El aposematismo es la publicidad que hace un animal, ya sea terrestre o marino, a los depredadores potenciales de que no vale la pena atacarlo o comerlo. [1] Esta falta de rentabilidad puede consistir en cualquier defensa que haga que la presa sea difícil de matar y comer, como toxicidad, veneno , mal sabor u olor, espinas afiladas o naturaleza agresiva. Estas señales publicitarias pueden tomar la forma de coloración llamativa , sonidos , olores , [2] u otras características perceptibles . Las señales aposemáticas son beneficiosas tanto para el depredador como para la presa, ya que ambos evitan el daño potencial.
El término fue acuñado en 1877 por Edward Bagnall Poulton [3] [4] para el concepto de coloración de advertencia de Alfred Russel Wallace . [5] El aposematismo se explota en el mimetismo mülleriano , donde las especies con fuertes defensas evolucionan para parecerse entre sí. Al imitar especies de colores similares, se comparte la señal de advertencia a los depredadores, lo que hace que aprendan más rápidamente a un menor costo.
Una señal aposemática genuina de que una especie posee realmente defensas químicas o físicas no es la única forma de disuadir a los depredadores. En el mimetismo batesiano , una especie imitadora se parece a un modelo aposemático lo suficiente como para compartir la protección, mientras que muchas especies tienen exhibiciones deimáticas que pueden asustar a un depredador el tiempo suficiente para permitir que una presa que de otro modo estaría indefensa escape.
El término aposematismo fue acuñado por el zoólogo inglés Edward Bagnall Poulton en su libro de 1890 The Colours of Animals . Basó el término en las palabras griegas antiguas ἀπό apo 'lejos' y σῆμα sēma 'señal', en referencia a las señales que advierten a otros animales que se alejen. [3] [4]
La función del aposematismo es prevenir ataques, advirtiendo a los depredadores potenciales que el animal presa tiene defensas como ser desagradable o venenoso. La advertencia fácilmente detectable es un mecanismo de defensa primario, y las defensas no visibles son secundarias. [6] Las señales aposemáticas son principalmente visuales, utilizando colores brillantes y patrones de alto contraste como rayas. Las señales de advertencia son indicaciones honestas de presas nocivas, porque la visibilidad evoluciona en tándem con la nocividad. [7] Por lo tanto, cuanto más brillante y visible sea el organismo, más tóxico suele ser. [7] [8] Esto contrasta con las exhibiciones deimáticas , que intentan asustar a un depredador con una apariencia amenazante pero que son engañosas, no respaldadas por ninguna defensa fuerte. [9]
Los colores más comunes y efectivos son el rojo, el amarillo, el negro y el blanco. [10] Estos colores proporcionan un fuerte contraste con el follaje verde, resisten los cambios de sombra e iluminación, son altamente cromáticos y proporcionan un camuflaje dependiente de la distancia . [10] Algunas formas de coloración de advertencia proporcionan este camuflaje dependiente de la distancia al tener un patrón efectivo y una combinación de colores que no permiten una fácil detección por parte de un depredador a distancia, pero son similares a una advertencia desde una proximidad cercana, lo que permite un equilibrio ventajoso entre camuflaje y aposematismo. [11] La coloración de advertencia evoluciona en respuesta al fondo, las condiciones de luz y la visión del depredador. [12] Las señales visibles pueden ir acompañadas de olores, sonidos o comportamiento para proporcionar una señal multimodal que los depredadores detectan de manera más efectiva. [13]
La falta de palatabilidad, entendida en términos generales, puede generarse de diversas maneras. Algunos insectos , como la mariquita o la polilla tigre, contienen sustancias químicas de sabor amargo, [14] mientras que la mofeta produce un olor nocivo y las glándulas venenosas de la rana dardo venenosa , la picadura de una hormiga aterciopelada o la neurotoxina de una araña viuda negra hacen que sean peligrosos o dolorosos de atacar. Las polillas tigre anuncian su falta de palatabilidad ya sea produciendo ruidos ultrasónicos que advierten a los murciélagos que las eviten, [14] o mediante posturas de advertencia que exponen partes del cuerpo de colores brillantes (ver Unkenreflex ), o exponiendo manchas oculares . Las hormigas aterciopeladas (en realidad avispas parásitas) como Dasymutilla occidentalis tienen colores brillantes y producen ruidos audibles cuando se las agarra (a través de la estridulación ), que sirven para reforzar la advertencia. [15] Entre los mamíferos, los depredadores pueden ser disuadidos cuando un animal más pequeño es agresivo y capaz de defenderse, como por ejemplo en los tejones de miel . [16]
