análisis genético ha demostrado que estos complejos no son grupos monofiléticos , particularmente las 11 especies en el grupo A. clarkii , donde solo A. clarkii y A. tricintus están en el mismo clado , con seis especies, A. allardi A. bicinctus , A. chagosensis , A. chrosgaster , A. fuscocaudatus , A. latifasciatus y A. omanensis pertenecen a un clado indio, A. chrysopterus tiene un linaje monoespecífico y A. akindynos está en el clado australiano con A. mccullochi . [24] Otras diferencias significativas son que A. latezonatus también tiene un linaje monoespecífico y A. nigripes está en el clado indio en lugar de con A. akallopisos , el pez payaso zorrillo. [25] A. latezonatus está más estrechamente relacionado con A. percula y Premnas biaculeatus que con el pez silla de montar con el que se agrupaba anteriormente. [26] [25]
Se pensaba que el mutualismo obligado era la innovación clave que permitió que el pez payaso se propagara rápidamente, con cambios morfológicos rápidos y convergentes correlacionados con los nichos ecológicos ofrecidos por las anémonas hospedadoras. [26] La complejidad de la estructura del ADN mitocondrial mostrada por el análisis genético del clado australiano sugirió una conectividad evolutiva entre muestras de A. akindynos y A. mccullochi que los autores teorizan fue el resultado de la hibridación histórica y la introgresión en el pasado evolutivo. Los dos grupos evolutivos tenían individuos de ambas especies detectados, por lo que las especies carecían de monofilia recíproca. No se encontraron haplotipos compartidos entre especies. [27]
Nombre científico | Nombre común | Clado [24] | Complejo | imagen |
---|---|---|---|---|
Género Amphiprion : [28] | ||||
Amphiprion akallopisos | Pez payaso mofeta | A. akallopisos | Mofeta | |
A. akindynos | australiano | A. clarkii | ||
A. allardi | Pez payaso de Allard | indio | A. clarkii | |
A. barberi | Pez payaso de Barber | A. ephippium | A. ephippium | |
A. bicinctus | Pez payaso de dos bandas | indio | A. clarkii | |
A. chagosensis | Pez payaso de Chagos | indio | A. clarkii | |
A. chrysogaster | Pez payaso de Mauricio | indio | A. clarkii | |
A. chrysopterus | Pez payaso de aleta naranja | Linaje monoespecífico | A. clarkii | |
A. clarkii | Pez payaso de Clark | A. clarkii | A. clarkii | |
A. ephippium | Pez payaso de lomo rojo | A. ephippium | A. ephippium | |
A. frenato | Pez payaso tomate | A. ephippium | A. ephippium | |
A. fuscocaudatus | Pez payaso de Seychelles | Indio [n 1] | A. clarkii | |
A. latezonatus | Pez payaso de banda ancha | Linaje monoespecífico | Ensillada | |
A. latifasciatus | Pez payaso de Madagascar | indio | A. clarkii | |
A. leucokranos | Pez payaso de gorro blanco | Probablemente híbrido | Mofeta | |
A. mccullochi | Pez payaso de hocico blanco | australiano | A. ephippium | |
A. melanopus | Pez payaso rojo y negro | A. ephippium | A. ephippium | |
A. nigripes | Pez payaso de Maldivas | indio | Mofeta | |
A. ocellaris | Pez payaso falso | Percula | Pez payaso | |
A. ocellaris | Pez payaso de tormenta negra | Percula | Pez payaso | |
A. ocellaris | Pez payaso tormenta naranja | Percula | Pez payaso | |
A. omanensis | Pez payaso de Omán | indio | A. clarkii | |
A. pacificus | Pez payaso del Pacífico | A. akallopisos | Mofeta | |
A. percula | Pez payaso | Percula | Pez payaso | |
A. perideraion | Pez payaso mofeta rosado | A. akallopisos | Mofeta | |
A. polimnus | Pez payaso de lomo ensillado | A. polimnus | Ensillada | |
A. rubrocinctus | Pez payaso australiano | A. ephippium | A. ephippium | |
A. sandaracinos | Pez payaso naranja | A. akallopisos | Mofeta | |
A. sebae | Pez payaso Sebae | A. polimnus | Ensillada | |
A. thiellei | Pez payaso de Thielle | Probablemente híbrido | Mofeta | |
A. tricinctus | Pez payaso de tres bandas | Clarkii | Clarkii | |
Género Premnas : [29] | ||||
Premnas biaculeatus | Pez payaso marrón | Percula | Granate |
Los peces payaso representan aproximadamente el 43% del comercio mundial de peces ornamentales marinos, y aproximadamente el 25% del comercio mundial proviene de peces criados en cautiverio, mientras que la mayoría se captura en estado salvaje, [30] [31] lo que explica la disminución de las densidades en las áreas explotadas. [32] Los acuarios públicos y los programas de cría en cautiverio son esenciales para sostener su comercio como peces ornamentales marinos, y recientemente se han vuelto económicamente viables. [33] [34] Es uno de los pocos peces ornamentales marinos cuyo ciclo de vida completo ha sido en cautiverio cerrado. Los miembros de algunas especies de peces payaso, como el pez payaso marrón, se vuelven agresivos en cautiverio; otros, como el pez payaso falso percula, pueden mantenerse con éxito con otros individuos de la misma especie. [35]
Cuando no hay una anémona de mar disponible en un acuario , el pez anémona puede establecerse en algunas variedades de corales blandos o corales pétreos de pólipos grandes . [36] Una vez que se ha adoptado una anémona o un coral, el pez anémona lo defenderá. Los peces anémona, sin embargo, no están obligados a estar atados a sus anfitriones y pueden sobrevivir solos en cautiverio. [37] [38]
Los peces payaso que se venden en cautiverio representan una proporción muy pequeña (10%) del comercio total de estos peces. Los peces payaso de diseño, cuyo nombre científico es A. ocellaris, son mucho más costosos y su obtención ha afectado a sus arrecifes de coral. Su atractivo atractivo, su color y sus patrones los han convertido en un objetivo atractivo para el comercio salvaje. [22]
En la película de Disney Pixar de 2003 Buscando a Nemo y su secuela de 2016 Buscando a Dory, los personajes principales Nemo, su padre Marlin y su madre Coral son peces payaso de la especie A. ocellaris . [39] La popularidad del pez anémona para acuarios aumentó después del estreno de la película; es la primera película asociada con un aumento en el número de aquellos capturados en la naturaleza. [40]