El aposematismo está muy extendido en los insectos, pero menos en los vertebrados , y se limita principalmente a un número menor de especies de reptiles , anfibios y peces , y a algunos mamíferos malolientes o agresivos . Podrían incluirse los pitohuis , pájaros rojos y negros cuyas plumas y piel tóxicas aparentemente provienen de los escarabajos venenosos que ingieren. [17] Se ha propuesto que el aposematismo jugó un papel en la evolución humana, ya que el olor corporal llevaba una advertencia a los depredadores de los grandes homínidos capaces de defenderse con armas. [18]
Quizás los vertebrados aposemáticos más numerosos son las ranas venenosas dardo (familia: Dendrobatidae ). [19] Estos anfibios anuros neotropicales exhiben un amplio espectro de coloración y toxicidad. [20] Algunas especies de esta familia de ranas venenosas (particularmente Dendrobates , Epipedobates y Phyllobates ) tienen colores llamativos y secuestran uno de los alcaloides más tóxicos entre todas las especies vivas. [21] [22] Dentro de la misma familia, también hay ranas crípticas (como Colostethus y Mannophryne ) que carecen de estos alcaloides tóxicos. [23] [24] Aunque estas ranas muestran una amplia gama de coloración y toxicidad, hay muy poca diferencia genética entre las especies. [20] La evolución de su llamativa coloración está correlacionada con rasgos como la defensa química, la especialización dietética, la diversificación acústica y el aumento de la masa corporal. [25] [22]
Se cree que algunas plantas emplean el aposematismo para advertir a los herbívoros de sustancias químicas desagradables o defensas físicas como hojas puntiagudas o espinas. [26] Muchos insectos, como las orugas de la polilla cinabrio , adquieren sustancias químicas tóxicas de sus plantas hospedantes. [27] Entre los mamíferos, las mofetas y las zorrillas anuncian sus malolientes defensas químicas con patrones en blanco y negro muy contrastantes en su pelaje, mientras que el tejón y el tejón de miel, con patrones similares , anuncian sus garras afiladas, mandíbulas poderosas y naturaleza agresiva. [28] Algunas aves de colores brillantes, como los paseriformes con patrones contrastantes, también pueden ser aposemáticas, al menos en las hembras; pero como los pájaros machos suelen tener colores brillantes a través de la selección sexual , y su coloración no está correlacionada con la comestibilidad, no está claro si el aposematismo es significativo. [29]
El sonido que producen las serpientes de cascabel es una forma acústica de aposematismo. [30] La producción de sonido por parte de la oruga de la polilla Polyphemus, Antheraea polyphemus , también puede ser aposematismo acústico, conectado y precedido por defensas químicas. [31] Existen defensas acústicas similares en una variedad de orugas de Bombycoidea . [32]
La existencia de aposematismo en los ecosistemas marinos ha sido debatida. [35] Muchos organismos marinos, en particular los de los arrecifes de coral, tienen colores brillantes o patrones, incluidas las esponjas, los corales, los moluscos y los peces, con poca o ninguna conexión con las defensas químicas o físicas. Las esponjas de arrecife del Caribe tienen colores brillantes y muchas especies están llenas de sustancias químicas tóxicas, pero no existe una relación estadística entre los dos factores. [36]
Los moluscos nudibranquios son los ejemplos más citados de aposematismo en los ecosistemas marinos, pero la evidencia de esto ha sido cuestionada, [37] principalmente porque (1) hay pocos ejemplos de mimetismo entre especies, (2) muchas especies son nocturnas o crípticas, y (3) los colores brillantes en el extremo rojo del espectro de color se atenúan rápidamente en función de la profundidad del agua. Por ejemplo, el nudibranquio bailarina española (género Hexabranchus ), una de las babosas marinas tropicales más grandes, con defensas químicas potentes y de un rojo y blanco brillantes, es nocturno y no tiene imitadores conocidos. [38]
Es de esperar que se produzca mimetismo, ya que los miméticos batesianos con defensas débiles pueden obtener cierta protección gracias a su parecido con las especies aposemáticas. [39] Otros estudios han concluido que los nudibranquios, como las babosas de la familia Phyllidiidae de los arrecifes de coral del Indopacífico, tienen colores aposemáticos. [40] El mimetismo mülleriano se ha visto implicado en la coloración de algunos nudibranquios mediterráneos, todos los cuales obtienen sustancias químicas defensivas de su dieta de esponjas. [41]
La estrella de mar corona de espinas , al igual que otras estrellas de mar como Metrodira subulata , tiene una coloración llamativa y espinas largas y afiladas, además de saponinas citolíticas , sustancias químicas que podrían funcionar como una defensa eficaz; se argumenta que esta evidencia es suficiente para que dicha especie sea considerada aposemática. [33] [34]
Se ha propuesto que el aposematismo y el mimetismo son menos evidentes en los invertebrados marinos que en los insectos terrestres porque la depredación es una fuerza selectiva más intensa para muchos insectos, que se dispersan como adultos en lugar de como larvas y tienen tiempos de generación mucho más cortos. [35] Además, hay evidencia de que los depredadores de peces como los pepinos de mar de cabeza azul pueden adaptarse a las señales visuales más rápidamente que las aves, lo que hace que el aposematismo sea menos efectivo. [43] Sin embargo, hay evidencia experimental de que los pepinos de mar verrugosos rosados son aposemáticos y que las señales cromáticas y acromáticas que proporcionan a los depredadores reducen independientemente la tasa de ataque. [42]
Los pulpos de anillos azules son venenosos. Pasan gran parte del tiempo escondidos en grietas mientras exhiben patrones de camuflaje efectivos con sus células cromatóforas dérmicas . Sin embargo, si se los provoca, cambian rápidamente de color y se vuelven de un amarillo brillante, con cada uno de los 50 a 60 anillos destellando un azul iridiscente brillante en un tercio de segundo. [44] A menudo se afirma que se trata de una exhibición de advertencia aposemática, [45] [46] [47] [48] pero la hipótesis rara vez se ha probado. [49]
El mecanismo de defensa se basa en la memoria del posible depredador; un ave que alguna vez ha tenido contacto con un saltamontes de sabor desagradable intentará evitar que se repita la experiencia. En consecuencia, las especies aposemáticas suelen ser gregarias. Antes de que el recuerdo de una mala experiencia se atenúe, el depredador puede ver reforzada la experiencia mediante la repetición. Los organismos aposemáticos suelen ser lentos, ya que tienen poca necesidad de velocidad y agilidad. En cambio, su morfología suele ser dura y resistente a las lesiones, lo que les permite escapar una vez que el depredador es advertido. [50]
Las especies aposemáticas no necesitan esconderse o permanecer quietas como lo hacen los organismos crípticos, por lo que los individuos aposemáticos se benefician de una mayor libertad en áreas expuestas y pueden pasar más tiempo buscando alimento, lo que les permite encontrar más comida y de mejor calidad. [51] Pueden hacer uso de exhibiciones de apareamiento llamativas, incluidas señales vocales, que luego pueden desarrollarse a través de la selección sexual . [52] [22]
En una carta a Alfred Russel Wallace fechada el 23 de febrero de 1867, Charles Darwin escribió: "El lunes por la tarde visité a Bates y le planteé una dificultad que no pudo resolver y, como en alguna ocasión similar anterior, su primera sugerencia fue: 'mejor pregúntale a Wallace'. Mi dificultad es, ¿por qué las orugas a veces tienen colores tan hermosos y artísticos?" [53] Darwin estaba desconcertado porque su teoría de la selección sexual (según la cual las hembras eligen a sus parejas en función de lo atractivas que sean) no podía aplicarse a las orugas, ya que son inmaduras y, por lo tanto, no son sexualmente activas.
Wallace respondió al día siguiente con la sugerencia de que, dado que algunas orugas "... están protegidas por un sabor o un olor desagradables, sería una ventaja positiva para ellas no ser confundidas nunca con ninguna de las orugas sabrosas [ sic ], porque una herida leve como la que causaría un picotazo de un pájaro casi siempre mata a una oruga en crecimiento. Por lo tanto, cualquier color llamativo y llamativo que las distinguiera claramente de las orugas comestibles de color marrón y verde permitiría a los pájaros reconocerlas fácilmente como una especie no apta para el alimento, y así evitarían el ataque, que es tan malo como ser comidos ". [54]
Como Darwin estaba entusiasmado con la idea, Wallace pidió a la Sociedad Entomológica de Londres que probara la hipótesis. [55] En respuesta, el entomólogo John Jenner Weir realizó experimentos con orugas y pájaros en su aviario, y en 1869 proporcionó la primera evidencia experimental de la coloración de advertencia en animales. [56] La evolución del aposematismo sorprendió a los naturalistas del siglo XIX porque se suponía que la probabilidad de su establecimiento en una población era baja, ya que una señal conspicua sugería una mayor probabilidad de depredación. [57]
Wallace acuñó el término "colores de advertencia" en un artículo sobre la coloración animal en 1877. [5] En 1890, Edward Bagnall Poulton renombró el concepto como aposematismo en su libro The Colours of Animals . [4] Describió la derivación del término de la siguiente manera:
El segundo encabezado (Colores Semáticos) incluye Colores de Advertencia y Marcas de Reconocimiento: los primeros advierten a un enemigo y por lo tanto se llaman Aposemáticos [griego, apo , de, y sema , signo] [58]
El aposematismo es paradójico en términos evolutivos , ya que hace que los individuos sean visibles para los depredadores, por lo que pueden ser asesinados y el rasgo eliminado antes de que los depredadores aprendan a evitarlo. [59] Si la coloración de advertencia pone a los primeros individuos en una desventaja tan fuerte, nunca duraría en la especie lo suficiente como para volverse beneficiosa. [60]
Hay evidencia de explicaciones que involucran el conservadurismo dietético , en el cual los depredadores evitan nuevas presas porque es una cantidad desconocida; [61] este es un efecto duradero. [61] [62] [63] El conservadurismo dietético se ha demostrado experimentalmente en algunas especies de aves y peces. [64] [61] [63] [65]
Además, las aves recuerdan y evitan los objetos que son llamativos y de mal sabor durante más tiempo que los objetos que son igualmente de mal sabor pero de colores crípticos. [66] Esto sugiere que la visión original de Wallace, de que la coloración de advertencia ayudaba a enseñar a los depredadores a evitar presas de ese color, era correcta. [67] Sin embargo, algunas aves (estorninos inexpertos y polluelos domésticos) también evitan de forma innata los objetos de colores llamativos, como se demostró utilizando gusanos de la harina pintados de amarillo y negro para parecerse a avispas, con controles de color verde opaco. Esto implica que la coloración de advertencia funciona al menos en parte estimulando la evolución de los depredadores para codificar el significado de la señal de advertencia, en lugar de requerir que cada nueva generación aprenda el significado de la señal. [67] Todos estos resultados contradicen la idea de que los individuos nuevos y de colores brillantes tendrían más probabilidades de ser comidos o atacados por depredadores. [61] [68]
Existen otras explicaciones posibles. Los depredadores pueden tener un miedo innato a las formas desconocidas ( neofobia ) [69] durante el tiempo suficiente para que se establezcan, pero es probable que esto sea sólo temporal. [60] [69] [70]
Alternativamente, los animales de presa podrían ser lo suficientemente gregarios como para formar grupos lo suficientemente compactos como para reforzar la señal de advertencia. Si la especie ya era desagradable al paladar, los depredadores podrían aprender a evitar el grupo, protegiendo a los individuos gregarios con el nuevo rasgo aposemático. [71] [72] La gregaridad ayudaría a los depredadores a aprender a evitar presas desagradables y gregarias. [73] El aposematismo también podría verse favorecido en poblaciones densas incluso si estas no son gregarias. [61] [69]
Otra posibilidad es que un gen para el aposematismo pueda ser recesivo y estar ubicado en el cromosoma X. [ 74] Si es así, los depredadores aprenderían a asociar el color con la falta de palatabilidad de los machos con el rasgo, mientras que las hembras heterocigotas portan el rasgo hasta que se vuelve común y los depredadores entienden la señal. [74] Los depredadores bien alimentados también podrían ignorar los morfos aposemáticos, prefiriendo otras especies de presas. [60] [75]
Otra explicación es que las hembras podrían preferir a los machos más brillantes, por lo que la selección sexual podría dar como resultado que los machos aposemáticos tengan un mayor éxito reproductivo que los machos no aposemáticos si pueden sobrevivir lo suficiente para aparearse. La selección sexual es lo suficientemente fuerte como para permitir que los rasgos aparentemente desadaptativos persistan a pesar de otros factores que actúan en contra del rasgo. [19]
Una vez que los individuos aposemáticos alcanzan una cierta población umbral, por la razón que sea, el proceso de aprendizaje del depredador se extendería a un mayor número de individuos y, por lo tanto, es menos probable que elimine por completo el rasgo de coloración de advertencia. [76] Si la población de individuos aposemáticos se originara a partir de los mismos pocos individuos, el proceso de aprendizaje del depredador daría como resultado una señal de advertencia más fuerte para los parientes sobrevivientes, lo que resultaría en una mayor aptitud inclusiva para los individuos muertos o heridos a través de la selección de parentesco . [77]
Una teoría para la evolución del aposematismo postula que surge por selección recíproca entre depredadores y presas, donde las características distintivas de las presas, que pueden ser visuales o químicas, son seleccionadas por depredadores no discriminadores, y donde, al mismo tiempo, los depredadores seleccionan la evitación de presas distintivas. La selección recíproca concurrente (CRS) puede implicar aprendizaje por parte de los depredadores o puede dar lugar a evitaciones no aprendidas por ellos. El aposematismo que surge por CRS opera sin condiciones especiales de gregarismo o parentesco de las presas, y no depende de que los depredadores muestren presas para aprender que las señales aposemáticas están asociadas con la falta de palatabilidad u otras características no rentables. [78]
El aposematismo es una estrategia lo suficientemente exitosa como para haber tenido efectos significativos en la evolución de las especies tanto aposemáticas como no aposemáticas.
Las especies no aposemáticas a menudo han evolucionado para imitar las marcas llamativas de sus contrapartes aposemáticas. Por ejemplo, la polilla avispón es una imitadora engañosa de la avispa chaqueta amarilla; se parece a la avispa, pero no tiene aguijón. Un depredador que evita a la avispa, en cierta medida también evitará a la polilla. Esto se conoce como mimetismo batesiano , en honor a Henry Walter Bates , un naturalista británico que estudió las mariposas amazónicas en la segunda mitad del siglo XIX. [79] El mimetismo batesiano depende de la frecuencia: es más eficaz cuando la proporción de imitadores a modelos es baja; de lo contrario, los depredadores se encontrarán con el imitador con demasiada frecuencia. [80] [81]
Una segunda forma de mimetismo ocurre cuando dos organismos aposemáticos comparten la misma adaptación antidepredador y se imitan entre sí de manera no engañosa, en beneficio de ambas especies, ya que se necesita atacar a menos individuos de cualquiera de las especies para que los depredadores aprendan a evitarlos a ambos. Esta forma de mimetismo se conoce como mimetismo mülleriano , en honor a Fritz Müller , un naturalista alemán que estudió el fenómeno en la Amazonia a fines del siglo XIX. [82] [83]
Muchas especies de abejas y avispas que se encuentran juntas son imitadoras de Müller. Su coloración similar enseña a los depredadores que un patrón de rayas está asociado con una picadura. Por lo tanto, un depredador que haya tenido una experiencia negativa con alguna de estas especies probablemente evitará cualquier otra que se le parezca en el futuro. El mimetismo de Müller se encuentra en vertebrados como la rana venenosa imitadora ( Ranitomeya imitator ), que tiene varias formas a lo largo de su área de distribución geográfica natural, cada una de las cuales se parece mucho a una especie diferente de rana venenosa que vive en esa área. [84]
Las espinas defensivas de los animales suelen ser llamativas (forma y color) y deben considerarse aposemáticas... Ejemplos clásicos son las estrellas de mar
Acanthaster planci
y
Metrodira subulata
, que tienen espinas rojas...